Operating Systems
2000-01 Fall
M 5:00-6:50
Ciww 109

Allan Gottlieb
gottlieb@nyu.edu
http://allan.ultra.nyu.edu/~gottlieb
715 Broadway, Room 1001
212-998-3344
609-951-2707
email is best


================ Start Lecture #14 ================

Remark: We are doing 6.6 before 6.5 since 6.6 is easier.

6.6: Deadlock Prevention

Attack one of the coffman/havender conditions

6.6.1: Attacking Mutual Exclusion

Idea is to use spooling instead of mutual exclusion. Not possible for many kinds of resources

6.6.2: Attacking Hold and Wait

Require each processes to request all resources at the beginning of the run. This is often called One Shot.

6.6.3: Attacking No Preempt

Normally not possible.

6.6.4: Attacking Circular Wait

Establish a fixed ordering of the resources and require that they be requested in this order. So if a process holds resources #34 and #54, it can request only resources #55 and higher.

It is easy to see that a cycle is no longer possible.

6.5: Deadlock Avoidance

Let's see if we can tiptoe through the tulips and avoid deadlock states even though our system does permit all four of the necessary conditions for deadlock.

An optimistic resource manager is one that grants every request as soon as it can. To avoid deadlocks with all four conditions present, the manager must be smart not optimistic.

6.5.1 Resource Trajectories

6.5.2: Safe States

Avoiding deadlocks given some extra knowledge.

Definition: A state is safe if there one can find an ordering of the processes such that if the processes are run in this order, they will all terminate (assuming none exceeds its claim).

Give an example of all four possibilities. A state that is

  1. Safe and deadlocked
  2. Safe and not deadlocked
  3. Not safe and deadlocked
  4. Not safe and not deadlocked

A manager can determine if a state is safe.

The manager then follows the following procedure, which is part of Banker's Algorithms discovered by Dijkstra, to determine if the state is safe.

  1. If there are no processes remaining, the state is safe.

  2. Seek a process P whose max additional requests is less than what remains (for each resource).
  3. The banker now pretends that P has terminated (since the banker knows that it can guarantee this will happen). Hence the banker pretends that all of P's currently held resources are returned. This makes the banker richer and hence perhaps a process that was not eligible to be chosen as P previously, can now be chosen.

  4. Repeat these steps.

Example 1

processclaimcurrent
X31
Y115
Z1910
total16

Example 2

processclaimcurrent
X31
Y115
Z1912
total18

Assume that Z now requests 2 units and we grant them.

Remark: An unsafe state is not necessarily a deadlocked state. Indeed, if one gets lucky all processes may terminate successfully. A safe state means that the manager can guarantee that no deadlock will occur.

6.5.3: The Banker's Algorithm (Dijkstra) for a Single Resource

The algorithm is simple: Stay in safe states.

6.5.4: The Banker's Algorithm for Multiple Resources

At a high level the algorithm is identical: Stay in safe states.

Limitations of the banker's algorithm

Homework: 11, 14 (do not hand in).

6.7: Other Issues

6.7.1: Two-phase locking

This is covered (MUCH better) in a database text. We will skip it.

6.7.2: Non-resource deadlocks

You can get deadlock from semaphores as well as resources. This is trivial. Semaphores can be considered resources. P(S) is request S and V(S) is release S. The manager is the module implementing P and V. When the manager returns from P(S), it has granted the resource S.

6.7.3: Starvation

As usual FCFS is a good cure. Often this is done by priority aging and picking the highest priority process to get the resource. Also can periodically stop accepting new processes until all old ones get their resources. The End: Good luck on the final