
Segmentation (Apr 5 and 7, 2005)

Apr 5 and 7, 2005

1 Review of Memory Management

• Memory Hierarchy (capacity/speed tradeoff)

• E.g., Registers, Cache, RAM, Disk, Tape

• When we speak of ”memory management” we are basically talking about
the RAM part of memory!

Strictly speaking, there is also the Disk memory that lurks behind all our
schemes. The issue is how to ”represent parts of the Disk memory in
RAM”.

• The issues with managing memory can be divided into three distinct sets
of problems: allocation, paging, segmentation.

• PROBLEM 1: Allocation and Swapping Problems

1. How to allocate memory for processes?

2. REMARK: ”memory” means RAM

3. SWAPPING is an another wrinkle in the allocation problem – pro-
cesses can be swapped out.

4. Two basic functions: free and allocate

5. Keep track of allocation of memory to processes

6. Use 2 linked lists: allocated and free list

7. Each list, may be ordered by address

8. If ordered, may have cross-links between 2 lists

9. Allocation policies: first fit, best fit, worst fit, quick fit

• PROBLEM 2: Paging Problem

1. Goes hand-in-hand with virtual memory

2. REMARK: 2 senses of physical memory (in RAM and in DISK)

3. Basic parameter: page size

1



4. Physical RAM memory divided into page frames

5. Page table to track mapping from virtual pages to frames

ENTRY: (present-bit, page frame number, R-bit, M-bit, cache-enable-
bit, protection, ...)

6. Need method to translate virtual address to physical addresses on
DISK. USUALLY, MMU

7. MAIN TOPIC: page eviction policies/algorithms

(NOTE: page placement is a non-issue because pages are all the same
size)

• PROBLEM 3: Segmentation Problem

1. This lecture!

• REVIEW OF PAGE TABLES

1. Since segmentation will be integrated with paging, we need to recall
some details on paging

2. Address = (page#, offset)

3. Each page has a Page Table Entry (PTE) in the page table

4. This information is hardware, not OS, oriented. (Because this must
be fast and automatic)

5. What is in PTE?

– PRESENT or VALID bit: TRUE iff page is loaded in a frame.

Page fault generated if invalid page is accessed.

– FRAME NUMBER: virtual to RAM address translation

– R- or REFERENCED BIT: used in page eviction policies

– M- or MODIFIED or DIRTY BIT: used to decide if writing to disk
is needed.

– PROTECTION BITS: read/write/execute permissions.

This is probably more naturally done at the segment level.

6. Consider the transition graph for the four states of (R,M):

(00), (01), (10), (11).

– These 2 bits are very important and is very effectively used by the
various paging algorithms

– Here are some ”puzzles”:

– How can we ever get into (01)?

– Is there a transition INTO state (00)?

– How can we ever begin in (00)? Demand paging seems to preclude
this state!

Ans: From (10) we can get to (00) after a clock tick This also accounts
for (01).

2



ALSO: instead of ”demand paging”, we may have proactive paging
which brings in a block of pages (because it is cheap, or because there
is a likelihood of using neighboring pages). Thus a page may start
out with (00).

7. Multilevel Page Tables:

– Page tables MUST reside in main memory (otherwise the whole
purpose of paging is defeated)

– But page tables can be very large! (How many entries in page table
if you have a 80 GB disk, and 1 KB page size?)

– Multilevel is important for reducing page tables.

– The first level may be called the Page Directory.

– Keep only the Page Directory in memory

– With 2 levels, Address = (pageDir#,page2#, offset)

– Can generalize to more levels

8. Translation Lookaside Buffers (TLB)

– Why is this needed? Each memory reference requires 2 or 3 more
memory references. We would like to speed this up.

– a kind of associative memory (content-addressable memory)

– It is the NATURAL kind (e.g., our brains). We do not recall
information in our heads by specifying addresses...

– Explain ”index field”

– The index field in TLB is the Page Number!

– Associative memories are expensive but fast

– So TLB’s are small

– On a TLB miss, we do 3 things:

(a) We resort to the usual Page Table lookup

(b) We CHOOSE a TLB entry for replacement

(c) We put the new page into the TLB

2 Segmentation

• Motivation:

Different parts of a process memory has different properties

We would like to tag such ”segments” with different protection and paging
policies

• Example: Compiler process may have 5 ”segments”

1. Source text that is being compiled

2. Symbol table, being built

3. Table of constants

3



4. Parse tree, being built

5. Stack for procedure calls

PROPERTIES:

– The first 4 grows, but 5th may grow and shrink

• Example: (Tanenbaum, Sec.4.6.4) PDP-11 is a pioneer here, and is com-
mon in Unix

– Two segments, called Instruction or I-space and Data or D-space.

