Transformations and Fitting EECS 442 – David Fouhey

Winter 2023, University of Michigan

https://web.eecs.umich.edu/~fouhey/teaching/EECS442_W23/

So Far

- 1. How do we find distinctive / easy to locate features? (Harris/Laplacian of Gaussian)
- 2. How do we describe the regions around them? (histogram of gradients)
- 3. How do we match features? (L2 distance)
- 4. How do we handle outliers? (RANSAC)

Today

As promised: warping one image to another

Why Mosaic?

• Compact Camera FOV = 50 x 35°

Slide credit: Brown & Lowe

Why Mosaic?

- Compact Camera FOV = 50 x 35°
- Human FOV = $200 \times 135^{\circ}$

Why Mosaic?

- Compact Camera FOV = 50 x 35°
- Human FOV = $200 \times 135^{\circ}$
- Panoramic Mosaic = 360 x 180°

Why Bother With This Math?

Homework 1 Style

Translation only via alignment

Result

Image Transformations

Image filtering: change range of image g(x, y) = T(f(x, y))

Image warping: change **domain** of image g(x, y) = f(T(x, y))

Parametric (Global) warping Examples of parametric warps

translation

rotation

perspective

aspect

cylindrical

Parametric (Global) Warping

T is a coordinate changing machine

$$\boldsymbol{p}' = T(\boldsymbol{p})$$

Note: T is the same for all points, has relatively few parameters, and does **not** depend on image content

 $\mathbf{p} = (\mathbf{x}, \mathbf{y})$

Parametric (Global) Warping

Today we'll deal with linear warps

$$p'\equiv Tp$$

T: matrix; p, p': 2D points. Start with normal points and =, then do homogeneous cords and ≡

p' = (x', y')

 $\mathbf{p} = (\mathbf{x}, \mathbf{y})$

Scaling

Scaling multiplies each component (x,y) by a scalar. **Uniform** scaling is the same for all components.

Note the corner goes from (1,1) to (2,2)

Scaling

Non-uniform scaling multiplies each component by a different scalar.

Scaling

What does T look like?

 $\begin{array}{l} x' = ax \\ y' = by \end{array}$

Let's convert to a matrix:

$$\begin{bmatrix} x'\\y' \end{bmatrix} = \begin{bmatrix} a & 0\\ 0 & b \end{bmatrix} \begin{bmatrix} x\\y \end{bmatrix}$$

scaling matrix S

What's the inverse of S?

2D Rotation **Rotation Matrix** $\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$

But wait! Aren't sin/cos non-linear?

x' <u>is</u> a linear combination/function of x, y x' <u>is not</u> a linear function of θ

What's the inverse of
$$R_{\theta}$$
? $I = R_{\theta}^T R_{\theta}$

Things You Can Do With 2x2 Identity / No Transformation

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Shear

$$\begin{bmatrix} x'\\y' \end{bmatrix} = \begin{bmatrix} 1 & sh_x\\ sh_y & 1 \end{bmatrix} \begin{bmatrix} x\\y \end{bmatrix}$$

Things You Can Do With 2x2

Before

After

2D Mirror About Y-Axis

$$\begin{bmatrix} x'\\y' \end{bmatrix} = \begin{bmatrix} -1 & 0\\ 0 & 1 \end{bmatrix} \begin{bmatrix} x\\y \end{bmatrix}$$

2D Mirror About X,Y

 $\begin{vmatrix} x' \\ y' \end{vmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$

What's Preserved?

3D lines project to 2D lines so lines are preserved Projections of parallel 3D lines are not necessarily parallel, so not parallelism

Distant objects are smaller so size is not preserved

What's Preserved With a 2x2

$$\begin{bmatrix} x'\\y' \end{bmatrix} = \begin{bmatrix} a & b\\c & d \end{bmatrix} \begin{bmatrix} x\\y \end{bmatrix} = T \begin{bmatrix} x\\y \end{bmatrix}$$

After multiplication by T (irrespective of T)

- Origin is origin: **0 = T0**
 - Lines are lines
- Parallel lines are parallel

Things You Can't Do With 2x2

What about translation? $x' = x + t_x, y' = y+t_y$ How do we make it linear?

