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So Far

1. How do we find distinctive / easy to locate 

features? (Harris/Laplacian of Gaussian)

2. How do we describe the regions around 

them? (histogram of gradients)

3. How do we match features? (L2 distance)

4. How do we handle outliers? (RANSAC)



Today

As promised: warping one image to another



Why Mosaic?

• Compact Camera FOV = 50 x 35°

Slide credit: Brown & Lowe



Why Mosaic?

• Compact Camera FOV = 50 x 35°

• Human FOV                = 200 x 135°

Slide credit: Brown & Lowe



Why Mosaic?

• Compact Camera FOV = 50 x 35°

• Human FOV                = 200 x 135°

• Panoramic Mosaic        = 360 x 180°

Slide credit: Brown & Lowe



Why Bother With This Math?

Slide credit: A. Efros



Homework 1 Style

Translation only via alignment

Slide credit: A. Efros



Result

Slide credit: A. Efros



Image Transformations

f
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T
g
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Image filtering: change range of image

𝑔 𝑥 = 𝑇(𝑓 𝑥 )

𝑔 𝑥 = 𝑓 𝑇(𝑥 )
Image warping: change domain of image

Slide credit: A. Efros



Image Transformations

T

T

Image filtering: change range of image

𝑔 𝑥, 𝑦 = 𝑇(𝑓 𝑥, 𝑦 )

𝑔 𝑥, 𝑦 = 𝑓 𝑇(𝑥, 𝑦 )
Image warping: change domain of image

f g

f g

Slide credit: A. Efros



Parametric (Global) warping

translation rotation aspect

affine perspective cylindrical

Examples of parametric warps

Slide credit: A. Efros



Parametric (Global) Warping

T

p’ = (x’,y’)

T is a coordinate changing machine

p = (x,y)

Note: T is the same for all points, has relatively few 

parameters, and does not depend on image content

𝒑′ = 𝑇(𝒑)

Slide credit: A. Efros



Parametric (Global) Warping

T

p’ = (x’,y’)
p = (x,y)

Today we’ll deal with linear warps

𝒑′ ≡ 𝑻𝒑
T: matrix; p, p’: 2D points. Start with normal points 

and =, then do homogeneous cords and ≡

Slide credit: A. Efros



Scaling

 2

Scaling multiplies each component (x,y) by a scalar. 

Uniform scaling is the same for all components.

Note the corner goes from (1,1) to (2,2)

Slide credit: A. Efros



Scaling

Non-uniform scaling multiplies each component by 

a different scalar.

X  2,

Y  0.5

Slide credit: A. Efros



Scaling

What does T look like?

𝑥′ = 𝑎𝑥

𝑦′ = 𝑏𝑦
Let’s convert to a matrix:

𝑥′
𝑦′

=
𝑎 0
0 𝑏

𝑥
𝑦

scaling matrix S

What’s the inverse of S?

Slide credit: A. Efros



2D Rotation

Rotation Matrix 

But wait! Aren’t sin/cos non-linear?

x’ is a linear combination/function of x, y

x’ is not a linear function of θ

What’s the inverse of Rθ? 𝑰 = 𝑹𝜽
𝑇𝑹𝜽

𝑥′
𝑦′

=
cos(𝜃) − sin 𝜃

sin 𝜃 cos 𝜃

𝑥
𝑦

Slide credit: A. Efros



Things You Can Do With 2x2

Identity / No Transformation

Shear

𝑥′
𝑦′

=
1 𝑠ℎ𝑥
𝑠ℎ𝑦 1

𝑥
𝑦

𝑥′
𝑦′

=
1 0
0 1

𝑥
𝑦

Slide credit: A. Efros



Things You Can Do With 2x2

2D Mirror About Y-Axis

𝑥′
𝑦′

=
−1 0
0 1

𝑥
𝑦

Before

After

2D Mirror About X,Y

𝑥′
𝑦′

=
−1 0
0 −1

𝑥
𝑦

Before

After

Slide credit: A. Efros



What’s Preserved? 

