Operating Systems

================ Start Lecture #4 ================

2.3.2: Critical sections

We must prevent interleaving sections of code that need to be atomic with respect to each other. That is, the conflicting sections need mutual exclusion. If process A is executing its critical section, it excludes process B from executing its critical section. Conversely if process B is executing is critical section, it excludes process A from executing its critical section.

Requirements for a critical section implementation.

  1. No two processes may be simultaneously inside their critical section.

  2. No assumption may be made about the speeds or the number of CPUs.

  3. No process outside its critical section (including the entry and exit code) may block other processes.

  4. No process should have to wait forever to enter its critical section.

2.3.3 Mutual exclusion with busy waiting

The operating system can choose not to preempt itself. That is, we do not preempt system processes (if the OS is client server) or processes running in system mode (if the OS is self service). Forbidding preemption for system processes would prevent the problem above where x<--x+1 not being atomic crashed the printer spooler if the spooler is part of the OS.

But simply forbidding preemption while in system mode is not sufficient.

Software solutions for two processes

    Initially P1wants=P2wants=false

    Code for P1                             Code for P2

    Loop forever {                          Loop forever {
        P1wants <-- true         ENTRY          P2wants <-- true
        while (P2wants) {}       ENTRY          while (P1wants) {}
        critical-section                        critical-section
        P1wants <-- false        EXIT           P2wants <-- false
        non-critical-section }                  non-critical-section }

Explain why this works.

But it is wrong! Why?

Let's try again. The trouble was that setting want before the loop permitted us to get stuck. We had them in the wrong order!

Initially P1wants=P2wants=false

Code for P1                             Code for P2

Loop forever {                          Loop forever {
    while (P2wants) {}       ENTRY          while (P1wants) {}
    P1wants <-- true         ENTRY          P2wants <-- true
    critical-section                        critical-section
    P1wants <-- false        EXIT           P2wants <-- false
    non-critical-section }                  non-critical-section }

Explain why this works.

But it is wrong again! Why?

So let's be polite and really take turns. None of this wanting stuff.

Initially turn=1

Code for P1                      Code for P2

Loop forever {                   Loop forever {
    while (turn = 2) {}              while (turn = 1) {}
    critical-section                 critical-section
    turn <-- 2                       turn <-- 1
    non-critical-section }           non-critical-section }

This one forces alternation, so is not general enough. Specifically, it does not satisfy condition three, which requires that no process in its non-critical section can stop another process from entering its critical section. With alternation, if one process is in its non-critical section (NCS) then the other can enter the CS once but not again.

The first example violated rule 4 (the whole system blocked). The second example violated rule 1 (both in the critical section. The third example violated rule 3 (one process in the NCS stopped another from entering its CS).

In fact, it took years (way back when) to find a correct solution. Many earlier “solutions” were found and several were published, but all were wrong. The first correct solution was found by a mathematician named Dekker, who combined the ideas of turn and wants. The basic idea is that you take turns when there is contention, but when there is no contention, the requesting process can enter. It is very clever, but I am skipping it (I cover it when I teach distributed operating systems in V22.0480 or G22.2251). Subsequently, algorithms with better fairness properties were found (e.g., no task has to wait for another task to enter the CS twice).

What follows is Peterson's solution, which also combines turn and wants to force alternation only when there is contention. When Peterson's solution was published, it was a surprise to see such a simple soluntion. In fact Peterson gave a solution for any number of processes. A proof that the algorithm satisfies our properties (including a strong fairness condition) for any number of processes can be found in Operating Systems Review Jan 1990, pp. 18-22.

Initially P1wants=P2wants=false  and  turn=1

Code for P1                        Code for P2

Loop forever {                     Loop forever {
    P1wants <-- true                   P2wants <-- true
    turn <-- 2                         turn <-- 1
    while (P2wants and turn=2) {}      while (P1wants and turn=1) {}
    critical-section                   critical-section
    P1wants <-- false                  P2wants <-- false
    non-critical-section               non-critical-section

Hardware assist (test and set)

TAS(b), where b is a binary variable, ATOMICALLY sets b<--true and returns the OLD value of b.
Of course it would be silly to return the new value of b since we know the new value is true.

