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Abstract. Translation validation (TV) is the process of proving that
the execution of a translator has generated an output that is a correct
translation of the input. When applied to optimizing compilers, TV is
used to prove that the generated target code is a correct translation
of the source program being compiled. This is in contrast to verifying
a compiler, i.e. ensuring that the compiler will generate correct target
code for every possible source program – which is generally a far more
difficult endeavor.
This paper reviews the TVOC framework developed by Amir Pnueli and
his colleagues for translation validation for optimizing compilers, where
the program being compiled undergoes substantional transformation for
the purposes of optimization. The paper concludes with a discussion of
how recent work on the TV of software pipelining by Tristan & Leroy
can be incorporated into the TVOC framework.

1 Introduction

Verifying a compiler to ensure that it will produce correct target code every time
it compiles a source program is a very difficult undertaking. First, compilers are
large pieces of software and, given the current state of the art, verifying large
pieces of software is still generally computationally intractable. Second, compilers
tend to undergo updates and new releases, which would require re-verification
each time.

As a proposed solution to the difficulty of verifying that a compiler will
produce correct target code for any possible source program, starting in 1998
Amir Pnueli and his colleagues [10, 9, 11, 8, 12] proposed translation validation
(TV), which is the process of verifying, for a given run of the compiler, that the
target code produced during the run is a correct translation of the source pro-
gram being compiled. Initially, the TV work was performed for a compiler that
translated SIGNAL, a reactive language with very simple program structure (a



single outer loop), into C. This work was followed up by Pnueli and various
colleagues (including this author), as well by many other researchers, who de-
veloped TV methods for industrial-strength optimizing compilers (see, e.g. [7, 2,
15, 17] among too many to list).

Performing TV for optimizing compilers is especially challenging because
the optimizations performed by the compiler can significantly change the struc-
ture of a program. The TV for optimizing compilers work performed by Pnueli
and colleagues resulted in a framework and implementation called TVOC [2],
for Translation Validation for Optimizing Compilers, which partitions compiler
optimizations into two categories:

– Structure-preserving optimizations: These are optimizations that do not rad-
ically change the structure of the program, so that a mapping between states
of the target program and states of the source program is still possible. Ex-
amples of such optimizations include the so-called “global optimizations”,
such as dead-code elimination, constant folding and propagation, and com-
mon subexpression elimination.

– Structure-modifying optimizations: These are optimizations that radically
change the structure of a program – or at least parts of the program, such
as loops – so that there is no useful mapping between states of the target
program and states of the source program. Examples of these optimizations
include loop optimizations such as loop interchange, tiling, reversal, fusion,
and distribution.

These two categories are treated differently within the TVOC framework. In both
cases, based on the source and target programs and the optimizations performed,
the TVOC system generates verification conditions that are then checked by a
theorem prover.

The theorem prover that TVOC uses is CVC [14, 1], which is an automatic
theorem prover for proving the validity of first-order formulas and has a large
number of built-in theories that are useful for TV (e.g. integers, arrays, bit-
vectors, etc.). The latest instantiation of CVC is CVC3 [1]. If CVC determines
that the verification conditions that TVOC generates are satisfied, then the
optimizations applied by the compiler were correct. Otherwise, the TVOC system
indicates that the compilation was invalid.

Figure 1 shows a simple schematic of the TVOC system, as applied to the
Intel Open Research Compiler a few years ago. After parsing and type check-
ing (which the TVOC system does not validate), the compiler performs loop
optimizations, global optimizations, and some machine dependent optimizations
prior to code generation. Each optimization phase comprises one or more IR-
to-IR transformations, taking the program in an intermediate reprentation (IR)
and producing a new program represented in the same IR language. Based on
these transformations, TVOC produces the set of verification conditions that are
fed to the CVC theorem prover.

Figure 2 shows a slightly more detailed schematic of the TVOC system. There
are separate components of TVOC for validating loop optimizations (structure



Fig. 1: A Simple Schematic of the TVOC System

Fig. 2: Detailed Schematic of the TVOC System



modifying) and global optimizations (structure preserving). At this point, vali-
dation of machine-dependent optimizations has not been implemented in TVOC.
Loop optimizations are generally performed earlier in the compilation process
than global optimizations, since loop optimizations often expose opportunities
for global optimization. In any case, these optimization processes tend to be
iterative. The input (source) and output (target) of each optimization is fed to
the appropriate module (loop TV or global TV) of TVOC, which generates the
verification conditions to be fed to CVC.

