So let's be polite and really take turns. None of this wanting stuff.
Initially turn=1 Code for P1 Code for P2 Loop forever { Loop forever { while (turn = 2) {} while (turn = 1) {} critical-section critical-section turn <-- 2 turn <-- 1 non-critical-section } non-critical-section }
This one forces alternation, so is not general enough. Specifically, it does not satisfy condition three, which requires that no process in its non-critical section can stop another process from entering its critical section. With alternation, if one process is in its non-critical section (NCS) then the other can enter the CS once but not again.
In fact, it took years (way back when) to find a correct solution. Many earlier ``solutions'' were found and several were published, but all were wrong. The first correct solution was found by a mathematician named Dekker, who combined the ideas of turn and wants. The basic idea is that you take turns when there is contention, but when there is no contention, the requesting process can enter. It is very clever, but I am skipping it (I cover it when I teach distributed operating systems in V22.0480 or G22.2251). Subsequently, algorithms with better fairness properties were found (e.g., no task has to wait for another task to enter the CS twice).
What follows is Peterson's solution, which also combines turn and wants to force alternation only when there is contention. When Peterson's solution was published, it was a surprise to see such a simple soluntion. In fact Peterson gave a solution for any number of processes. A proof that the algorithm satisfies our properties (including a strong fairness condition) for any number of processes can be found in Operating Systems Review Jan 1990, pp. 18-22.
Initially P1wants=P2wants=false and turn=1 Code for P1 Code for P2 Loop forever { Loop forever { P1wants <-- true P2wants <-- true turn <-- 2 turn <-- 1 while (P2wants and turn=2) {} while (P1wants and turn=1) {} critical-section critical-section P1wants <-- false P2wants <-- false non-critical-section non-critical-section
The wordatomically means that the two actions performed by TAS(x) (testing, i.e., returning the old value of x and setting , i.e., assigning true to x) are inseparable. Specifically it is not possible for two concurrent TAS(x) operations to both return false (unless there is also another concurrent statement that sets x to false).
With TAS available implementing a critical section for any number of processes is trivial.
loop forever { while (TAS(s)) {} ENTRY CS s<--false EXIT NCS
Remark: Tanenbaum does both busy waiting (as above) and blocking (process switching) solutions. We will only do busy waiting, which is easier. Sleep and Wakeup are the simplest blocking primitives. Sleep voluntarily blocks the process and wakeup unblocks a sleeping process. We will not cover these.
Homework: Explain the difference between busy waiting and blocking.
Remark: Tannenbaum use the term semaphore only for blocking solutions. I will use the term for our busy waiting solutions. Others call our solutions spin locks.
The entry code is often called P and the exit code V. Thus the critical section problem is to write P and V so that
loop forever P critical-section V non-critical-sectionsatisfies
Note that I use indenting carefully and hence do not need (and sometimes omit) the braces {} used in languages like C or java.
A binary semaphore abstracts the TAS solution we gave for the critical section problem.
while (S=closed) {} S<--closed <== This is NOT the body of the whilewhere finding S=open and setting S<--closed is atomic
The above code is not real, i.e., it is not an implementation of P. It is, instead, a definition of the effect P is to have.
To repeat: for any number of processes, the critical section problem can be solved by
loop forever P(S) CS V(S) NCS
The only specific solution we have seen for an arbitrary number of processes is the one just above with P(S) implemented via test and set.
Remark: Peterson's solution requires each process to know its processor number. The TAS soluton does not. Moreover the definition of P and V does not permit use of the processor number. Thus, strictly speaking Peterson did not provide an implementation of P and V. He did solve the critical section problem.
To solve other coordination problems we want to extend binary semaphores.
Both of the shortcomings can be overcome by not restricting ourselves to a binary variable, but instead define a generalized or counting semaphore.
while (S=0) {} S--where finding S>0 and decrementing S is atomic
These counting semaphores can solve what I call the semi-critical-section problem, where you premit up to k processes in the section. When k=1 we have the original critical-section problem.
initially S=k loop forever P(S) SCS <== semi-critical-section V(S) NCS
Initially e=k, f=0 (counting semaphore); b=open (binary semaphore) Producer Consumer loop forever loop forever produce-item P(f) P(e) P(b); take item from buf; V(b) P(b); add item to buf; V(b) V(e) V(f) consume-item