Projections of parallel 3D 

lines are not necessarily 

parallel, so not parallelism 

3D lines project to 2D lines 

so lines are preserved

Distant objects are smaller 

so size is not preserved



What’s Preserved With a 2x2

𝑥′
𝑦′

=
𝑎 𝑏
𝑐 𝑑

𝑥
𝑦 = 𝑇

𝑥
𝑦

After multiplication by T (irrespective of T)

• Origin is origin: 0 = T0

• Lines are lines

• Parallel lines are parallel



Things You Can’t Do With 2x2

What about translation?

x’ = x + tx, y’ = y+ty

+(2,2)

How do we make it linear?



Homogeneous Coordinates Again

What about translation?

x’ = x + tx, y’ = y+ty

+(2,2)

𝑥 + 𝑡𝑥
𝑦 + 𝑡𝑦
1

≡
𝑥′

𝑦′

1

≡
1 0 𝑡𝑥
0 1 𝑡𝑦
0 0 1

𝑥
𝑦
1

Slide credit: A. Efros



Representing 2D Transformations
How do we represent a 2D transformation?

Let’s pick scaling

𝑥′

𝑦′

1

≡

𝑠𝑥 0 𝑎
0 𝑠𝑦 𝑏

𝑑 𝑒 𝑓

𝑥
𝑦
1

a b d e f

0 0 0 0 1

What’s 



Affine Transformations

Affine: linear transformation plus translation

In general (without homogeneous coordinates) 

𝒙′ = 𝑨𝒙 + 𝒃

Will the last coordinate w’ always be 1? 

𝑥′

𝑦′

𝑤′

≡
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
0 0 1

𝑥
𝑦
1t



Matrix Composition

𝑥′

𝑦′

𝑤′

≡
1 0 𝑡𝑥
0 1 𝑡𝑦
0 0 1

cos 𝜃 − sin 𝜃 0
sin 𝜃 cos 𝜃 0
0 0 1

𝑠𝑥 0 0
0 𝑠𝑦 0

0 0 1

𝑥
𝑦
𝑤

𝑇 𝑡𝑥, 𝑡𝑦 𝑅 𝜃 𝑆 𝑠𝑥, 𝑠𝑦

We can combine transformations via matrix 

multiplication.

Does order matter?

Slide credit: A. Efros



What’s Preserved With Affine

After multiplication by T (irrespective of T)

• Origin is origin: 0 = T0

• Lines are lines

• Parallel lines are parallel

𝑥′

𝑦′

1

≡
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
0 0 1

𝑥
𝑦
1

≡ 𝑻
𝑥
𝑦
1



Homogeneous Equivalence

z

x

y

[x,y,w]

λ[x,y,w]

Two homogeneous coordinates are 

equivalent if they are proportional 

to each other. Not = !

𝑢
𝑣
𝑤

≡
𝑢′

𝑣′

𝑤′
↔

𝑢
𝑣
𝑤

= 𝜆
𝑢′

𝑣′

𝑤′

𝜆 ≠ 0

Triple /

Equivalent

Double /

Equals



Perspective Transformations

Set bottom row to not [0,0,1]

Called a perspective/projective transformation or a 

homography

𝑥′

𝑦′

𝑤′

≡
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

𝑥
𝑦
𝑤

Can compute [x’,y’,w’] via matrix multiplication. 

How do we get a 2D point? 

(x’/w’, y’/w’)



Perspective Transformations

Set bottom row to not [0,0,1]

Called a perspective/projective transformation or a 

homography

𝑥′

𝑦′

𝑤′

≡
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

𝑥
𝑦
𝑤

How many degrees of freedom?



How Many Degrees of Freedom?

Can always scale coordinate by non-zero value

𝑥′

𝑦′

𝑤′

≡

𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

𝑥
𝑦
𝑤

Perspective

𝑥′

𝑦′

𝑤′

≡
1

𝑖

𝑥′

𝑦′

𝑤′

Homography can always be re-scaled by λ≠0

Typically pick it so last entry is 1.