We have recently begun to extend the TVOC framework, although not the
implementation yet, to handle machine-dependent optimizations. One such opti-
mization that has not been handled by TVOC, although it was addressed in other
Pnueli work, is software pipelining. Recent work by Tristan & Leroy [16] for val-
idating software pipelining using symbolic evaluation is being been adapted for
the TVOC framework (i.e. using CVC). We describe here how software pipelining
fits into the TVOC framework.

2 Validating global optimizations in TVOC

Global optimizations are structure preserving in the sense that they preserve
the structure of a program sufficiently to permit a mapping between states of
the target program (i.e. the IR representation of the program after an optimiza-
tion) and states of the source (i.e. the IR representation of the program before
the optimization). Although a detailed explanation of how validation of global
optimizations are performed in TVOC is beyond the scope of this paper, we
provide a brief description here. We refer the reader to [18] for more details and
examples.

In order to validate a translation from a source program S to a target pro-
gram T , where the transformations applied to S are structure-preserving, TVOC
represents each program as a transition system [10] (TS), which is a state ma-
chine consisting of a set V of state variables, a set O ⊆ V of observable variables,
an initial condition Θ characterizing the initial states of the system, and a tran-
sition relation ρ relating each state to its possible successors. The variables are
typed, and a state of a TS is a type-consistent interpretation of the variables.
A computation of a TS is defined to be a maximal finite or infinite sequence of
states starting with a state that satisfies the initial condition such that every
two consecutive states are related by the transition relation.

In order to establish that P
T

, the TS representing the target program T , is
a correct translation of P

S
, the TS representing the source program S, we use a

proof rule, Val, which is inspired by the computational induction approach [3],
originally introduced for proving properties of a single program. Rule Val pro-
vides a proof methodology by which one can prove that one program refines
another. This is achieved by establishing a control mapping from target to source
locations, a data abstraction mapping from source variables to expressions over
the target variables, and proving that these abstractions are maintained along
basic execution paths of the target program.



In Val, each TS is assumed to have a cut-point set, i.e., a set of blocks that
includes all initial and terminal blocks, as well as at least one block from each of
the cycles in the programs’ control flow graph. A simple path is a path connecting
two cut-points, and containing no other cut-point as an intermediate node. For
each simple path, we can (automatically) construct the transition relation of the
path. Typically, such a transition relation contains the condition which enables
this path to be traversed and the data transformation effected by the path.

Rule Val constructs a set of verification conditions, one for each simple tar-
get path, whose aggregate consists of an inductive proof of the correctness of
the translation between source and target. Roughly speaking, each verification
condition states that, if the target program can execute a simple path, starting
with some conditions correlating the source and target programs, then at the
end of the execution of the simple path, the conditions correlating the source
and target programs still hold. The conditions consist of the control mapping,
the data mapping, and, possibly, some invariant assertion holding at the target
code.

3 Validating loop optimizations

The Val rule discussed above relied on there being a mapping between the states
of the source and target programs. However, there is a class of loop optimizations
that optimizing compilers perform that modify the structure of loops sufficiently
so that no such mapping is possible. Thus, Pnueli and his colleagues, including
this author, developed and implemented in TVOC a method for validating loop
optimizations that did not rely on such a mapping. We describe this method
briefly here, but refer the reader to [2].

The loop optimizations that TVOC handles fall under the category of re-
ordering transformations, which are transformations that change the order of
execution of statements in the body of a loop, but do not change the number
of times each statement is executed. Reordering transformations cover many
of the loop optimizations performed by optimizing compilers, including fusion,
distribution, reversal, interchange, and tiling.

To illustrate TVOC’s validation of loop optimizations, we consider loop in-
terchange. The loop interchange optimization reorders the nesting of a nested
loop. Figure 3 shows an example of a loop interchange on a doubly-nested loop.
For this example, the transformation may provide several performance bene-
fits. First, since the expression Y[i2] is loop invariant in the inner loop of the
transformed code, the computation of the address denoted by Y[i2] and the
fetching of its value can be moved outside the inner loop. Second, if the array A

is arranged in row major form, where adjacent elements in a row occupy conse-
cutative locations in memory, then cache performance is likely to be improved.
The illustration below shows the transformation of the access pattern over the
array A caused by the interchange.



