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Abstract
This paper presents an application of partial eval-

i
uation (program specialization techniques to concur-
rent progmms. The language c osen for this investiga-
tion is a very simple CSP-like language. A standard
binding-time analysis for imperative languages is ex-
tended in order to deal with the basic concurrent con-
structs (synchronous communication and nondetermin-
istic choice). Based on the binding-time annotations, a
specialization transformation is defined and proved cor-
rect. In order to maintain a simple and clear presen-
tation, the specialization algorithm addresses only the
data transfer component of the communication; partial
evaluation, the way it is defined here, always generates
residual synchronizations. However, a simple approxi-
mate analysis for detecting and removing redundant syn-
chronizations from the residual program (i.e. synchro-
nizations whose removal does not increase the nonde-
terminism of a program) can be performed. The paper
also addresses pragmatic concerns such as improving the
binding-time analysis, controlling loop unrolling and the
consequences of lifting nondeterminisrn from run-time
to specialization-time. Finally, the power of the newly
developed technique is shown in several examples.

Keywords: Partial evaluation, binding-time analysis,
concurrency, CSP, nondeterminism.

1 Introduction

1.1 Motivation

Semantic methods have proven to be an effective tool
in optimizing deterministic sequential languages. One

i
of these methods, partiul evaluation PE) is a source-
to-source program transformation, o ten presented as
follows:

Given a program and part of its input data,
generate a residual program that, when run-
ning on the rest of the input data, behaves
as the original program running on the whole
input.
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The idea behind standard PE is to reduce the number
of computation steps performed at run-time by doing as
many computation steps as possible at the specialization
time (i.e. before run-time).

Our aim is to reduce the number of communication
and computation steps performed at run-time by do-
ing as many communication and computation steps as
possible at the specialization time (without altering the
meaning of the program).

The motivation for doing this is the performance im-
provement that could be obtained when specializing a
wide range of concurrent systems ranging from operat-
ing systems to numerical computing modules and arti-
ficial intelligence programs. Research centered around
using PE for efficiency gains has been conducted for all
the domains mentioned above. Applications of PE for
operating systems are described in papers by Pu, Con-
sel, et al. [CPW93, PCt95]; they suggest that incre-
mental specialization techniques need to be developed
and used. A paper discussing an application of PE
for numerical computing (deterministic algorithms) is

IIBer90 However, none of these studies examines PE
or a concurrent system.

Finally, we believe that there is a significant clam of
concurrent algorithms that have a static communication
topology, where the number of communicating channels
and the association of the channels to threads, are fixed
(or has a narrow bounded variation). As Pepper showed
in [Pep93], several concurrent programs can be obtained
by program transformations directly from specifications
of an algorithm. The communication topology of these
programs reflects the data dependencies corresponding
to the data structures used in the algorithm specifica-
tion; for most algorithms these dependencies are static
or can be statically bounded.

1.2 Background

While we are not aware of studies concerning the PE of
concurrent rograms, there is a long history of research

[conducted separately) in:

the PE of deterministic sequential languages (both
functional and imperative) and

the understanding and formalization of the con-
cepts of concurrency and communication.
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Papers, such as [FOF88], on partial evaluation for
concurrent logic programs, are not significant for this
research.

Our paper uses many of the standard PE results.
Consel and Danvy ’s tutorial [CD93] concisely presents
the central ideas of the domain. The book by Jones
et. al. [J GS93] presents the typical PE framework and
addresses many pragmatic concerns for a wide variety
of language constructs. The presentation of a taxonomy
of program transformers given by Gliick and Sorensen
in [GS96a] is also relevant for concurrent programs.

Not considering PE of Prolog, Thrchin’s paper [Tur93]
is probably the only reference to the study of PE of
languages with nondeterministic constructs. It shows
a transformation that has as an intermediate result a
program that is apparently nondeterministic; however,
the nondeterminism can be further specialized and the
final result is deterministic. The lesson to be learned
is that PE techniques can also be used to transform a
(falsely) nondeterministic construct into a determinis-
tic one. One step further is the one that we propose: to
use specialization (whenever possible) to lift the (actual)
nondeterminism from run-time to specialization-time.

Since the concurrent language studied has impera-
tive features, we refer to results presented in papers by
Meyer [Mey91], Nirkhe and Pugh [NP92] and Jones et.
al. [JGS93].

For concurrency the focus is on the very basic con-
cepts of communication, synchronization and nondeter-
minism. Excellent references include Hoare’s seminal
paper on Communicating Sequential Processes (CSP)
[Hoa78], his book [Hoa85], which offers intuition and
formalizes semantics for CSP-like constructs, and Mil-

&
ner’s book Mi189] on the Calculus of Communicating
Systems (C S). For the formal specification of the oper-
ational semantics of a CS P-like language Plotkin’s paper
[P1083] is a standard reference.

Among the papers that describe static analysis al-

FI

orithms for concurrent programs, Reif and Smolka’s
RS90 dataflow analysis is particularly relevant. Even

more relevant for our research is the work of Mercouroff
[Mer91] that presents an abstract interpretation algo-
rithm for statically computing send-receive matches for
a CSP-like program.

An Unfold/Fold transformation strategy for CCS pro-
grams is studied in a recent paper by de Francesco
and Santone [dFS96]. Their work is somewhat comple-
mentary to ours, since they consider a transformational
framework for CCS, a concurrent language with no val-
ues, while we study an imperative CSP-like language
and we concentrate on the binding-time analysis and on
lifting computation, communication and nondetermin-
ism safely from run-time to specialization-time.

A paper describing the analysis and removal of re-
dundant synchronizations was presented by Gupta and
Schonberg [GS96b], but their analysis is done in a differ-
ent setting, for data parallel programs and is not related
to PE.

1.3 Outline

The purpose of this paper is to show how the PE frame-
work can be extended in order to include all basic con-
current language constructs. We show how to special-

ize the data transfer (message passing) component of
the communication and how to lift the nondeterminis-
tic choice from run-time to specialization time. How-
ever, we stop short of specializing synchronization and
instead we show a post-specialization analysis for syn-
chronization removal.

The next section describes the syntax of the language
and its operational semantics using a labeled transition
system (LTS) specification. Then a standard PE frame-
work is presented. It includes the specification of the
binding-time analysis which is extended to cope with
the basic concurrent language constructs and of the spe-
cialization rules using a LTS with actions. The central
result, the correctness of the algorithm, is stated and
a proof sketch is given. This result generalizes the cor-
rectness of the PE of a deterministic sequential program
and is closely related to (strong) bisimulation, the equiv-
alence relation on transition systemsl. More practical
issues, concerning improvements of the quality of the
partial evaluator as well as its termination properties are
then briefly discussed. A special section is dedicated to
synchronization analysis and removal.

2 The Language

The language is very similar to the CSP-language ker-
nel (see [Hoa85]) and hence to the programming lan-
guage Occam (see [May83, Ltd84]). Its simple imper-
ative skeleton and well-understood concurrent language
primitives allow for a clear presentation of a partial eval-
uator.

2.1 Syntax and Comments

The specification of the syntax of the language is given
in Fig. 1.

Expressions have the usual syntax and are side-effect
free (this is important because the guards may include
boolean expressions). For simplicity there is no aliasing
and no user-defined functions in the language.