The word atomically means that the two actions performed by TAS(x), testing (i.e., returning the old value of x) and setting (i.e., assigning true to x) are inseparable. Specifically it is not possible for two concurrent TAS(x) operations to both return false (unless there is also another concurrent statement that sets x to false).

With TAS available implementing a critical section for any number of processes is trivial.

    loop forever {
        while (TAS(s)) {}   ENTRY
        CS
        s<--false           EXIT
        NCS

2.3.4: Sleep and Wakeup

Remark: Tanenbaum does both busy waiting (as above) and blocking (process switching) solutions. We will only do busy waiting, which is easier. Sleep and Wakeup are the simplest blocking primitives. Sleep voluntarily blocks the process and wakeup unblocks a sleeping process. We will not cover these.

Homework: Explain the difference between busy waiting and blocking process synchronization.

2.3.5: Semaphores

Remark: Tannenbaum use the term semaphore only for blocking solutions. I will use the term for our busy waiting solutions. Others call our solutions spin locks.

P and V and Semaphores

The entry code is often called P and the exit code V. Thus the critical section problem is to write P and V so that

loop forever
    P
    critical-section
    V
    non-critical-section
satisfies
  1. Mutual exclusion.
  2. No speed assumptions.
  3. No blocking by processes in NCS.
  4. Forward progress (my weakened version of Tanenbaum's last condition).

Note that I use indenting carefully and hence do not need (and sometimes omit) the braces {} used in languages like C or java.

A binary semaphore abstracts the TAS solution we gave for the critical section problem.

The above code is not real, i.e., it is not an implementation of P. It is, instead, a definition of the effect P is to have.

To repeat: for any number of processes, the critical section problem can be solved by

loop forever
    P(S)
    CS
    V(S)
    NCS

The only specific solution we have seen for an arbitrary number of processes is the one just above with P(S) implemented via test and set.

Remark: Peterson's solution requires each process to know its processor number. The TAS soluton does not. Moreover the definition of P and V does not permit use of the processor number. Thus, strictly speaking Peterson did not provide an implementation of P and V. He did solve the critical section problem.

To solve other coordination problems we want to extend binary semaphores.

Both of the shortcomings can be overcome by not restricting ourselves to a binary variable, but instead define a generalized or counting semaphore.

These counting semaphores can solve what I call the semi-critical-section problem, where you premit up to k processes in the section. When k=1 we have the original critical-section problem.

initially S=k

loop forever
    P(S)
    SCS   <== semi-critical-section
    V(S)
    NCS

Producer-consumer problem

Initially e=k, f=0 (counting semaphore); b=open (binary semaphore)

Producer                         Consumer

loop forever                     loop forever
    produce-item                     P(f)
    P(e)                             P(b); take item from buf; V(b)
    P(b); add item to buf; V(b)      V(e)
    V(f)                             consume-item

2.3.6: Mutexes

Remark: Whereas we use the term semaphore to mean binary semaphore and explicitly say generalized or counting semaphore for the positive integer version, Tanenbaum uses semaphore for the positive integer solution and mutex for the binary version. Also, as indicated above, for Tanenbaum semaphore/mutex implies a blocking primitive; whereas I use binary/counting semaphore for both busy-waiting and blocking implementations. Finally, remember that in this course we are studying only busy-waiting solutions.

My Terminology
Busy waitblock/switch
critical(binary) semaphore(binary) semaphore
semi-criticalcounting semaphorecounting semaphore
Tanenbaum's Terminology
Busy waitblock/switch
criticalenter/leave regionmutex
semi-criticalno namesemaphore

2.3.7: Monitors

Skipped.

2.3..8: Message Passing

Skipped. You can find some information on barriers in my lecture notes for a follow-on course (see in particular lecture #16).

2.4: Classical IPC Problems

2.4.0: The Producer-Consumer (or Bounded Buffer) Problem

We did this previously.

2.4.1: The Dining Philosophers Problem

A classical problem from Dijkstra

What algorithm do you use for access to the shared resource (the forks)?