Homogeneous Coordinates Again

What about translation?

$$x' = x + t_x, y' = y + t_y$$

Representing 2D Transformations How do we represent a 2D transformation? Let's pick scaling

$$\begin{bmatrix} x'\\y'\\1 \end{bmatrix} \equiv \begin{bmatrix} s_x & 0 & a\\0 & s_y & b\\d & e & f \end{bmatrix} \begin{bmatrix} x\\y\\1 \end{bmatrix}$$

What's a b d e f

0 0 0 1

Affine Transformations

Affine: linear transformation plus translation

t Will the last coordinate w' always be 1? $\begin{bmatrix} x'\\y'\\w' \end{bmatrix} \equiv \begin{bmatrix} a & b & c\\d & e & f\\0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x\\y\\1 \end{bmatrix}$

In general (without homogeneous coordinates)

$$x' = Ax + b$$

Matrix Composition

We can combine transformations via matrix multiplication.

Does order matter?

What's Preserved With Affine

$$\begin{bmatrix} x'\\y'\\1 \end{bmatrix} \equiv \begin{bmatrix} a & b & c\\d & e & f\\0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x\\y\\1 \end{bmatrix} \equiv T \begin{bmatrix} x\\y\\1 \end{bmatrix}$$

After multiplication by T (irrespective of T)

Origin is origin: 0 = T0

- Lines are lines
- Parallel lines are parallel

Perspective Transformations

Set bottom row to not [0,0,1] Called a perspective/projective transformation or a *homography*

$$\begin{bmatrix} x'\\y'\\w' \end{bmatrix} \equiv \begin{bmatrix} a & b & c\\d & e & f\\g & h & i \end{bmatrix} \begin{bmatrix} x\\y\\w \end{bmatrix}$$

Can compute [x',y',w'] via matrix multiplication. How do we get a 2D point? (x'/w', y'/w')

Perspective Transformations

Set bottom row to not [0,0,1] Called a perspective/projective transformation or a *homography*

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} \equiv \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

How many degrees of freedom?

How Many Degrees of Freedom? Can always scale coordinate by non-zero value

Perspective $\begin{bmatrix} x'\\y'\\w' \end{bmatrix} \equiv \begin{bmatrix} a & b & c\\d & e & f\\g & h & i \end{bmatrix} \begin{bmatrix} x\\y\\w \end{bmatrix}$ $\begin{bmatrix} x\\y\\w \end{bmatrix} \equiv \frac{1}{i} \begin{bmatrix} x'\\y'\\w' \end{bmatrix} \equiv \frac{1}{i} \begin{bmatrix} a & b & c\\d & e & f\\g & h & i \end{bmatrix} \begin{bmatrix} x\\y\\w \end{bmatrix} \equiv \begin{bmatrix} a/i & b/i & c/i\\d/i & e/i & f/i\\g/i & h/i & 1 \end{bmatrix} \begin{bmatrix} x\\y\\w \end{bmatrix}$

Homography can always be re-scaled by $\lambda \neq 0$ Typically pick it so last entry is 1.

What's Preserved With Perspective

$$\begin{bmatrix} x'\\y'\\1 \end{bmatrix} \equiv \begin{bmatrix} a & b & c\\d & e & f\\g & h & i \end{bmatrix} \begin{bmatrix} x\\y\\1 \end{bmatrix} \equiv \mathbf{T} \begin{bmatrix} x\\y\\1 \end{bmatrix}$$

After multiplication by T (irrespective of T)

Origin is origin: 0 = T0
Lines are lines
Parallel lines are parallel
Ratios between distances

Transformation Families

In general: transformations are a nested set of groups

Name	Matrix	# D.O.F.	Preserves:	Icon
translation	$igg[egin{array}{c c c c c c c c c c c c c c c c c c c $	2	orientation $+\cdots$	
rigid (Euclidean)	$\left[egin{array}{c c c c c c c c c c c c c c c c c c c $	3	lengths $+\cdots$	\bigcirc
similarity	$\left[\begin{array}{c c} s oldsymbol{R} & t \end{array} ight]_{2 imes 3}$	4	angles $+ \cdots$	\bigcirc
affine	$\left[egin{array}{c} oldsymbol{A} \end{array} ight]_{2 imes 3}$	6	parallelism $+\cdots$	
projective	$\left[egin{array}{c} ilde{m{H}} \end{array} ight]_{3 imes 3}$	8	straight lines	

Diagram credit: R. Szeliski

What Can Homographies Do? Homography example 1: any two views of a *planar* surface

What Can Homographies Do? Homography example 2: any images from two cameras sharing a camera center