A specific aspect of the lan uage presented here is the
fintroduction of the domain o threads. We have chosen

this word rather then the word process because Milner’s
notion of a process is different; the threads here are more
like the processes in [Hoa85] and [P1083 . A thread de-

llnotes a sequential unit of execution and t ere is a unique
thread identifier associated with each thread body. Be-
cause of this one-to-one correspondence between threads
and thread identifiers we will often abuse notation and
identify these two domains. For all programs, a special
thread with the identifier MAIN exists. The body of
any thread consists of (local) declarations of variables
and commands.

The parallel composition command enforces the iden-
tification of the threads that are to be executed in par-
allel.

Recursive threads are not allowed. the reason beirw
to guarantee the existence of a finite number of threadsz~

Communication is performed via synchronized uni-
directional message passing on channels. Channel dec-
larations, which associate a channel with a unique pair

1Introduced in [ParSl]. See also Milner’s work [Mi189],
2Ho are for instance forbids process generation inside a recursion.
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Programs:
Threads:
Thread Identifiers:
Declarations of Threads:
Declarations of Channels:
Declarations of Variables:
Channel names:
Expressions:
Locations:
Boolean expressions:
Program Points:
Commands:
Guarded Commands:
P ::= chdecl; tdecl

P
t
t id
t decl
chdecl
d
c1
ajb, X
x
b
i
c
gc

PROG
THREAD
TID
TDECL
CHDECL
DECL
CHAN
EXPR
LOC
BEXP

%
GCOM

chdecl ::= channel u : (tide, tidl)
I chdeclo; chdecll I c

t decl ::= thread tid is d; c end I tdeci; tdecl I c
d ::= varr \ do; dl I c
c ::= skip li:X:=ali:cr?Xli :a!a

I CO;C, I tido[ltidl
I i:altgcendalt I i: dogcenddo

gc ::= b+clb Aio:a?X+il:c
I bAio:cr!a +il:clgcolgcl

Figure 1: Syntax of a CSP-language

of threads, are used to enforce a static topology of the
communication.

There is no multicommunication. This doesn’t re-
duce the power of the language; one can define multi-
plexor/demultiplexor threads to simulate multicommu-
nication.

As in the standard CSP, we disallow the use ojglobal
van”ables. A1lowing read-only global variables will not
change the results-in this pap;r since they are not a
source of nondeterminism. Again there is no loss of
power: global variables can be implemented by defining,
for each of them, a thread whose body is an iterated
nondeterministic choice.

The idea is to isolate only one syntactic construct
that has nondeterministic semantics: the choice. By
imposing the two restrictions above, no multicommuni-
cation and no global variables, we have eliminated the
other two sources of nondeterminism.

CSP has an explicit channel hiding operation. We
have chosen to omit it from the source language. We will
address this operation when we introduce observability,
a semantic notion which will be discussed in the next
section.

Finally a minor detail that becomes important for
PE: we explicitly associate program points with (most
of) the commands in a program, as specified in Fig. 1.

2.2 Semantics

This section presents an operational semantics of the
language. We have chosen the operational view because,
as Mosses writes in [Mos90] “. . . it is debatable whether
the denotational treatment of concurrency is satisfactory

. in contrast Structural Operational Semantics extends
easily from sequential languages to concurrency”.

Nevertheless, since the semantics of the declarations
and expressions is functional (because expressions are

side-effect free), the part of the semantics associated
with them has a denotational flavor.

In order to keep the presentation clear we distinguish
three types of environments:

● for channels (denoted by u E CHENV)

● for threads (denoted by r E ‘TENV)

● for variables (denoted by a E ENV)

The semantics of the commands is described in terms
of a Labeled Transition System (LTS) similar to the one
in [Win93] or in [P1083].

For the ease of presentation, the specification of the
LTS omits the channel environment and the thread en-
vironment. Notice that once the declarations have been
processed these environments do not change.

The LTS specified in Fig. 2 appears quite standard.
However, it differs by considering the transition relation
as a relation between sets of configurations rather then
between configurations. This is achieved by distribut-
ing the environment to each thread rather than keeping
one environment and considering commands executed
in parallel.

We write a transition in the form:

A~A’

where A and A’ are (the initial and the final) sets of con-
figurations and A is the communication label associated
with this transition.

Each A is either fail or has the form:

<Co, ao>ll<cl, al >11 . . .

where co, c1 are commands and uo, al are the local en-
vironments.

There are several non-standard transitions:

b

●

(SPAWN): notice the asymmetry of the parallel
composition: thread tido inherits the environment
u and the communication capabilities of the parent
thread (we have chosen this solution for simplic-
ity); the associatiuity of the parallel composition
still holds;

(JOIN): the environment of the second thread (i.e.
~idl) ii discarded.

Based on the specified LTS, we can define the mean-
ing of a thread.

For deterministic sequential programs, the operatio-
nal meaning is usually defined as a function from an
initial state to a final state.

For a concurrent system, meaning is in general a lin-
ear or branching structure of events3 (where these events
are associated with the communication).

We define a hybrid meaning for the threads: a pair
(tmce, final-state) where:

● tmce is an ordered, possibly infinite, sequence of
events; these events will be of the form: cr!z with
a E CHAN such that O(cr) (i.e. the communica-
tion on that channel is observable) and x E VAL.

‘In his book Hoare [H0a85] gives semantics in terms of traces,
refusals and failures of events.
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VAR the domain of variables
VAL the domain of values
ENV = VAR + VAL the environment of variables
TENV = TID + THREAD the environment of threads
LABELS = {.!. I a E CHAN and z E VAL} U {cr?z I a c CHAN and z E VAL}
CONF = COM x ENV the configurations (as usual, a configuration with an empty command is representedonly by the environment)
td : DECL + ENV the denotational specification of the declarations
t, : EXPR + ENV + VAL the denotational specification of the expressions
+t = THREAD + CONF start a thread
+ c CONF~ x LABELS x (CONFM u {fail})

~d[~ = 0
< thread tid is d; c end > -+t< C,U>

(START)

<skip, u>+a

&e[a]u = z
< x := .,CJ> + a[z/x]

< CX?x,u >“3 17[z/x]

E.[a]a = z

< cz!a,o >“: 0

(SKIP)

(ASSIGN)

(RECEIVE)

(SEND)

<Co,a>><cj,d>
(SEQ)

<Co; cl, o>i<cj; cl, a’>

< gc, u >4< C,L7’>
(ALT)

<altgcendalt, a >~< c,a’ >

<gc, u>i<c, u’>
(UNROLL)

< do gcenddo, u >$< c;do gcenddo, u’ >

< gc, a >3 fail
(EXIT LOOP)

<dogcenddo, u>$u

to = T(tidO) tlJ +t< C0,00 > tl = T(tidl) tl +t< C1,U1 >

<tido Iltidl, u>+< (CO, C7@C70)ll(Cl, L71)>
(SPAWN)

where @) : ENV x ENV + ENV denotes environment composition

<co, oo>~<c~, o:>
(INTERLEAVE) and its dual

< (Co,uo)ll (Cl, ol)>i< (Co, ug)ll (Cl)ol) >
=?Z

<Q, ao>+<c:, a:> <Cl, ul >as<c; ,al >
(COMM) and its dual

<(@?~o) ll(cl, ~l)>+<(cj, a:)ll(cj, Ol)>

<001101> +00 (JOIN)

Ee[b]u = true
<b-ic, u>+<c, u>

&e[b]u = true

< b A a?X -) C,fJ >“:< c,u[z/X] >

&=[b]a = true ~.[a]u = z

<b Aa!a+c, a>a~<c, a>

&e[b]o = false
three rules

<b/ bAa?X/b Acr!a+c, o>+ fail

<9 C0,0>4<C, U’>
and its dual

<Wolgcl, a>i<c,u’>

<gco, u>+ fail <gel, u>+ fail
< gcojgcl, u > + fail

Figure 2: Semantics of the CSP-like language
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● final. state is introduced to distinguish programs
having the same observable behavior but different
termination properties; the final-state is set to:

— m if no final configuration exists;

– Sifnotransition impossible (the system dead-
locks because of circular waiting or because it
fails in a nondeterministic choice);

– the environment u from the final configura-
tion.