≡
1

𝑖

𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

𝑥
𝑦
𝑤

≡

𝑎/𝑖 𝑏/𝑖 𝑐/𝑖
𝑑/𝑖 𝑒/𝑖 𝑓/𝑖
𝑔/𝑖 ℎ/𝑖 1

𝑥
𝑦
𝑤



What’s Preserved With Perspective

After multiplication by T (irrespective of T)

• Origin is origin: 0 = T0

• Lines are lines

• Parallel lines are parallel

• Ratios between distances

𝑥′

𝑦′

1

≡
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

𝑥
𝑦
1

≡ 𝑻
𝑥
𝑦
1



Transformation Families

In general: transformations are a nested set of groups

Diagram credit: R. Szeliski



What Can Homographies Do?

Homography example 1: any two views 

of a planar surface

Figure Credit: S. Lazebnik



What Can Homographies Do?

Homography example 2: any images from two 

cameras sharing a camera center

Figure Credit: S. Lazebnik



What Can Homographies Do?

Homography sort of example “3”: far away 

scene that can be approximated by a plane

Figure credit: Brown & Lowe



Fun With Homographies

Original image

St. Petersburg

photo by A. Tikhonov

Virtual camera rotations

Slide Credit: A. Efros



Analyzing Patterns

Automatically 

rectified floor

The floor (enlarged)
Slide from A. Criminisi



Analyzing Patterns

Slide from A. Criminisi
A

u
to

m
a
ti

c
 r

e
c
ti

fi
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a
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n

From Martin Kemp The Science of Art

(manual reconstruction)



Fitting Transformations

Setup: have pairs of correspondences

𝑥𝑖 , 𝑦𝑖 𝑥′𝑖 , 𝑦′𝑖M,t

𝑥𝑖′

𝑦𝑖′
= 𝑴

𝑥𝑖
𝑦𝑖

+ 𝒕

Slide Credit: S. Lazebnik



Fitting Transformation

Data: (xi,yi,x’i,y’i) for 

i=1,…,k

Model: 

[x’i,y’i] = M[xi,yi]+t

Objective function:

||[x’i,y’i] – (M[xi,yi]+t)||2

M,t

Affine Transformation: M,t



Fitting Transformations

⋮
𝑥𝑖
′

𝑦𝑖
′

⋮

=

⋯

𝑥𝑖 𝑦𝑖
0 0

0 0
𝑥𝑖 𝑦𝑖

1 0
0 1

⋯

𝑚1

𝑚2
𝑚3

𝑚4

𝑡𝑥
𝑡𝑦

𝑥𝑖′

𝑦𝑖′
=

𝑚1 𝑚2

𝑚3 𝑚4

𝑥𝑖
𝑦𝑖

+
𝑡𝑥
𝑡𝑦

Given correspondences: [x’i,y’i] ↔ [xi,yi]

Set up two equations per point



Fitting Transformations

⋮
𝑥𝑖
′

𝑦𝑖
′

⋮

=

⋯

𝑥𝑖 𝑦𝑖
0 0

0 0
𝑥𝑖 𝑦𝑖

1 0
0 1

⋯

𝑚1

𝑚2
𝑚3

𝑚4

𝑡𝑥
𝑡𝑦

2 equations per point, 6 unknowns

How many points do we need to properly 

constrain the problem?

2k

6



Fitting Transformations

⋮
𝑥𝑖
′

𝑦𝑖
′

⋮

=

⋯

𝑥𝑖 𝑦𝑖
0 0

0 0
𝑥𝑖 𝑦𝑖

1 0
0 1

⋯

𝑚1

𝑚2
𝑚3

𝑚4

𝑡𝑥
𝑡𝑦

Want: b = Ax (x contains all parameters)

Overconstrained, so solve argmin 𝑨𝒙 − 𝒃

How?