Fig. 3: An example of loop interchange

The curved arrows represent an execution of the assignment statement, where
each element A[i2,i1] is assigned a value computed from the element A[i2-1,i1]
above it. The new access pattern resulting from the optimization must preserve
the relative order in which A[i2,i1] and A[i2-1,i1] are visited during exe-
cution of the loop. Otherwise, the transformation will have changed the result
produced by the loop.

In order to define a single rule for validating all reordering loop transforma-
tions, we represent a loop of the form

for i1 = L1toH1 do
. . .

for im = Lm to Hm do
B(i1, . . . , im)

by
for i ∈ I by ≺I do B(i)

where i = (i1, . . . , im) is the list of nested loop indices, I is the set of the values
assumed by i through the different iterations of the loop, and B represents
the entire body of the loop. The set I can be characterized by a set of linear
inequalities. For example, for the above loop, I is defined by

I = {(i1, . . . , im) | L1 ≤ i1 ≤ H1 ∧ · · · ∧ Lm ≤ im ≤ Hm}



The relation ≺I is the ordering by which the various points of I are traversed.
For example, for the loop above, this ordering is the lexicographic order on I.

In general, a loop transformation has the form:

for i ∈ I by ≺I do B(i) =⇒ for j ∈ J by ≺J do B(F (j))

Such a transformation may change the domain of the loop indices from I to J ,
change the loop indices from i to j, and possibly introduce an additional linear
transformation in the loop’s body, changing it from the source loop body B(i)
to the target body B(F (j)).

The rule used in TVOC to validate loop transformations is the Permute rule
shown in Figure 4, where F is a bijection (i.e. it is one-to-one and onto) mapping
iterations in the transformed loop back to iterations in the original loop.

∀i1, i2 ∈ I : i1≺I i2 ∧ F−1(i2)≺J F−1(i1) =⇒ B(i1); B(i2) ∼ B(i2); B(i1)

for i ∈ I by ≺I do B(i) ∼ for j ∈ J by ≺J do B(F (j))

Fig. 4: Permutation Rule Permute for reordering transformations

Intuitively, the Permute rule says that if, for any circumstance under which a
reordering transformation switches the relative order of two iterations i1 and i2
in the source and target code, it is case that executing the body B in iteration i1
followed by executing B in iteration i2 is equivalent to executing B in iteration i2
followed by executing the body in iteration i1, then the reordering transformation
is correct.

In order to apply rule Permute to a given case, it is necessary to identify
the function F (and F−1) and verify that the antecedent of Rule Permute is
satisfied. The identification of F can be provided by the compiler, once it de-
termines which of the relevant loop optimizations it chooses to apply. Intel’s
ORC compiler generates a file containing a description of the loop optimizations
applied in the current phase of optimization. TVOC extracts this information
(identified as “optimization spec” in Figure 2), verifies that the optimized code
has resulted from the indicated optimization, and constructs the verification
conditions. These conditions are then passed to CVC, which checks them auto-
matically.

Consider the interchange example shown in Figure 3. The loop interchange
transformation for that example can be characterized as follows:

for i in I by ≺I do A[i2 − 1,i1] + Y[i2]

=⇒
for j in J by ≺J do A[j1 − 1,j2] + Y[j1]



where

I ={(i1, i2)|1 ≤ i1 ≤ N, 1 ≤ i2 ≤M}
J ={(j1, j2)|1 ≤ j1 ≤M, 1 ≤ j2 ≤ N}

and ≺I and ≺J are lexicographic ordering on their respective iteration spaces.
The functions F and F−1 associated with loop interchange are defined by

F (j1, j2) = (j2, j1)

F−1(i1, i2) = (i2, i1)

In order to determine if loop interchange is valid on the example loop, the
definitions of I, J , ≺I , ≺J ,F , F−1, and the loop body B are plugged into the
antecedent of the Permute rule, namely

∀i1, i2 ∈ I : i1≺I i2 ∧ F−1(i2)≺J F
−1(i1) =⇒ B(i1); B(i2) ∼ B(i2); B(i1)

The resulting formula is then fed to CVC to determine if it is valid. If it is valid,
then loop interchange optimization is correct for this example.

For those cases where the compiler does not indicate the loop transformations
that were applied, TVOC uses a set of heuristics figure out which transformations
were used.