Following the spirit of the CCS (see [Mi189]) we ar-
gue that a specification of a concurrent system should
include, apart from the text of the program that de-
scribes the system, a partition of the communication
channels into observable and non-observable. We use
the predicate:

O : CHAN + {true, false}

to denote this partition. The intuition is that, since a
concurrent system is an open system, its semantics re-
flects the interaction with the environment. Thus, the
meaning of a concurrent system should not include in-
ternal (non-observable) communication.

m .-trace and m.cr are used to refer to the two com-
ponents of the meaning m.

Notice that m. tmce is updated on the transitions as-
sociated with rules (COMM).

The meaning of a program P denoted by A4 (P) is
set to be the meaning of the MAIN thread running in an
environment where all channels and threads are defined
i.e. all toplevel declarations have been processed.

3 Partial Evaluation

3.1 Preliminary Comments

Our idea is to specialize a concurrent program by con-
currently specializing its component threads. During
this process of specialization we perform some data trans-
fer and commit to particular choices.

The idea behind CSP is to combine data tmnsfer
with sgnchmnization. Our idea is to decouple them
for PE. We have developed both an on-line approach
(in which the synchronization analysis is part of an ex-
tended binding-time analysis) and an off-line approach
(in which redundant-synchronization analysis and elim-
ination are done after PE).

We present in this paper only the ofl-line view; the
advantages are a simpler binding-time analysis, an eaa-
ier proof of the correctness theorem and also a simpler
(and probably more powerful) synchronization elimina-
tion analysis. On the other hand, we suspect that the
overall result may be weaker because PE cannot ex-
ploit the binding-time improvements derived from the
synchronization removal.

The specialization of the communication relies on al-
ways residualizing its synchronization component. We
can consider the channels as being streams of records:

type channel = stream of record {
in, out: Program_ Point;
val: Value_Type
}

In order to lift a data transfer to the specialization time
we must statically know not only the value val but also
the program points of the send and the receive (out
and in); more precisely we must know how to statically
associate the correct send with each particular receive.

As for the nondeterminism, notice the simple set-
ting: by disallowing global variables and multicommu-
nication, we keep only the basic construct, the choice,
clearly isolated in the syntax. For static choices (i.e.
choices with static guards) we commit at specializa-
tion time4, hence we define “the specialization process to
be nondeterministic. Dynamic choices are residualized,
hence the residual program is also nondeterministic. We
do not guarantee that our specialization preserves fair-
ness (our formal semantics does not model fairness).

3.2 Conservative Binding-Time Analysis

This section defines a safe binding-time analysis (BTA)
based on the principles stated above.

First, to clarify the terminology: from now on static
denotes specialization-time while of-line and on-line re-
fer to the moment of the bindin -time analysis (i.e. be-

7fore PE, respectively during PE .
In order to keep the BTA specification as simple as

possible, we present a conservative off-line approach to
PE. At the end of this section we comment on the pos-
sible advantages of using an on-line approach. We do
not discuss standard binding-time improvements in this
section.

Let us consider the simplest binding-time domain,
i.e. BT = {S, D} with S < D (S standing for static\
and D for dynom;c).

As we said before? we consider channels to be streams
of records. In the spirit of simplicity, we assign only one
binding-time value to a channel.

Usually a binding-time function is defined as:
f? : SYNT_CATEG+ BTENV+ BTENV
We choose to define a function for each syntactic cat-

egory and to keep the binding-time environment BTENV
parameter implicit:

● for expressions: Be : EXPR + BT

● for channels: BCH : CHAN + BT

● for program points: BPP : PP + BT

● for (some of) the commands: BC : CO M + BT

● for guarded commands: Bgc : GCOM + BT

Notice that the binding-time domain BT described
above is finite and hence the monotonicity of the binding-
time functions is sufficient in order to guarantee the
convergence of an iterative abstract interpretation al-
gorithm.

The BTA for sequential programs assumes that bind-
ing times for the input variables are given. In a con-
current setting? we assume that binding times for input
channels are given; also we tag all observable channels
as dynamic.

4We are aware that heuristics can be developed but we haven‘t
pursued this line of investigation.
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The BTA for expressions is defined as usual; the only
extension involves values read from a channel (assum-
in~ pointwise divisions5 for these variables, while for
ch~r&els we consider uniform divisions):

B.[Xati I iE PP, i : a?X] =BcH[Q]

The BTA for channels is defined as:

Bcff[a] = ( u Be[z]) u

ZIi:a!z

( U ~PPIil) U ( U ~PPDl)
iEPPli:cY!z jEPPlj:a?x

where the binding time of a program point is given

Bpp~i I i : c] = U Bcllc’1
C’EC?’RL”(C)

by:

Here CTRL : COM + COM is a partial function
that associates with each command the control com-
mand (i.e. alt or do ) that “surrounds” it. C’TRL*
is the transitive closure of CTRL (so it gives the set
of commands that control the execution of a given com-
mand).

Clearly, the binding time of a program point depends
onlv on control commands; in order to compute binding
tim~s for these commands:

&[alt gc end alt] = f3~.~c]

&[do gc end do]= f?gc~c]

where binding times for guarded commands are (con-
servatively) given by:

&[bAIY?x-+c] = D

BgclJ.wongcl] = Bgcugcol Uf?gcbcll

For the communicant ion commands:

BCICI”X] = BCH[a]

The key observation is that during specialization one
can define a total order on the set of static program
points. These points are under static control so, since
static control is specialized, they can be assumed to be
in straight-line code. This result can be extended for
the static loops controlled by an always true condition;
this extension involves using a controlled-unrolling tech-
nique described in section 4.2.

The BTA for channels is correct because we can stat-
ically perform the data transfer when we know the value
and when the pairing of the program points of the send
and the receive is static. We use the total order on the

‘i.e. allowing the possibility of assigning different binding-time
values at different program points.

6i.e. one division for all program points.

sets of program points to match each receive with the
corresponding send.

Finally, the BTA for guarded commands is defined as
above because all synchronizations are residual (hence
dynamic).

Let us illustrate the conservative BTA with a short
example:

ALT
x> O&ch!x ->a!l
y>o ->b!2

end ALT

Assume that both x and y are static. Nevertheless, since
ch !x is residualized, the guards of the alt are dynamic,
so the alt command is dynamic and hence channels a
and b are dynamic - they are under dynamic control.

The use of on-line PE would lead to a more precise
BTA of expressions with mixed binding times; in partic-
ular consider the BTA of the guard cond a ch ! x where

\
Be con~ = S and cond = false. Also, when using
on- ine PE, we can define a speculative BTA which is
presented and commented in section 3..5.

