We must prevent interleaving sections of code that need to be atomic with respect to each other. That is, the conflicting sections need mutual exclusion. If process A is executing its critical section, it excludes process B from executing its critical section. Conversely if process B is executing is critical section, it excludes process A from executing its critical section.
Requirements for a critical section implementation.
The operating system can choose not to preempt itself. That is, we do not preempt system processes (if the OS is client server) or processes running in system mode (if the OS is self service). Forbidding preemption for system processes would prevent the problem above where x<--x+1 not being atomic crashed the printer spooler if the spooler is part of the OS.
But simply forbidding preemption while in system mode is not sufficient.
Initially P1wants=P2wants=false Code for P1 Code for P2 Loop forever { Loop forever { P1wants <-- true ENTRY P2wants <-- true while (P2wants) {} ENTRY while (P1wants) {} critical-section critical-section P1wants <-- false EXIT P2wants <-- false non-critical-section } non-critical-section }
Explain why this works.
But it is wrong! Why?
Let's try again. The trouble was that setting want before the loop permitted us to get stuck. We had them in the wrong order!
Initially P1wants=P2wants=false Code for P1 Code for P2 Loop forever { Loop forever { while (P2wants) {} ENTRY while (P1wants) {} P1wants <-- true ENTRY P2wants <-- true critical-section critical-section P1wants <-- false EXIT P2wants <-- false non-critical-section } non-critical-section }
Explain why this works.
But it is wrong again! Why?
So let's be polite and really take turns. None of this wanting stuff.
Initially turn=1 Code for P1 Code for P2 Loop forever { Loop forever { while (turn = 2) {} while (turn = 1) {} critical-section critical-section turn <-- 2 turn <-- 1 non-critical-section } non-critical-section }
This one forces alternation, so is not general enough. Specifically, it does not satisfy condition three, which requires that no process in its non-critical section can stop another process from entering its critical section. With alternation, if one process is in its non-critical section (NCS) then the other can enter the CS once but not again.
In fact, it took years (way back when) to find a correct solution. Many earlier ``solutions'' were found and several were published, but all were wrong. The first correct solution was found by a mathematician named Dekker, who combined the ideas of turn and wants. The basic idea is that you take turns when there is contention, but when there is no contention, the requesting process can enter. It is very clever, but I am skipping it (I cover it when I teach distributed operating systems in V22.0480 or G22.2251). Subsequently, algorithms with better fairness properties were found (e.g., no task has to wait for another task to enter the CS twice).
What follows is Peterson's solution, which also combines turn and wants to force alternation only when there is contention. When Peterson's solution was published, it was a surprise to see such a simple soluntion. In fact Peterson gave a solution for any number of processes. A proof that the algorithm satisfies our properties (including a strong fairness condition) for any number of processes can be found in Operating Systems Review Jan 1990, pp. 18-22.
Initially P1wants=P2wants=false and turn=1 Code for P1 Code for P2 Loop forever { Loop forever { P1wants <-- true P2wants <-- true turn <-- 2 turn <-- 1 while (P2wants and turn=2) {} while (P1wants and turn=1) {} critical-section critical-section P1wants <-- false P2wants <-- false non-critical-section non-critical-section
The word atomically means that the two actions performed by TAS(x) (testing, i.e., returning the old value of x and setting , i.e., assigning true to x) are inseparable. Specifically it is not possible for two concurrent TAS(x) operations to both return false (unless there is also another concurrent statement that sets x to false).
With TAS available implementing a critical section for any number of processes is trivial.
loop forever { while (TAS(s)) {} ENTRY CS s<--false EXIT NCS
Remark: Tanenbaum does both busy waiting (as above) and blocking (process switching) solutions. We will only do busy waiting, which is easier. Sleep and Wakeup are the simplest blocking primitives. Sleep voluntarily blocks the process and wakeup unblocks a sleeping process. We will not cover these.
Homework: Explain the difference between busy waiting and blocking.