4 Validating Software Pipelining

Machine-dependent optimizations, such as software pipelining, are not yet han-
dled by the TVOC implementation. In this section, we discuss how TV for soft-
ware pipelining can be incorporated into TVOC, based on recent work by Tris-
tan & Leroy [16]. We start, however, with a intuitive explanation of the software
pipelining optimization.

4.1 A gentle introduction to software pipelining

Software pipelining [13, 5] refers to a class of optimizations that improve pro-
gram performance by overlaying iterations of a loop – essentially allowing an
iteration to start before the previous iteration has completed, even if there are
dependences between iterations that prohibit the iterations executing fully in
parallel. Software pipelining can be view schematically as:



The benefits of software pipelining include 1) exploiting instruction-level paral-
lelism by allowing instructions from different iterations to execute simultaneously
on VLIW or superscalar machines, 2) filling delay slots in one iteration with in-
structions from other iterations, and 3) other improvements (register allocation,
cache performance, etc.) that can be made during instruction scheduling by be-
ing able to select among instructions from several overlapping iterations.

Although software pipelining generally occurs at the instruction-scheduling
phase of compilation, where the optimization is applied to machine instructions,
for clarity we will show the examples in this paper in an intermediate represen-
tation (IR) that is fairly close to the source.

Consider the following simple loop:

for i= 3 to N

a[i] = a[i-3] + 5

A corresponding (high-level) intermediate representation form of the loop is:

i=3

while (i<=N) {

x = a[i-3]

NOP //delay slot

a[i] = x+5

i = i + 1

}

We assume that the load instruction, x = a[i-3], takes an extra cycle due to
the memory fetch, thus a NOP (“no-op”) is inserted to ensure that x is not
referenced too early1. In the sequential execution of the loop, a cycle is wasted
by the NOP during every iteration.

The figure below illustrates the execution of overlaid iterations in a software
pipeline. These iterations continue executing as long as specified by the loop
bounds.

As can be seen by close examination of the above figure, the actual pipeline code
is accomplished by replicating the body of the loop four times, creatng a total of
four instances of the variables i and x, and then overlaying the four iterations.

1 For simplicity, we assume a purely statically-scheduled machine with no out-of-order
execution or interlocked stages.



During execution, these four iterations are repeatedly executed, as implied by
the figure above.

In a software pipeline, such as the one illustrated above, the instructions
appearing on the same horizontal level – despite being from different iterations
– can be executed simultaneously or in any order chosen by the compiler. Thus,
although the NOP appears in the figure, it does not consume a cycle since there
are other instructions that can be executed in that same cycle.

Upon further examination of the above figure, it can be seen that horizontal
blocks of code are repeated in the execution of the overlaid iterations. This
is shown in the figure below, where the code within the first large rectangle is
repeated in the second rectangle (which is only partially visible) and many times
subsequently.

The horizontal block of code within the large rectangle is called the “kernel”
of the pipeline. Only one instance of the kernel code is actually generated, and
is then executed in a loop. The figure below illustrates the repeated execution
of the kernel code, preceded by a set of instructions called the “prologue” and
followed by the set of instructions called the “epilogue”. The prologue can be
thought of as a “ramping up” of the pipeline and the epilogue as a “ramping
down” of the pipeline.

For clarity, the above figure doesn’t show the number of times that the kernel
is executed. It can be seen from inspection that, together, the prologue and



epilogue corresponds to executing three iterations of the original loop body (note
the three assignments to x, the three writes to a[ ], etc.) and that the kernel
code corresponds to four iterations of the original loop body. Thus, since the
original loop executed N times, it must be the case that N is at least 3, since
the prologue and epilogue will always execute once the pipelined code is entered.
Furthermore, the value of N−3, i.e. the number of iterations of the original loop
that is executed by iterating over the kernel, must be divisible by four since each
iteration of the kernel corresponds to four iterations of the original loop.

Using this logic, and the notation from [16], it is clear that, in general, if the
prologue and epilogue together execute µ iterations of the original loop and each
iteration of the kernel executes δ iterations of the original loop, then we require
that N ≥ µ and that (N − µ) is a multiple of δ. To enforce these requirements,
the pipeline code is generally preceded by a conditional that tests the value of N ,
unless N can be determined statically. If N < µ, then the pipeline code will not
be entered at all. If N−µ is not a multiple of δ, then the appropriate number (i.e.
(N−µ) MOD δ ) of iterations of the loop are peeled off and executed separately,
so that the remaining iterations of the loop can be pipelined.