The purpose of mentioning the Dining Philosophers problem without giving the solution is to give a feel of what coordination problems are like. The book gives others as well. We are skipping these (again this material would be covered in a sequel course). If you are interested look, for example, here.

Homework: 31 and 32 (these have short answers but are not easy). Note that the problem refers to fig. 2-20, which is incorrect. It should be fig 2-33.

2.4.2: The Readers and Writers Problem

Quite useful in multiprocessor operating systems and database systems. The “easy way out” is to treat all processes as writers in which case the problem reduces to mutual exclusion (P and V). The disadvantage of the easy way out is that you give up reader concurrency. Again for more information see the web page referenced above.

2.4.3: The Sleeping Barber Problem

Skipped.

2.4A: Summary of 2.3 and 2.4

We began with a problem (wrong answer for x++ and x--) and used it to motivate the Critical Section Problem for which we provided a (software) solution.

We then defined (binary) Semaphores and showed that a Semaphore easily solves the critical section problem and doesn't require knowledge of how many processes are competing for the critical section. We gave an implementation using Test-and-Set.

We then gave an operational definition of Semaphore (which is not an implementation) and morphed this definition to obtain a Counting (or Generalized) Semaphore, for which we gave NO implementation. I asserted that a counting semaphore can be implemented using 2 binary semaphores and gave a reference.

We defined the Readers/Writers (or Bounded Buffer) Problem and showed that it can be solved using counting semaphores (and binary semaphores, which are a special case).

Finally we briefly discussed some classical problem, but did not give (full) solutions.

2.5: Process Scheduling

Scheduling processes on the processor is often called “process scheduling” or simply “scheduling”.

The objectives of a good scheduling policy include

Recall the basic diagram describing process states

For now we are discussing short-term scheduling, i.e., the arcs connecting running <--> ready.

Medium term scheduling is discussed later.

Preemption

It is important to distinguish preemptive from non-preemptive scheduling algorithms.

Deadline scheduling

This is used for real time systems. The objective of the scheduler is to find a schedule for all the tasks (there are a fixed set of tasks) so that each meets its deadline. The run time of each task is known in advance.

Actually it is more complicated.

We do not cover deadline scheduling in this course.

The name game

There is an amazing inconsistency in naming the different (short-term) scheduling algorithms. Over the years I have used primarily 4 books: In chronological order they are Finkel, Deitel, Silberschatz, and Tanenbaum. The table just below illustrates the name game for these four books. After the table we discuss each scheduling policy in turn.

Finkel  Deitel  Silbershatz Tanenbaum
-------------------------------------
FCFS    FIFO    FCFS        FCFS
RR      RR      RR          RR
PS      **      PS          PS
SRR     **      SRR         **    not in tanenbaum
SPN     SJF     SJF         SJF
PSPN    SRT     PSJF/SRTF   --    unnamed in tanenbaum
HPRN    HRN     **          **    not in tanenbaum
**      **      MLQ         **    only in silbershatz
FB      MLFQ    MLFQ        MQ

Remark: For an alternate organization of the scheduling algorithms (due to Eric Freudenthal and presented by him Fall 2002) click here.

First Come First Served (FCFS, FIFO, FCFS, --)

If the OS “doesn't” schedule, it still needs to store the list of ready processes in some manner. If it is a queue you get FCFS. If it is a stack (strange), you get LCFS. Perhaps you could get some sort of random policy as well.

Round Robin (RR, RR, RR, RR)

Homework: 26, 35, 38.

Homework: Give an argument favoring a large quantum; give an argument favoring a small quantum.

ProcessCPU TimeCreation Time
P1200
P233
P325
Homework:

Homework: Redo the previous homework for q=2 with the following change. After process P1 runs for 3ms (milliseconds), it blocks for 2ms. P1 never blocks again. P2 never blocks. After P3 runs for 1 ms it blocks for 1ms. Remind me to answer this one in class next lecture.

Processor Sharing (PS, **, PS, PS)

Merge the ready and running states and permit all ready jobs to be run at once. However, the processor slows down so that when n jobs are running at once, each progresses at a speed 1/n as fast as it would if it were running alone.

Homework: 34.

Variants of Round Robin