– I-space for (program) text is clearly executable and does not grow.

– D-space can grow and may be read-only or both read and write.

– Each entry in Process table will store pointers to the appropriate D-space
page table and I-space page table.

– This arrangement facilitates sharing (Tanenbaum, Sec.4.6.5). Thus, if
two processes share a given I-space, they just need to have to use same
I-space page table.

– Some issues arise in sharing of pages (we should have some way of
indicating if a page is shared, so that a shared page is not evicted when a
process using the page is evicted).

– Consider how we can exploit this in the ”fork” system call of Unix.
I-space can be shared between parent and child processes.

– D-space are not to be shared... but there is better way than just copying
data pages automatically.

– We can have a ”copy on write” rule – data pages can be shared UNTIL
one process (child or parent) tries to write.

– All the above are discussed under paging, but it is relevant to segmen-
tation (i.e., 2-segment system).

– Tanenbaum (Sec.4.6.6) also discuss the concept of a ”paging daemon”
to automatically keep pages up-to-date, etc.

• Concept/Implementation of segmentation

– Each segment has a max length

– Each segment address begins with 0, to its max length

– Addresses comprise (seg#, offset).

– WHEN combined with paging, address = (seg#, page#, offset)

– like paging, but pages sizes are fixed, not segment sizes

– Segment table

– Each segment has an entry (STE=Segment Table Entry)

– What is in STE?

Has a ”valid bit” (if segment is loaded)

4



Has a base and limit

Has a disk address

– If segment is accessed, we check if it is loaded

– If not loaded, the base, limit and disk address is restored from process
table

– We must solve the PLACEMENT and REPLACEMENT problems

– An address lookup requires 3 memory references (STE, PTE, actual
address). A TLB can help!

• Advantages:

– linking is simplified (if one segment is modified, the other segments are
unchanged)

– shared library is possible (e.g., GUI libraries)

– protection permission of segments can be customized (code segment is
execute only, text segment may be read only, etc)

• Example: Traditional Unix has 3 segments

– shared text (execute only)

– data segment (global and static vars)

– stack segment (automatic vars)

3 Lecture for Apr 7: Review Questions

• Q: If you are allowed only 2 segments, how would you use your 2 segments
and set their permissions?

A: One segment for (program) text, which is executable but read-only,
another segment for data, which is read and write, but not executable.

Q: Why do we need TLB’s?

A: To speed up the memory reference in the presence of paging and seg-
mentation.

Q: Name 4 advantages of segmentation

A: 1. Facilitates sharing of library and data across processes

2. Simplify the handling of data structures that grow/shrink indepen-
dently

3. Supports the management of different parts of the data/code with
different permission properties.

4. Supports the separate compilation and linking of modules.

5



4 Review of Segmentation

• Segmentation and paging are similar and yet different.

– The 2 techniques are normally used simultaneously.

– Many variations of both techniques exist

• Here is a comparison (cf. Figure 4-37 of Tanenbaum):

For the purposes of this comparison, we assume ”pure segmentation”
which is not combined with paging.

Property Paging Segmentation

Programmer aware of technique? No Yes
How many linear address spaces? 1 Many
Can address space exceed physical memory? Yes Yes
Separate protection of procedure and/or data? No(Maybe) Yes
Sharing of procedures/data across processes? No Yes
Can table sizes that changes unpredictably be handled? No Yes
Avoids external fragmentaion? No Yes

5 Segmentation in Intel Pentiums

• 16K segments

• Each segment up to 1 Gigawords (32 bits)

• 2 tables: LDT (Local Descriptor Table) and GDT (Global Descriptor
Table)

• Each process has a LDT, but there is only one GDT

• LDT: describes segments for each process

• GDT: describes segments for the OS

• Segment Selectors: 16-bit word, (Index, GDT-or-LDT-bit, 4-Previlege-
bits)

– The index gives the entry into GDT or LDT

• Pentium has 6 ”segment registers”

• To access a segment, first load a selector for that segment into one of
segment registers

• This will fetch the corresponding segment descriptor from LDT/GDT
into a 64-bit ”microprogram registor”.

6



• Using this segment descriptor, we can check validity of the offset and
whether the segment is loaded.

• If so, we form the linear address from the segment descriptor and offset.

• Linear address = (PageDir#, Page#, Offset)

• To speed up, we keep a small TLB to map most recent (PageDir#, Page#)
into page frame#.

• PROTECTION: Levels 0 to 3 (kernel, system call, shared library, user
progs).

–Thus 2 bits in the PSW stores this info

–Each segment also has this protection level info

–A program trying to access a segment at DIFFERENT level will cause a
trap

–But controlled way to access different levels is possible (use selectors)

7