4.2 Validating a software pipeline

In [6], Pnueli and Leviathan described a method for validating software pipelin-
ing using an extension of the Val rule described above. This work used a mapping
between transition systems resulting in a fairly complicated method.

In a recent POPL paper [16], Tristan & Leroy describe a less complicated
approach, defining a simple rule to be satisfied in order to deem that the trans-
lation from the original loop into a pipeline is correct. As their paper discusses,
given a source loop with a body B that is translated into the pipeline consist-
ing of a prologue P , a kernel S, and an epilogue E, where E and P together
represent µ iterations of B and S represents δ iterations of B, the translation is
correct iff

BN ∼ P ;S(N−µ)/δ;E

That is, executing the body B of a loop N times is equivalent to executing
the prologue P , followed by iterating over the kernel S for (N − µ)/δ times,
followed by the epilogue E. As discussed above, it is assumed (and enforced by
other code) that N ≥ µ and that (N − µ) is a multiple of δ. Tristan & Leroy
noted, though, that without knowledge of N , which is a run-time value, proving
the above equivalence for all possible N is very difficult. Thus, they proposed a
simple rule that is sound but not complete, in that if the rule is satisfied, then the
translation is correct, but there may be correct translations that do not satisfy
the rule. However, their paper states that such cases don’t arise in practice.

The Tristan & Leory rule can be specified as follows: Suppose a source loop
whose body is B is translated into the pipeline consisting of a prologue P , a
kernel S, and an epilogue E, where E and P together represent µ iterations of



B and S represents δ iterations of B. Then,

(Bµ ∼ P ;E) ∧ (E;Bδ ∼ S;E)

BN ∼ P ;S(N−µ)/δ;E
(Tristan & Leroy)

where it is assumed that N ≥ µ and (N − µ) is a multiple of δ.
As shown in their POPL paper, the Tristan & Leroy rule is easy to prove

inductively (once a framework, such as their symbolic evaluation, is developed
for reasoning about equivalence – which is not so easy). Informally, the induction
proceeds as follows. Since N − µ is divisble by δ, N = µ+mδ for some m ≥ 0.
m is used as the basis of the induction.

Base Case m = 0:

Bµ+mδ = Bµ

∼ P ;E

= P ;S0;E

Assume for any m ≤ k, Bµ+kδ ∼ P ;Sk;E. Then,

Bµ+(k+1)δ = Bµ+kδ;Bδ

∼ P ;Sk;E;Bδ

∼ P ;Sk;S;E

= P ;Sk+1;E

Thus, for any m, Bµ+mδ ∼ P ;Sm;E and since N = µ+mδ, i.e. m = (N −u)/δ,
BN ∼ P ;S(N−µ)/δ;E.

The intuition behind the Tristan & Leroy rule can be seen in figure 5, which is
adapted (with permission) from Figure 3 in [16]. The horizontal sequence at the

Fig. 5: Illustration of the Tristan & Leroy rule, adapted from [16]

top of the figure represents the execution of the original code and the sequence
at the bottom is the execution of the pipelined code.



In their POPL paper, Tristan & Leroy describe a symbolic evaluation method
for proving the equivalences (Bµ ∼ P ;E) and (E;Bδ ∼ S;E) for a particular
source loop body B and target pipeline components P , S, and E. Instead, we
have incorporated the Tristan & Leroy rule into the TVOC framework, where
it is used to generate two verification conditions – simply (Bµ ∼ P ;E) and
(E;Bδ ∼ S;E) – that are fed to CVC theorem prover, along with the code for
Bµ, Bδ, P , S, and E. If CVC finds the two conditions valid, then pipelining is
correct.

Figure 6 shows the original and pipelined loops of our example program,
above, along with the verification conditions, encoded for CVC. P , S, and E in
the CVC code resulted from an SSA transformation applied to the pipeline code.
B3 and B4, corresponding to Bµ, Bδ, respectively, were generated by static loop
unrolling and then an SSA transformation. Equivalence between B3 and P ;E
and between E;B4 and S;E is checked in CVC by asserting that their inputs
(the initial values of a, the i’s, and the x’s) are equal and querying CVC about
the equality of the their outputs (i.e. the final values of a, the i’s, and the x’s).

Software pipelining, although an optimization that can be complicated to
perform, lends itself nicely to simple translation validation rules, such as the
Tristan & Leroy rule, because none of the pipeline prologue, kernel, or epilogue
themselves contain loops or branches. Although the compiler has freedom to
rearrange instructions within each of these blocks, the resulting code will still
be amenable to equivalence checking by a theorem prover.