We end with observation that hints at a finer BTA: a
degenerated nondeterministic choice (with only one al-
ternative) is in fact a deterministic choice. We can de-
couple the decision and the nondeterminism and assign
them different binding times. From this perspective, the
effects of improving the BTA of guards, as mentioned
above, can be significant.

3.3 Specialization

The specialization of a program amounts to the spe-
cialization of the thread MAIN in an environment in
which the declarations of the channels and the threads
are already processed.

The domains that are relevant for this specialization
are shown in Fig. 3. The specialization corresponding to
the denotational fragment of the semantics is standard
and we omit it. The only non-standard aspect is the
specialization of the top-level declarations for channels
tagged as static. The channel is entered into the channel
environment of the specialize and residual code defining
that channel is generated. Therefore, communication on
that channel will take place both at specialization time,
when the data transfer is performed, and at run-time,
because of the residual pure communication.

The following specialization primitives are standard
(see [NP92] for instance), so we omit their definitions:

● for expressions:

– evaluate: Se : EXPR + SENV + VAL

– residualize: Sr : EXPR + SENV + CODE

● for declarations of variables:

sd : DECL + (SENV X CODE)

What is non-standard is the specification of the spe-
cialization using a LTS with actions. It is defined by
the transition relation +5 (see Fig. 3). Note that most
of the transition rules are guarded by binding-time con-
ditions that are used to distinguish the static and the
dynamic commands.
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We write a specialize transition in the form:

@ is (e’, action)

where @ and ~’ are (the initial and the final) sets of ex-
tended configurations, A is the label associated with this
transition and action describes the residual code gener-
ated during this specialization step. Note that action is
a tuple of pairs ( thread.identifier, residuai.code).

A set of extended configurations @ is of the form:

< tidO, AO >JII< tidl, Al >11 . . .

where tido, tidl are thread identifiers and AO, AI are
configurations (as described in section 2.2), with the
observation that U. ancl al in AO and A 1 denote the
static environments. We use thread identifiers to distin-
guish the residual code for the various threads that are
specialized in parallel.

The specification of the specialization given in Fig.
3 mirrors the LTS given in Fig. 2. Several comments
need to be made:

1. Synchronization is always residualized. For static

)
communication, i.e. B=[a?X] = S or B=[a!z = S, the
residual code generated ]s a? DUMMY or a! ummy re-
spectively (denoting communication with no data trana-
fer). Note that, if the static communications lead to
deadlock, then the specialization process deadlocks.

2. In the rule corresponding to the spawning of the
threads, r denotes the thread environment. Since all
threads are statically created, one can get r(tid) at spe-
cialization time for any thread identifier tid.

3. The rules corresponding to parallel execution de-
scribe the interleaving and the synchronization (by static
communication). There is also a rule that describes the
joining of two threads whose bodies were specialized.

4. The specialization of static alt and do choices is
self-explanatory. Notice that the specialization process
may deadlock when all guards of a static alt do fail or
it may not terminate because of the unrolling rule for
the static do iterations.

5. The specialization process is nondeterministic.
This is reflected by the rules that describe the spe-
cialization of a compound static guarded command (i.e.
if BgC[gco!gcl] = S). If the guards of both gco and gcl
are static and true, then the nondeterminism is lifted
from run-time to specialization-time.

6. During the specialization of a compound dynamic
guarded command (i.e. if Bgc~co]gcl] = D) the tran-
sitions of the specialize are never labeled because no
static communication can take place under dynamic con-
trol; Q used in that rule is the same both for the transi-
tion corresponding to gco and for the one corresponding
to gcl because the static environment cannot be updated
under dynamic control.’

The meaning of the specialization of a program P is
denoted by Ms (P) and is now a pair:

(eval.meaning, residual-code),
where eval-meaning is as before a pair: (trace, u) and
the residual_code is generated as a result of the actions.

Several specialization examples are given in the Ap-
pendix.

‘If we perform BTA using the bounded static variation improve-
ment, then the environment u in @ should be computed as the least
upper bound Of the environments corresponding to the (bounded num-
ber of) choices.

3.4 Correctness of the Specialization

We start by defining a relation - (call it equivalence
although it is neither transitive nor symmetric) between
a meaning and an ordered pair of meanings (remember
that a meaning is a pair (trace, u) ):

m= (mS, mD) iff
m.trace = mD trace and m.u = ms.uu mD.~
where: zuco=couy=oo (VZ)(Vy #J)
andzud=duy=d (VZ)(Vy #co)
and us I-IuD = as @mD (because they are disjoint)
Let P be a concurrent program; the correctness of

the specialization algorithm consists of two parts:

● soundness: V(ms, res-code) ~ Ms(P) VmD ●

M(res_code), ElmE M(P) s.t. m s (ins, m~)

● completeness: Vm 6 M(P , 3(ms, res-code) E
1Ms(P), 3m~ ~ M(res_code s.t. m ~ (ins, m~)

Notice that ms trace does not occur anywhere above!
This is because ms trace is empty all observable com-
munication is residualized so there M only non-observable
(internal) communication taken place at specialization
time and this communication is not reflected in the trace
meaning.

Theorem: Under the conservative BTA, the PE al-
gorithm is correct.

Proof sketch: The idea is to state and prove a stronger
result. We can define an extended meaning (we call
the previously defined meaning the restricted meaning)
of a concurrent program as bein

?

a trace of transi-
tions, a transition being the triple: initial~nvironment,
event-label, final-environment). We can define a func-
tion that recovers our restricted meaning from the ex-
tended meaning, hence proving that equivalence of ex-
tended meanings implies equivalence of restricted mean-
ings. For the stronger version of the theorem, that con-
siders the extended meaning, the proof shows the equiv-
alence between the trace of the original program and the
merging of the traces of the specialization and residual
program, The proof involves a layer of of mathemat-
ical induction (on the length of the traces) and one of
structural induction (on the possible transitions under
the specialization semantics and the transitions under
the ordinary semantics).

There are several interesting corollaries of this the-
orem. We mention only:

●

●

3.5

The

If (a run of the specialization of the program P
Adeadlocks, t en there exists a run of the program

P that either deadlocks or does not terminate.

If (a run of) a specialized version of program P
deadlocks, then there exists a run of the program
P that deadlocks.

Speculative Binding-Time Analysis

BTA of marded commands described in section
3.2 is too con~ervative for some applications. In this
section we comment on the possibilities to modify the
BTA and on the implications of these modifications on
the correctness of the specialization algorithm.