2k

6

b A x



Fitting Transformation

Data: (xi,yi,x’i,y’i) for 

i=1,…,k

Model: 

[x’i,y’i,1] ≡ H[xi,yi,1]

Objective function:

It’s complicated

H

Homography: H



9

k points → 2k

𝑨𝒉 = 𝟎

What do we use from last time? 

ℎ∗ = arg min
ℎ =1

𝐴ℎ 2 Eigenvector of ATA with 

smallest eigenvalue

𝒑𝒊 =
𝑥𝑖
𝑦𝑖
1

Fitting Transformation

𝟎𝑇 −𝒑1
𝑇 𝑦1

′𝒑1
𝑇

𝒑1
𝑇 𝟎𝑇 −𝑥1

′𝒑1
𝑇

⋮
𝟎𝑇 −𝒑𝑛

𝑇 𝑦𝑛
′𝒑𝑛

𝑇

𝒑𝑛
𝑇 𝟎𝑇 −𝑥𝑛

′ 𝒑𝑛
𝑇

𝒉𝟏
𝒉𝟐
𝒉𝟑

= 𝟎
Row 1 of H



In Practice

𝟎𝑇 −𝒑1
𝑇 𝑦1

′𝒑1
𝑇

𝒑1
𝑇 𝟎𝑇 −𝑥1

′𝒑1
𝑇

⋮
𝟎𝑇 −𝒑𝑛

𝑇 𝑦𝑛
′𝒑𝑛

𝑇

𝒑𝑛
𝑇 𝟎𝑇 −𝑥𝑛

′ 𝒑𝑛
𝑇

𝒉𝟏
𝒉𝟐
𝒉𝟑

= 𝟎

9

k points → 2k

𝑨𝒉 = 𝟎
Should consist of lots of {x,y,x’,y’,0, and 1}.

If it fails, assume you mistyped. 

Re-type differently and compare all entries.

Debug first with transformations you know.

𝒑𝒊 =
𝑥𝑖
𝑦𝑖
1

Row 1 of H



Small Nagging Detail

||Ah||2 doesn’t measure model fit (it’s an algebraic 

error that’s mainly just convenient to minimize)

Also, there’s a least-squares setup that’s wrong but 

often works.



𝑖=1

𝑘

𝑥𝑖
′, 𝑦𝑖

′ − 𝑇 𝑥𝑖 , 𝑦𝑖
2
+ 𝑥𝑖 , 𝑦𝑖 − 𝑇−1 𝑥𝑖

′, 𝑦𝑖
′ 2

Really want geometric error:



Small Nagging Detail

In RANSAC, we always take just enough points to 

fit. Why might this not make a big difference when 

fitting a model with RANSAC?

Solution: initialize with algebraic (min ||Ah||), optimize 

with geometric using standard non-linear optimizer



Image Warping

x 

y

x 

y

f(x,y) g(x,y)

T(x,y)

Given a coordinate transform (x’,y’) = T(x,y) and a 

source image f(x,y), how do we compute a 

transformed image g(x’,y’) = f(T(x,y))?

Slide Credit: A. Efros



Forward Warping

x 

y

x' 

y'

f(x,y) g(x’,y’)

T(x,y)

Send the value at each pixel (x,y) to 

the new pixel (x’,y’) = T([x,y])

Slide Credit: A. Efros



Forward Warping

x 

y

f(x,y)

x-1 x x+1

y-1

y

y+1

x'-1 x' x'+1

y'-1

y'

y'+1

x' 

y’

g(x’,y’)

If you don’t hit an exact pixel, give the value to each of 

the neighboring pixels (“splatting”). 

T(x,y)



Forward Warping

Suppose T(x,y) scales by a factor of 3. 

Hmmmm. 



Inverse Warping

x 

y

x' 

y'

f(x,y) g(x’,y’)

T-1(x,y)

Find out where each pixel g(x’,y’) should get its value 

from, and steal it.