4.3 Future Work: Validating pipelining that uses hardware support

In practice, compilers that perform software pipelining often generate code for
machines, such as the Intel IA64, that provides substantial hardware support
for pipelining. This hardware support includes rotating registers to provide au-
tomatic renaming of variables (such as the loop index i in our example above)
across iterations – thus avoiding replicating identical code in overlapping itera-
tions and reducing the size of the kernel code. Another form of hardware support
for software pipelining is predication, which is the ability to turn off the execu-
tion of certain instructions at run time. Predication, in this case, supports the
execution of prologue and epilogue code – which are subsets of the kernel instruc-
tions – by turning off certain instructions in the kernel during the ramp up and
ramp down phases of the pipeline. As described in [4], predication can also be
used to dynamically alter the software pipeline in order to preserve loop-carried
dependences that can only be computed at run time.

Techniques for translation validation of software pipelining that use such
hardware support have not yet been developed. As with performing TV for other
kinds of machine-dependent optimizations, it will involve encoding the hardware
features of the machine in a logical framework (e.g. as a set of CVC assertions).



Unrolled Source Code and Target Pipline Code Assertions and Queries for Validation

%B3 %Assertions for P;E
REAL ARRAY: TYPE = ARRAY INT OF REAL; %Connect the outputs of P to the
a1 b3: REAL ARRAY; i1 b3: INT; %inputs of E.
x1 b3: REAL = a1 b3[i1 b3-3]; ASSERT i11 ep = i1 pl;
a2 b3: REAL ARRAY = a1 b3 WITH [i1 b3] := x1 b3 + 5; ASSERT i21 ep = i2 pl;
x2 b3: REAL = a2 b3[i1 b3-2]; ASSERT i31 ep = i3 pl;
a3 b3: REAL ARRAY = a2 b3 WITH [i1 b3 + 1] := x2 b3 + 5; ASSERT i41 ep = i4 pl;
x3 b3: REAL = a3 b3[i1 b3-1]; ASSERT x2 ep = x2 pl;
a4 b3: REAL ARRAY = a3 b3 WITH [i1 b3 + 2] := x3 b3 + 5; ASSERT x3 ep = x3 pl;
i2 b3: INT = i1 b3 + 3; ASSERT a1 ep = a2 pl;

%B4 %QUERIES FOR B3 = P;E

a1 b4: REAL ARRAY; %Set the inputs to B3̂ equal to inputs to P
i1 b4: INT; ASSERT a1 b3 = a1 pl;
x1 b4: REAL = a1 b4[i1 b4-3]; ASSERT i1 b3 = i1 pl;
a2 b4: REAL ARRAY = a1 b4 WITH [i1 b4] := x1 b4 + 5;

x2 b4: REAL = a2 b4[i1 b4-2]; %Query if the outputs of B3 and E are equal
a3 b4: REAL ARRAY = a2 b4 WITH [i1 b4 + 1] := x2 b4 + 5; QUERY i2 b3 = i41 ep;
x3 b4: REAL = a3 b4[i1 b4-1]; QUERY a3 ep = a4 b3;
a4 b4: REAL ARRAY = a3 b4 WITH [i1 b4 + 2] := x3 b4 + 5; QUERY x3 b3 = x3 ep;
x4 b4: REAL = a4 b4[i1 b4];
a5 b4: REAL ARRAY = a4 b4 WITH [i1 b4 + 3] := x4 b4 + 5; %————————-
i2 b4: INT = i1 b4 + 4; %Assertions for S;E
%PROLOGUE %For S;E, the i1s, i2s, xs, and a’s have to align
i1 pl: INT; ASSERT i11 ep = i12 s;
i2 pl: INT; ASSERT i21 ep = i22 s;
i3 pl: INT; ASSERT i31 ep = i32 s;
i4 pl: INT; ASSERT i41 ep = i42 s;
ASSERT i1 pl = 2; ASSERT x1 ep = x11 s;
ASSERT i2 pl = i1 pl + 1; ASSERT x2 ep = x22 s;
ASSERT i3 pl = i1 pl + 2; ASSERT x3 ep = x32 s;
ASSERT i4 pl = i1 pl + 3; ASSERT x4 ep = x41 s;
a1 pl: REAL ARRAY; ASSERT a1 ep = a5 s;

x1 pl: REAL = a1 pl[i1 pl-3]; %Assertions for E2;B4

x2 pl: REAL = a1 pl[i2 pl-3]; %Need to use second copy of E, namely ” ep2”

a2 pl: REAL ARRAY = a1 pl WITH [i1 pl] := x1 pl + 5; %Align a[] output of E2 with a[] input of B4

x3 pl: REAL = a2 pl[i3 pl-3]; ASSERT a1 b4 = a3 ep2;