Let us consider the on-line PE, where the BTA is
done during the PE. We can choose as the BT domain
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STATICVAR the domain of static variables t’.4L the domain of values

SENV = STAT ICVAR + VAL the environment of static variables
XCONF = TID x (COM x SENV) the extended configurations
LABELS = {a!. [ u G CHAN and z E VAL} U {.?. \ a E CHAN and .6 VAL}
CODE the domain of source programs; we can concatenate code using the infix operator + : CODE x CODE + CODE
ACTIONS = (TID x CODE)N the domain of actions
+S< = THREAD + (XCONF x ACTIONS) start the specialization of a thread
+,s c XCONFN x LABELS x (( XCONFM u {fail}) x ACTIONS)

S~[d] = (0, decl-code)
< thread tid is d; c end > +s, (< tid, < c, a >>, (tid, “thread tid is” + decl-code))

< tad, < skip, u >>ds (< tid, u >,null)

‘S.[Q]U = r
if Bc[X := a] = S

< tid, < X := a,u >> +s (< tid, u[z/X] >, (tid, rd))

S, [a]u = res-a
if BC[X := a] = D

< tid, < X := a,u >>+s (< tid, o >,(tid, ”X := “ +res.a))

if L3.[cr?X] = S < tad, < CY?X,U >>a~~ (< tid, a[z/X] >, (tid, “a?DUMMY”)

if L?c[cr?X]= D < tid, < CY?X,U >> +.s (< tid, u >,(tid, “a?X”))

se[a]c7= z
if Bc[a!a] = S

< tid, < a!a, o >>a~s (< tid, c >, (tid, “a!durnmg”))

S, [a]o=res.a
if t3.[cY!a]= D

< tid, < a!a, u >> ~s (< tid, u >, (tid, “cr!” + res-a))

<tid, <co, a>>~s(< -,<c&, o’ >>, act)

< tid, < CO;CI,U >>~s (<tid, < c:; q,u’ >>, act)

to= T(ti4) t] = ~(tidl) to +s, (Clo,(tido,declo)) tl -+s, (@I, (tidl, decll))
< tid, < tido IItidl,u >> -+s ((~~ II@I), ((tid, “tido IItidl’’), (tide, dec~o),(tidl, dec~l)))

where @o =<tido, < Co,uo >> and~~ =< tide, < Co,ufBCo >> and~l =< tidl, < C1,U1 >>

< tide, < Q,ao >> is (@o, (tide, code))
and its dual

(< tide, < CO,UO>>) II(< tid~, < CI, UI >>) ~S ((@o II (< tidl, < CI, UI >>)), (tide, code))

where @O =< tide, < ~,a~ >>

< tide, < Co,ao >>a%s (Go, (tide, codeo)) < tidl, < CI, al >>a~s (@l, (tidl, codel))

(< tide, < CZI,CJO>>) II(< t~dl,< CI,al >>)+s((@o II@l), ((tidO, codeO), (tidl, codel ))) and ‘tsdua~

where El. =< tide, < c~,u~ >> and @l =< tide, < cj,ul >>

(< tide, uo) II(< tidl,ol >) -+s (< tide, uo >,rmll)

if L3gc[gc]= S
< tid, < gc, u >> ~s (< tid, < c,o’ >>, (tid, code))

< tid, < alt gc endalt, o >> ~s (< tid, < C,U’ >>, (tid, code))

if t?gc~c] = D < tid, < gc, u >> ~s(< tid, u’ >,(tid, code))

< tid, < alt gc end ah, a >> ~s(< tid, O’ >, (tid, “alt” + code+ “end alt”))

< tad, < gc, u >> ~s (< tid, < C,U’ >>, (tid, code))
if Bgc[gc] = S

< tid, < dog. enddo, a >> ~s (< tid, < c;do g. end do, u’ >>, (tid, code))

< tid, < gc, u >> *,s < tid, fail >
if f3gc~c] = S

< tid, < do g. enddo, u >> ~s(< tid, u >,null)

if L3g.[gc] = D
< tid, < gc, a >> +s(< tid, o >,(tid, code))

< tid, < dog. end do, u >> +s(< tid, u >, (tid, “do” + code + “end do”))

Figure 3: Specification of the specialization
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S. [b]cr = false
if B, [b] = S

<tid, <b fbAm?X/b Acz!a -+c, a>>-+ s<tid, fail>

S.[b]a = true
if B.[b] = S

< tid, < b + C,O >>~s (< tid, < C,O >>, nd[)

S,[b]a = res-b
if B,[b] = D

< tid,< b ~ C,U >>~5 (< tid, < C,U >>, (tid, res-b+ “ ~ “))

Sr[b]a = res.b

< tid, < bAa?X ~ C,O >-is (< tid,< C,U>>, (tid, res-b+ “ACY?X + “))

S, [b]a = res_b S, [a]a = res-a

< tid, < bAa!a+ c,a >+s (< tid, < C,C >>, (tid, res-b+ “As!” + res-a+ “~”))

< tid, < gco, a >> ~s (< tid, < C,U’ >>, (tid, code)
if Bgc[9@ U9C11= s and its dual

< tid, < gco[gcl, a >>~s (< tid, < C,U’ >>, (tid, code))

< tid, < gq, u >> +S (e, (tid, cob)) < tid, < gel, a >> ~s (@, (tid, codel))
if Bg.[gco[gcl] = D

< tid, < gcolgcl, u >> ~s (@, (ta’d,codeo “[’’codel ))

where @ =< tid, o >

< tid, < g~, a >> ~s< tid, fail > < tid, < gel, u >> ~s< tid, fail >
< tid, < gco[gcl, o >> -XS< tid, fail >

Figure 3: Specification of the specialization (continued)

for boolean expressions the 3-element domain {F’, T, D}
where F denotes a static false value, T denotes a static
true value and D denotes a dynamic value. The partial
order for this BT domain is given by: F < D, T < D.

First, let us consider the BT rule:

Bgc[9cof19cl] =

We can replace it by:

Bgcbmo] uE&m]

{

F if (f?gc~CO] = F) A (~gcbcl] = F)
f3g.~colgcl] = ; ~{s~BgJgco] = T) v (~gck] = T)

The intuition is the following:

. if all guards are static and false then the BT is
obviously F;

. if some of the guards are static and true then we
will speculatively choose one of the corresponding
guarded commands and commit at specialization
time; hence BT is T;

● if all static guards are false and there is also at least
one dynamic guard, then the choice is dynamic so
the BT is D.

The modifications of the specialization specification
are given in Fig. 4.

The consequence of committing on a specific branch
of a choice at specialization time, although some of the
guards of that choice are dynamic, is that the special-
ization algorithm is no longer complete. This happens
because some of the nondeterminism of the initial pro-
gram is lost during this speculative specialization. No-
tice that we can still prove the soundness part of the
correctness theorem, but clearly the completeness does

not hold anymore. This type of BTA is useful for pro-

?

rams that exhibit a don’t care type of nondeterminism
see such a specialization example in Appendix B).

There appears to be also a second possible modifica-
tion of the BTA of guards. The rules: Bgc[b A a?X +
c] = D and Bgc[b A a!z + c] = D seem overly conser-
vative. However, this are the only sound rules for BTA.
In order to illustrate this, let us consider the example
given in Fig. 5.

Assume that the expressions condl, cond2, cond3
and cond4 are all dynamic and that the threads are
synchronized at program points startO, start 1 and
start 2. According to the conservative BTA, channels
a and b are dynamic because some communication on
these channels is under the control of the alt in threadO
which is tagged aa dynamic because of the residual syn-
chronizations that correspond exactly to channels a and
b. It appears that we can do better and tag these two
channels aa static! If we do this, then the if statements
from threads 1 and 2 are dynamic and hence residual-
ized; the alt in threadO is static, the specialization is
nondeterministic. Let us assume, w.1.o.g. that it com-
mits to the first choice. This may be unsound because
condl and cond4 may be true while cond2 and cond3
may be false and the commitment on the first choice
would be impossible in the original program because
of the synchronization of the threads 1 and 2 on com-
munication channel c. A similar argument shows that
committing to the second choice of the alt is equally
unsound.