Note: requires ability to invert T

Slide Credit: A. Efros



Inverse Warping

x'-1 x' x'+1

y'-1

y'

y'+1

x' 

y’

g(x’,y’)
x 

y

f(x,y)

x-1 x x+1

y-1

y

y+1

If you don’t hit an exact pixel, figure out how to take it 

from the neighbors.

T-1(x,y)



Mosaicing

Warped 

Input 1

I1

Warped 

Input 2

I2

Image Credit: A. Efros

Can warp an image. Pixels that don’t have a 

corresponding pixel in the image are set to a 

chosen value (often 0)



Mosaicing

Warped 

Input 1

I1

α

Warped 

Input 2

I2

αI1 +

(1-α)I2 

Image Credit: A. Efros



Mosaicing

Warped 

Input 1

I1

α

Warped 

Input 2

I2

αI1 +

(1-α)I2 

Slide Credit: A. Efros

Can also warp an image containing 1s. Pixels 

that don’t have a corresponding pixel in the 

image are set to a chosen value (often 0)



Putting it Together

How do you make a panorama?

Step 1: Find “features” to match

Step 2: Describe Features

Step 3: Match by Nearest Neighbor

Step 4: Fit H via RANSAC

Step 5: Blend Images



Putting It Together 1

• (Multi-scale) Harris; or

• Laplacian of Gaussian

Find corners/blobs 



Putting It Together 2

Describe Regions Near Features

Build histogram of 

gradient 

orientations (SIFT)

(But in practice use 

opencv)

𝑥𝑞 ∈ 𝑅128



Putting It Together 3

Match Features Based On Region

𝑥1 ∈ 𝑅128 𝑥2 ∈ 𝑅128

𝑥3
∈ 𝑅128

𝑥𝑞 ∈ 𝑅128

𝑥𝑞Sort by distance to: 𝑥𝑞 − 𝑥1 < 𝑥𝑞 − 𝑥2 < 𝑥𝑞 − 𝑥3

Accept match if: 𝑥𝑞 − 𝑥1 / 𝑥𝑞 − 𝑥2

Nearest neighbor is far closer than 2nd nearest neighbor



Putting It Together 4

Fit transformation H via RANSAC

for trial in range(Ntrials):

Pick sample

Fit model

Check if more inliers

Re-fit model with most inliers

arg min
𝒉 =1

𝑨𝒉 2



Putting It Together 5

Warp images together

Resample images with inverse 

warping and blend

(but in practice, just call opencv for 

inverse warping)





Backup



A pencil of rays contains all views

real

camera
synthetic

camera

Can generate any synthetic camera view

as long as it has the same center of projection!

Slide Credit: A. Efros



Bonus Art



Automatically rectified floor

St. Lucy Altarpiece, D. Veneziano

Analyzing Patterns

What is the (complicated)

shape of the floor pattern?

Slide from A. Criminisi



From Martin Kemp, The Science of Art

(manual reconstruction)

Automatic

rectification

Analyzing Patterns

Slide from A. Criminisi



Homography Derivation

• This has gotten cut in favor of showing more of 
the setup.

• The key to the set-up is to try to move towards 
a setup where you can pull [h1,h2,h3] out, or 
where each row is a linear equation in 
[h1,h2,h3]



𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

𝑥𝑖
𝑦𝑖
𝑤𝑖

≡

𝑥𝑖
′

𝑦𝑖
′

𝑤𝑖′

≡
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

𝑥𝑖
𝑦𝑖
𝑤𝑖

Want:

Recall: 𝒂 ≡ 𝒃 𝒂 = 𝜆𝒃 𝒂 × 𝒃 = 𝟎In turn

𝒑𝒊 =
𝑥𝑖
𝑦𝑖
1

𝑯𝒑𝒊 ≡

𝒉𝟏
𝑻

𝒉𝟐
𝑻

𝒉𝟑
𝑻

𝒑𝒊 ≡

𝒉𝟏
𝑻𝒑𝒊

𝒉𝟐
𝑻𝒑𝒊

𝒉𝟑
𝑻𝒑𝒊

𝑥𝑖
′

𝑦𝑖
′

𝑤𝑖
′

×

𝒉𝟏
𝑻𝒑𝒊

𝒉𝟐
𝑻𝒑𝒊

𝒉𝟑
𝑻𝒑𝒊

= 𝟎
In the end

want:

Why Cross products? 