%EPILOGUE %Align i1 input of B4 with i4 output of E2
a1 ep: REAL ARRAY; ASSERT i1 b4 = i41 ep2;

i11 ep: INT; %Queries for E2;B4 = S;E
i21 ep: INT; %Assert the equality of the inputs to E2 and S
i31 ep: INT; ASSERT a1 ep2 = a1 s;
i41 ep: INT; ASSERT i11 ep2 = i11 s;
x1 ep: REAL; ASSERT i21 ep2 = i21 s;
x2 ep: REAL; ASSERT i31 ep2 = i31 s;
x3 ep: REAL; ASSERT i41 ep2 = i41 s;
x4 ep: REAL; ASSERT x2 ep2 = x21 s;
i12 ep: INT = i11 ep + 4; ASSERT x3 ep2 = x31 s;
a2 ep: REAL ARRAY = a1 ep WITH [i21 ep] := x2 ep + 5; %This gives the relationship among the i’s in S
i22 ep: INT = i21 ep + 4; ASSERT i21 s = i11 s + 1;
a3 ep: REAL ARRAY = a2 ep WITH [i31 ep] := x3 ep + 5; ASSERT i31 s = i11 s + 2;
i32 ep: INT = i31 ep + 4; ASSERT i41 s = i11 s + 3;
%EPILOGUE2, a copy of EPILOGUE ASSERT x1 ep = x11 s;

a1 ep2: REAL ARRAY; %Query if the outputs of B4 and E are equal.
i11 ep2: INT; QUERY i41 ep = i2 b4;
i21 ep2: INT; QUERY i12 ep = i2 b4+1;
i31 ep2: INT; QUERY i22 ep = i2 b4 + 2;
i41 ep2: INT; QUERY i32 ep = i2 b4 + 3;
x2 ep2: REAL; QUERY x1 b4 = x4 ep;
x3 ep2: REAL; QUERY x2 b4 = x1 ep;
i12 ep2: INT = i11 ep2 + 4; QUERY x3 b4 = x2 ep;
a2 ep2: REAL ARRAY = a1 ep2 WITH [i21 ep2] := x2 ep2 + 5; QUERY x4 b4 = x3 ep;
i22 ep2: INT = i21 ep2 + 4; QUERY a5 b4 = a3 ep;
a3 ep2: REAL ARRAY = a2 ep2 WITH [i31 ep2] := x3 ep2 + 5;
i32 ep2: INT = i31 ep2 + 4;
%KERNEL (S)
a1 s: REAL ARRAY;
i11 s: INT;
i21 s: INT;
i31 s: INT;
i41 s: INT;
x21 s: REAL;
x31 s: REAL;
i12 s: INT = i11 s + 4;
a2 s: REAL ARRAY = a1 s WITH [i21 s] := x21 s + 5;
x41 s: REAL = a2 s[i41 s - 3];
i22 s: INT = i21 s + 4;
a3 s: REAL ARRAY = a2 s WITH [i31 s] := x31 s + 5;
x11 s: REAL = a3 s[i12 s - 3];
i32 s: INT = i31 s + 4;
a4 s: REAL ARRAY = a3 s WITH [i41 s] := x41 s + 5;
x22 s: REAL = a4 s[i22 s - 3];
i42 s: INT = i41 s + 4;
a5 s: REAL ARRAY = a4 s WITH [i12 s] := x11 s + 5;
x32 s: REAL = a5 s[i32 s - 3];

Fig. 6: The pipelining example in CVC



5 Conclusion

We have attempted in this paper to provide an inkling of the contribution that
Amir Pnueli made to techniques for ensuring the correctness of compilers – and
the extent to which his translation validation work has inspired further work
in this area. A large number of papers (too many to list here, unfortunately)
have been published on translation validation since Pneuli’s 1998 paper, and we
expect translation validation to be an important area of verification for some
time.
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