It is clear that, for guards that include communica-
tion, only an analysis of the synchronization patterns
can lead to a correct assignment of their binding time.
In this paper we choose to residualize all synchroniza-
tions and conservatively associate binding-time dynamic
for all guards that include communication operations.
Clearly an analysis of redundant synchronizations done
on-line, during BTA, would improve the BTA. On the
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< tid, < CJC,O>> 4S (< tid, < c,a’ >>, (tid, code))
if t3g.~gc] = T

< tid, < altgcendalt, a >>~.s (< tid, < c,a’ >>, (tid, code))

< tid, < gc, u >> ~S (< tid, < c,a’ >>, (tid, code))
if L39c[gc]= T

< tid, < do gc end do, u >> ~s (< tid, < c;dogc end do, o’ >>, (tid, code))

< tid, < gc, u >> %s< tid, fail >
if t3gc~c] = F

< tid, < dogcenddo, a >>~s (< tid, u >,null)

if Bgc[g%Dgcl] = T
< tid, < gcO,a >> ~.q (< tid, < c,cr’ >>, (tid, code))

< tid, < gco[gcl, u >>~s (< tid, < c,a’ >>, (tid, code))
and its dual

< tid, < gco, u >>~s< tid, fail > < tid, < gel, u >>+s< tid, fail >
if 13g.~co]gcl] = F

< tid, < gqj[gcl, u >>+s< tid, fail >

Figure 4: Specialization under speculative BTA

thread O: thread 1: thread 2:
startO: startl: start2:

ALT IF condl c !7 end IF IF cond2 d !9 end IF
true k a?X -> cent (X) a!s b?y
true & b!l -> smthing IF cond3 d?m end IF IF cond4 c?n end IF

end ALT . . . . . .
. . .

Figure5: Example: Assigning binding times to guarded commands

other hand thisredundant-synchronization analysis RSA)
Lwould be approximate since the dependencies on w ich

the RSA is based cannot be exactly computed before
the whole residual program is available.

4 Pragmatic Concerns

4.1 Language Extensions

The CSP-language presented is complete in the sense
that standard commands such as the deterministic de-
cision if and the iteration while can be expressed in
terms of the non-iterated choice alt and the iterated
choice do. However, adding the if and the while con-
structs is more than syntactic sugar since it allows us
to identify determinism syntactically. There is no prob-
lem in extending our framework to include the if and
the while commands; they are control commands, so
the BTA of their conditions will affect the BTA of the
program points in their bodies, and their specialization
is standard (see [NP92]).

Another useful language extension is allowing data
structures such as arrays and structures. The prob-
lem is the binding-time separation and it is discussed
in [J GS93]; see also Mogensen [Mog88] and Romanenko
[Rom90].

Finally, we may use commands executing in parallel
without including them in threads as long as we can
statically assign unique identifiers to these commands.

4.2 Controlling Loop Unrolling

This section does not address the problem of analyzing
and improving the termination properties of our special-
ize. This is a very hard problem and research on this
topic is described by Jones in [JGS93] and in a recent
paper [Jon96].

We study here a problem that is specific to concur-
rent programs. In a sequential language the specialized
program point captures all the information needed for
folding (i.e. limiting the unrolling of) a loop. In a con-
current language, because the communication topology
is not captured mto the specialized program point, the
folding is a little tricky. This folding must ensure the
proper pairing of the static send and receive communi-
cations that are in the body of a statically controlled
loop.

We’ll use countin arguments. The same idea was

1used by Mercouroff Mer91] in his work. The differ-
ence is that our counting is more restricted, targeting
only static communication and is precise. Mercouroff’s
analysis is used to detect deadlock and is approximate.

Before going further, we make three observations:

●

●

●

the only static loop we have to deal with is the
while true loop; all other static loops are unrolled
completely;

if we have several levels of while true loops, only
the innermost level counts; the control will never
leave the innermost level so the other static loops
can be ignored.

static communication cannot occur under dynamic
control (see the BTA section 3.2).
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Let us consider an arbitrary unrolling transformation
of the loop:

uhi~e true body end while
we get:
bodyl. .. body~ while true bodyl. .. body~ end while

Thepair ofintegers(m, n) (with O~rnandl~rz)
uniquely characterizes this unrolling.

Now, Ietusconsider the following example (program
points pO and pi are synchronized and the only com-
munication is carriedon channel CH):

-- thread TO -- thread TI
po: pi:

while true CH7X
while true

CH”! 100
. . . ;H”? y
CH ! ii . . .
. . . end while

end while

We can write a set of integer equations. The pair of
equations for each static channel reflects the count of
the communications that take place:

Ao+l?o*mo=A1+B1 *ml

Boxno=B1xnl

where A. = Ois the number of communications on CH
occurring in TO before the while true loop; Bo = 2 is
the number of communications in TO on CH occurring
inside the while true loop; similarly for thread T1: Al =
1 and 131 = 1.

This arises because of the desire to associate each
static receive statement with a single static send state-
ment and vice- versa.

We compute: (m., no ) that characterize the unrolling
of the loop in thread TO; similarly (ml, nl ) for thread
T1. Notice that the two systems of equations (in m and
n) are independent.

If the system of equations doesn’t have solutions then
we can prove deadlock (circular waiting); else we pick the
minimal solution. In our example the minimal solution
isrno = l; no= l;rnl = l;nl =2, leading to:

-- thread TO -- thread T1
po:

CH“

ii “
. . .
whi

pi:
CH7X

100
CH”?y

11 . . .
while true

e true . . .
. . . CH?Y
cH ! 100 . . .

. . .
;H”! 11 cH?Y

. . . . . .
end while end while

4.3 Binding-Time Improvements

Several standard methods can be used to improve the
BTA. In some cases, we can exploit the bounded static
variation of the matching between the program points

of the sender and the receiver. In other cases, splitting
the channel into a static stream and a dynamic stream
can be useful,

We comment in some detail on one binding-time im-
provement that we find interesting.

Assume that the data transferred on a channel CH is
of type T, a type which has a finite (and small) set of
values; refer to them as: val_O . val_N.

We can use “the trick” for both the send and the
receive (the alt plays the role of the case from the de-
terministic setting); the transformation of the receive is
more interesting:

x: SOME_TYPE(val_O, . . . ,val_N)
CH?~

cent inuat ion(x)

yields something like:

ALT
CH 7 val_O -> ~ontlnuatlon(~al_O)

CH ~ “~al_N -> ~ontlnuatlon(valJ.J)
end ALT

We can go further and replace channel CH with several
channels - let’s call them CH_O . . . CH_N - and do the
transformations:

CH ! val_O ===> CH_O ! NO_VALUE
cIi ? val_O ===> CH_O ? NO_VALUE

~~ “ ! val_N ===> CH-N ! NO_VALUE
CH 7 val-N ===> CH_N ? NO_VALUE

This sequence of transformations is strikingly similar to
the ones used by Milner (see [Mi189]) to translate the
general CCS into pure CCS (havin only pure commu-

7nication with no exchange of values .
Notice that here the transformation is used for a more

pragmatic reason than Milner’s: improving the binding-
time properties and effectively specializing the continu-
ation with respect to the concrete values.

An example of specialization that uses the transfor-
mation described above in given in Appendix A.2.