Cross products have 

explicit forms



Fitting Transformation

𝑥𝑖
′

𝑦𝑖
′

𝑤𝑖
′

×

𝒉𝟏
𝑻𝒑𝒊

𝒉𝟐
𝑻𝒑𝒊

𝒉𝟑
𝑻𝒑𝒊

= 𝟎Want:

𝑦𝑖
′𝒉𝟑

𝑻𝒑𝒊 − 𝑤𝑖
′𝒉𝟐

𝑻𝒑𝒊

𝑤𝑖
′𝒉𝟏

𝑻𝒑𝒊 − 𝑥𝑖
′𝒉𝟑

𝑻𝒑𝒊
𝑥𝑖
′𝒉𝟐

𝑻𝒑𝒊 − 𝑦𝑖
′𝒉𝟏

𝑻𝒑𝒊

= 𝟎
Cross-

product

𝒉𝟏
𝑻𝟎 − 𝑤𝑖

′𝒉𝟐
𝑻𝒑𝒊 + 𝑦𝑖

′𝒉𝟑
𝑻𝒑𝒊

𝑤𝑖
′𝒉𝟏

𝑻𝒑𝒊 + 𝒉𝟐
𝑻𝟎 − 𝑥𝑖

′𝒉𝟑
𝑻𝒑𝒊

−𝑦𝑖
′𝒉𝟏

𝑻𝒑𝒊 + 𝑥𝑖
′𝒉𝟐

𝑻𝒑𝒊 + 𝒉𝟑
𝑻𝟎

= 𝟎
Re-arrange 

and put 0s in

Note: calculate 

this explicitly. It 

looks ugly, but do 

it by doing [a,b,c] 

x [a’,b’,c’] then 

re-substituting.

You want to be 

able to right-

multiply by 

[h1,h2,h3]



Fitting Transformation

𝒉𝟏
𝑻𝟎 − 𝑤𝑖

′𝒉𝟐
𝑻𝒑𝒊 + 𝑦𝑖

′𝒉𝟑
𝑻𝒑𝒊

𝑤𝑖
′𝒉𝟏

𝑻𝒑𝒊 + 𝒉𝟐
𝑻𝟎 − 𝑥𝑖

′𝒉𝟑
𝑻𝒑𝒊

−𝑦𝑖
′𝒉𝟏

𝑻𝒑𝒊 + 𝑥𝑖
′𝒉𝟐

𝑻𝒑𝒊 + 𝒉𝟑
𝑻𝟎

= 𝟎Equation

Pull out h
𝟎𝑻 −𝑤′

𝑖𝒑𝒊
𝑻 𝑦′𝑖𝒑𝒊

𝑻

𝑤𝑖
′𝒑𝒊

𝑻 𝟎𝑻 −𝑥𝑖
′𝒑𝒊

𝑻

−𝑦𝑖
′𝒑𝒊

𝑻 𝑥𝑖
′𝒑𝒊

𝑻 𝟎𝑻

𝒉𝟏
𝒉𝟐
𝒉𝟑

= 𝟎

Only two linearly independent equations

Yank out h once you have all the coefficients.

If you’re head-scratching about the two equations, it’s not obvious to me at 

first glance that the three equations aren’t linearly independent either.



Simplification: Two-band Blending

• Brown & Lowe, 2003
• Only use two bands: high freq. and low freq.

• Blend low freq. smoothly

• Blend high freq. with no smoothing: binary alpha

Figure Credit: Brown & Lowe



Low frequency (l > 2 pixels)

High frequency (l < 2 pixels)

2-band “Laplacian Stack” Blending



Linear Blending



2-band Blending
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