================ Start Lecture #21 ================

Chapter 5: Input/Output

5.1: Principles of I/O Hardware

5.1.1: I/O Devices

5.1.2: Device Controllers

These are the ``devices'' as far as the OS is concerned. That is, the OS code is written with the controller spec in hand not with the device spec.

The figure in the book is so oversimplified as to be borderline false. The following picture is closer to the truth (but really there are several I/O buses of different speeds).

Using a controller

Think of a disk controller and a read request. The goal is to copy data from the disk to some portion of the central memory. How do we do this?

Homework: 2

5.1.3: Direct Memory Access (DMA)

Homework: 5

5.2: Principles of I/O Software

As with any large software system, good design and layering is important.

5.2.1: Goals of the I/O Software

Device independence

We want to have most of the OS, unaware of the characteristics of the specific devices attached to the system. Indeed we also want the OS to be largely unaware of the CPU type itself.

Due to this device independence, programs are written to read and write generic devices and then at run time specific devices are assigned. Writing to a disk has differences from writing to a terminal, but Unix cp and DOS copy do not see these differences. Indeed, most of the OS, including the file system code, is unaware of whether the device is a floppy or hard disk.

Uniform naming

Recall that we discussed the value of the name space implemented by file systems. There is no dependence between the name of the file and the device on which it is stored. So a file called IAmStoredOnAHardDisk might well be stored on a floppy disk.

Error handling

There are several aspects to error handling including: detection, correction (if possible) and reporting.
  1. Detection should be done as close to where the error occurred as possible before more damage is done (fault containment). This is not trivial.

  2. Correction is sometimes easy, for example ECC memory does this automatically (but the OS wants to know about the error so that it can schedule replacement of the faulty chips before unrecoverable double errors occur).

    Other easy cases include successful retries for failed ethernet transmissions. In this example, while logging is appropriate, it is quite reasonable for no action to be taken.

  3. Error reporting tends to be awful. The trouble is that the error occurs at a low level but by the time it is reported the context is lost. Unix/Linux in particular is horrible in this area.

Creating the illusion of synchronous I/O

Sharable vs dedicated devices

For devices like printers and tape drives, only one user at a time is permitted. These are called serially reusable devices, and are studied next chapter. Devices like disks and Ethernet ports can be shared by processes running concurrently.

Layering

Layers of abstraction as usual prove to be effective. Most systems are believed to use the following layers (but for many systems, the OS code is not available for inspection).

  1. User level I/O routines.
  2. Device independent I/O software.
  3. Device drivers.
  4. Interrupt handlers.

We give a bottom up explanation.

5.2.2: Interrupt Handlers

We discussed an interrupt handler before when studying page faults. Then it was called ``assembly language code''.

In the present case, we have a process blocked on I/O and the I/O event has just completed. So the goal is to make the process ready. Possible methods are.

Once the process is ready, it is up to the scheduler to decide when it should run.

5.2.3: Device Drivers

The portion of the OS that ``knows'' the characteristics of the controller.

The driver has two ``parts'' corresponding to its two access points. Recall the following figure from the beginning of the course.

  1. Accessed by the main line OS via the envelope in response to an I/O system call. The portion of the driver accessed in this way is sometimes call the ``top'' part.
  2. Accessed by the interrupt handler when the I/O completes (this completion is signaled by an interrupt). The portion of the driver accessed in this way is sometimes call the ``bottom'' part.

Tanenbaum describes the actions of the driver assuming it is implemented as a process (which he recommends). I give both that view point and the self-service paradigm in which the driver is invoked by the OS acting in behalf of a user process (more precisely the process shifts into kernel mode).