5 Removing Redundant Synchronizations

The relationship between synchronization and nonde-
terminism is central when studying concurrent systems.
Synchronizations are the means of reducing the nonde-
terminism. A synchronization is called redundant if its
removal does not incretwe the nondeterminism of the
program.

The problem of correctly removing synchronizations
during or after PE is complex; blindly lifting synchro-
nizations to the specialization time may increase the
nondeterminism and is therefore incorrect.

Research on removing synchronizations haa been con-
ducted for improving the performance of data-parallel
languages [G S96b]. In these languages the nondeter-
minism is a result of the use of global variables. In this
paper, the problem is specified at the basic level: the
relation between synchronization and choice.

This section proceeds as follows: we characterize
the dependencies between program points of different
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threads, then we present an analysis that tags redun-
dant synchronizations (we may call them pure commu-
nications borrowing a term from Milner [Mi189] ) and
finally we sketch an algorithm for synchronization re-
moval.

Let’s consider an example:

--thread TO --thread T1 --thread T2
startO: startl: start2:

ALT ii: . . . i2: . . .
a?x -> -. ji:a!O j2:b!l
b?y ->.. kl:.t, k2: . . .

end ALT

Assuming that i 1 and k2 are synchronized, we can in-
fer that thread TO is deterministic (b? 1 must be chosen).
Removing this synchronization will change the meaning
of the program by increasing its nondeterminism (be-
cause a?O can now be chosen also).

The key observation is that there are dependencies
between program points in threads TI and T2 because
some of the communications of these two threads are
complementary to communications occurring in guards
of a choice that is executed in a parallel thread.

Hence, a simple conservative analysis can collect the
set of all pairs of communications that occur in the
guards of all alt and do commands. Using this set of
pairs one can characterize the dependency between any
program point pl from a thread TI and program point
p2 from thread T2.

This characterization is safe (captures all dependen-
cies between program points), but is approximate for
several reasons such as: the guards may have boolean
conditions attached or it may be the case that, although
apparently executing in parallel, in an actual run, the
choice that was used as a witness of the dependency will
never be executed in parallel with the commands corre-
sponding to the two program points that are tagged as
dependent.

We extend this point-to-point dependency relation to
sets of program points. Two sets of program points So

and S1 are dependent if 3P0 E SO, 3P1 E S1 such that PO
and pl are dependent.

FACT: Synchronizations that are targeted for removal
are not under dynamic control because they resulted
after specialization. Therefore they are: either at top
level or under a while true control, because this is
the only static control that remains after PE. There are
two types of dependencies that are associated with these
while true loops: loop independent and loop carried;
to capture both of them, in the absence of arrays, it is
sufficient to do a transformation that replaces a while
true body end while with the sequence body; body.

So, without the loss of generality, we assume that we
are dealing with straight line code. Therefore for each
thread, the set of program points associated with pure
communications is totally ordered; each synchronization
is characterized by a pair of such program points.

Let us consider synchronization II = {i., il }. Tag
the synchronization as redundant or essential based on
the dependencies between the sets of program points:

(6eJore(io) - beforr=(il )) and (after(il ) -a~ter(io))

(before(il) -before(iO)) and (after(io) -after(iI))

‘The send a!z is complementary to the receive CX?Xand vice-versa.

The computation of the sets before and after takes
into account the other synchronizations that are in the
program, so the removal of synchronization changes these
sets and hence the tagging of the other synchronizations
as residual or essential.

Note that if we lift this analysis to the specializa-
tion time we have to approximate the program point
sets after; for trace-based abstract interpretations see
[C0195, CL96] .

The simplest synchronization removal algorithm is
a naive greedy algorithm that removes one redundant
synchronization at a time and updates the tagging of
the remaining synchronizations. It computes a maximal
set of synchronizations to be removed. However, it fails
in finding the best solution to the problem as one can
see from the following example. Note that the vertical
lines represent threads, as straight-line code, while the
horizontal lines represent synchronizations.

Assume that there “is a dependency between program
points i and j. The simple analysis presented here tags
both SO and El as redundant. If we remove XO then
both Xl and E2 are essential. On the other hand, if we
remove 21, then X2 is redundant and a better solution
is obtained.

6 Conclusions and Future Work

We have presented the specification of a partial eval-
uator for a simple concurrent language. The examples
given have shown that it is possible to automatically spe-
cialize concurrent programs of a reasonable complexity.
We believe that the results presented here are relevant
for a wide variety of concurrent languages; for instance
we think our methods can be applied to object oriented
concurrent languages like POOL (see [AR89]).

The performance of the post-specialization synchro-
nization removal can be improved. On the other hand,
we’d like to integrate an analysis of the synchroniza-
tions into the BTA; this involves a less precise synchro-
nization analysis but the overall quality may be higher
because a more powerful specialize may result.

We are also investigating the possibility of extend-
ing our framework for languages that support dynamic
communication topologies. An analysis of the communi-
cation topology of a rather complex concurrent language
such as CML (see [Rep91]), was presented by Nielson
and Nielson in [NN94] and we are looking into integrat-
ing this analysis into the binding-time analysis and ex-
ploiting the potential of bounded-static-variation-based
techniques.
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A Example: Matrix Multiplication

A simple concurrent program illustrates the PE tech-
niques developed in this paper. The program is given
in Fig. 6 and it is written in Occam (suitably extended
to accommodate declarations needed for PE and to im-
prove readability).

This program implements the multiplication of ma-
trices a[M, N] and b [N, Q] by:

●

●

●

associating thread P [i, j] with element a [i, j 1

piping the line j of the matrix b (prefixed by a suit-
ably chosen number of O‘s) to each thread P [i, j]

each line i of the Droduct matrix is DiDf2d out on. .
channel CH[1, N] .‘

Two possible specializations are described.

A.1 Triangular Matrices

Let’s assume that matrix a from thread InputA is partly
static. For instance, consider specializing the multipli-
cation algorithm in the case when matrix a is superior
triangular, i.e.

Vi > j, a[i, j] = O

A fully automatic, on-line PE, using techniques de-
scribed in this paper, goes as follows:

● the BTA for expressions leads to (the static envi-
ronment is denoted by u):

Vi> j in thread P[i, j]

Be[s] = Be[a] = S; and a(s) = a(a) = O

also Vi in thread P [i, i]

&~sj = S and a(s) = O

● a simple dataflow analysis (because there are no

)
globals spots the useless variables (such as b) and
channe s (such es B[i, j]) Vi > j

INT MIS...
INTN IS...
INTQ IS...
–– matrix a of M lines N columns;
-- matrix b of N limes Q columns
-- Q may be the total number of columns
-- of several matrices b that are pipelined

[M, N] REAL CHANNELA:
-- for distributing the elements of matrix a
[M, N] REAL CHANNELB :
-- pipeline the j-th line of matrix b
-- through channel B[., j 1
[M, N] REAL CHANNELCH:

INT 1, j:
DECLARE 1 := 1 FOR M

DECLARE j := i FOR N
CHANNELA[i, j] = (InputA, P[l, j])
CHANNELB[i, j] = (InputB, P[i, j])

end DECLARE
DECLARE j := O FOR N-1

CHANNELCH[i, j] = (P[i, j], P[l, J+l])
end DECLARE
CHANNELCH[l, N] = (P[i, N], Output)

end DECLARE

-- the program consists of
-- the parallel execution of threads
-- InputA, InputB, MAIN and Output

-- the result: line i of matrix product
-- is pipelined out on channel CH[i,N]
-- therefore, the observable communication
-- is on CH[i,N] forall O < i <= M

THREAD MAIN IS
INT i, j:
PAR i := 1 FORM

PAR j := O FORN
P[i,jl

end PAR
end PAR

end THREAD

DECLARE i := 1 FORM
DECLARE j := 1 FOR N

THREADP[i,j] IS
REAL a, b, s:
A[i,j] ? a
WHILE true

SEQ
CH[i,j-1] ? s
B[i,j] ? b
CH[i,j] ! s + a * b

end SEQ
end WHILE

end THREAD
end DECLARE

end DECLARE

Figure6: Matrix Multiplication Program
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DECLARE 1 := 1 FOR M
THREADP[l,O] IS

WHILE true
CH[i,O] ! O

end WHILE
end THREAD

end DECLARE

THREAD InputA IS
INTi, j:
[M,N] REAL a: -- matrix a
PAR i := 1 FORM

PAR j := 1 FORN
A[l,j] ! a[i,j]

end PAR
end PAR

end THREAD

THREAD InputB IS
INT 1, j, k:
[N,q] REALb: -- matrix b
SEq k := 1 FORq

PAR i := 1 FOR N
PAR j := 1 FORM

IF k+l-j <= O
B[i,j] ! O

ELSE
B[i,j] ! b[j,k+l-j]

end IF
end PAR

end PAR
end SEq

end THREAD

Figure 6: Matrix Multiplication Program (continued)

●

●

●

●

A.2

This

BTA tags all program points as static while for
channels: Vi >j

Bc~[CH[i,j]] =Bc~[A[i, j]]=S;

as a result of the specialization of the data trans-
fer, the communication on the static and useless
channels is residualized as pure communication;

all pure communications are removed because they
are redundant;

after the clean-up phase (in which empty threads
are discarded), a significant drop in the number of
threads and communication channels is achieved;
the residual program uses only:

– threads p[i,j] with i<j
—

~
channels CH[i,j] with i < j) and input on
A[i,j] and B[i,j (with ~~j).

Boolean Matrices

second PE example illustrates the specialization of
the general matrix multiplication algorithm for boolean
mat rices. We can use PE techniques although no static

input data is given because of the bounded static uaria-
tion of the values of the elements of the matrices.

The residual code forthreadsp and InputB isgiven
in Fig. 7 and is based on the transformation that was
presented in the Binding-Time Improvements section.

Notice that during the specialization only someofthe
channels B[i,j] are tagged as useless (the ones corre-
spending toelementsa[i ,j] = ()); therefore, ifwe want
to remove this channels, we need to insert the decision

if a [i, j] =1 in the code of thread InputB (see Fig.
7). In order to do this transformation we should either
consider matrix a as global (OK since it is read-only
data) or explicitly pass it to thread InputB.

What is remarkable about this transformation is that
it can be interpreted as tmding communication for com-
putation. A naive complexity analysis shows how diffi-
cult it is to accurately evaluate the performance of the
specialize: some communication was eliminated as well
as some computation (additions and multiplications);
however, a decision was inserted.

B Example: Nondeterministic Sorting

We use an example to illustrate the specialization of the
nondeterministic choice. The focus is on nondetermin-
ism so, for clarity reasons, we consider a pro ram with

!no communication. The program (see Fig. 8 has only
one thread which implements the sorting of 4 numbers.

We can assign two distinct meanings to this program:

●

●

if we are interested only in obtaining the 4 numbers
in non-increasing order, then the only meaningful
communication is on channel outnr; the original
program doesn ‘t need to include any communica-
tion on channel outstr; consequently the nonde-
terministic choice is a don’t care type of choice;

if we are interested in the particular order in which
the swaps of the numbers-was done then the com-
munication on channel outstr is meaningful be-
cause if offers the log of the sorting algorithm.

Now, assume that xl, x2 and x3 are static with:
X1=1; X2=2; x3=3
and X4 is dynamic.
The residual programs showed in Fig. 9 can be au-

tomatically obtained by using the speculative BTA for
the guards described in section 3.5. Notice that:

1. The PE is nondeterministic; there are two possible
residual programs that can be generated depending on
the commitment on a specific choice at specialization
time;

2. The PE is sound but not complete; it is correct
only if we consider that the meaning of the program is
just the communication on channel outnr; otherwise it
is clear that, using this specialization, we loose some of
the nondeterminism of the initial program: for example
if x4 = 4 then, by using the specialization described
above, we are not able to obtain a trace of execution in
which the first swap is the one between X3 and x4.

A final remark: in order to perform this specializa-
tion we need to use constmint-based information prop
agation (see [GS96a]) instead of constant propagation.
This is necessary in order to tag the condition 2 < X3
as static and true on the true branch of the conditional
if 2 < x3.
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-- a and b are to be

DECLARE i := 1 FOR M
DECLARE j := 1 FOR N
THREADP[i, j] IS

ALT
A[i, j] ? O

WHILE true
ALT

redeclared as BOOLEAN

CH[i, j-1] ? O -- B[i, j] ? dummy
CH[i, j] ! O -- is eliminated

CH[i,j-1] ? 1 -- B[i,j] ? dummy
CH[i,jl ! 1 -- is eliminated

end ALT
end WHILE

A[i,j] ? 1
WHILE true

ALT
CH[i,j-11 ? O

ALT
BCi,jl ? O

CH[i,j] ! O
B[i,jl ? 1

CH[i,j] ! 1
end ALT

CH[i,j-1] ? 1
ALT

B[i,j] ? O
CH[i,j] ! 1

B[i,j] ? 1
CH[i,i] ! O

end ALT ‘“
end ALT

end WHILE
end ALT

end THREAD
end DECLARE
end DECLARE

THREAD InputB IS
INT i, j, k:
SEQk := i FORQ

PAR i := 1 FOR N
PAR j := 1 FORM

IF a[i,j] = 1
-- this decision

if k+l-j <= O
B[i,j] ! O

else

must be inserted!

B[i,j] ! b[j,k+l-j]
end if

ELSE -- do nothing
end IF

end PAR
end PAR

end SEQ
end THREAD.

F’igure 7: Boolean Matrices Specialization

THREAD MAIN IS
DO

xl < x2 –> swap(xl, x2); outstr!”A”
x2 < x3 -> swap(x2, x3); outstr!’’B1!
X3 < x4 -> swap(x3, x4); outstr!”C”

end DO
outnr!xl
outnr!x2
outnr!x3
outnr!x4
end THREAD

PROCEDUREswap(x,y) IS
aux := x
x .-.- Y
Y := aux
end PROCEDURE

Figure8: Nondeterministic Sorting

THREAD HAIN IS
outstr!”A” // outstr!”B”
outstr!”B” // outstr!”A”
outstr!’*A” // outstr!”B”
IFi<x4

x3 := x4
outstr!”C”
IF2<x3

x2 := x3
outstr!”B”
IF3<x2

xl := X2
outstr!”A”
outnr!xl
outnr !3
outnr !2
outnr ! 1

ELSE
outnr !3
outnr!x2
outnr !2
outnr ! 1

end IF
ELSE

outnr !3
outnr !2
outnr!x3
out nr ! 1

end IF
ELSE

outnr !3
outnr !2
outnr ! 1
outnr!x4

end IF
end THREAD

Figure 9: Nondeterministic Sorting Specialization
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