Figure Credit: S. Lazebnik

What Can Homographies Do? Homography sort of example "3": far away scene that can be approximated by a plane

Figure credit: Brown & Lowe

Fun With Homographies

Original image

St. Petersburg photo by A. Tikhonov

Virtual camera rotations

Slide Credit: A. Efros

Analyzing Patterns

The floor (enlarged)

Slide from A. Criminisi

Automatically rectified floor

Analyzing Patterns

From Martin Kemp The Science of Art (manual reconstruction)

Slide from A. Criminisi

Fitting Transformations

Setup: have pairs of correspondences

Fitting Transformation

Affine Transformation: M,t

Data:
$$(x_i, y_i, x'_i, y'_i)$$
 for
i=1,...,k

Model: $[x'_{i},y'_{i}] = M[x_{i},y_{i}]+t$

Objective function: $||[x'_i,y'_i] - (\mathbf{M}[x_i,y_i]+\mathbf{t})||^2$

Fitting Transformations

Given correspondences: $[x'_i, y'_i] \leftrightarrow [x_i, y_i]$

$$\begin{bmatrix} x_i'\\ y_i' \end{bmatrix} = \begin{bmatrix} m_1 & m_2\\ m_3 & m_4 \end{bmatrix} \begin{bmatrix} x_i\\ y_i \end{bmatrix} + \begin{bmatrix} t_x\\ t_y \end{bmatrix}$$

Set up two equations per point

2 equations per point, 6 unknowns How many points do we need to properly constrain the problem?

Want: **b** = **Ax** (**x** contains all parameters) Overconstrained, so solve $\arg \min ||Ax - b||$ **How?**

Fitting Transformation

Homography: H

Data: (x_i, y_i, x'_i, y'_i) for i=1,...,k

Model: $[x'_{i}, y'_{i}, 1] \equiv H[x_{i}, y_{i}, 1]$

Objective function: It's complicated

What do we use from last time?

$$h^* = \arg \min_{\|h\|=1} \|Ah\|^2 \rightarrow$$
Eigenvector of A^TA with smallest eigenvalue

Should consist of lots of {x,y,x',y',0, and 1}. If it fails, **assume** you mistyped. Re-type differently and compare all entries. Debug first with transformations you know.

Small Nagging Detail

||Ah||² doesn't measure model fit (it's an algebraic error that's mainly just convenient to minimize)

Also, there's a least-squares setup that's wrong but often works.

Really want geometric error: $\sum_{i=1}^{k} \| [x'_i, y'_i] - T([x_i, y_i]) \|^2 + \| [x_i, y_i] - T^{-1}([x'_i, y'_i]) \|^2$

Small Nagging Detail

Solution: initialize with algebraic (min ||Ah||), optimize with geometric using standard non-linear optimizer

In RANSAC, we always take just enough points to fit. Why might this not make a big difference when fitting a model with RANSAC?

Image Warping

Given a coordinate transform (x',y') = T(x,y) and a source image f(x,y), how do we compute a transformed image g(x',y') = f(T(x,y))?

Forward Warping

Send the value at each pixel (x,y) to the new pixel (x',y') = T([x,y])

If you don't hit an exact pixel, give the value to each of the neighboring pixels ("splatting").

Forward Warping

Suppose T(x,y) scales by a factor of 3. Hmmmm.

Inverse Warping

Find out where each pixel g(x',y') should get its value from, and steal it. Note: requires ability to invert T

Slide Credit: A. Efros

Inverse Warping

If you don't hit an exact pixel, figure out how to take it from the neighbors.

Mosaicing

Warped Input 1 I₁

Warped Input 2 I₂

Can warp an image. Pixels that don't have a corresponding pixel in the image are set to a chosen value (often 0)

Mosaicing

Warped Input 1 I₁

Warped Input 2 I₂

 $\alpha I_1 + (1-\alpha)I_2$

Image Credit: A. Efros

α

Mosaicing

Can also warp an image containing 1s. Pixels that don't have a corresponding pixel in the image are set to a chosen value (often 0)

 $\alpha I_1 +$

 $(1-\alpha)I_{2}$

Ω

Slide Credit: A. Efros

Putting it Together How do you make a panorama?

Step 1: Find "features" to match Step 2: Describe Features Step 3: Match by Nearest Neighbor Step 4: Fit H via RANSAC Step 5: Blend Images

Putting It Together 1 Find corners/blobs

- (Multi-scale) Harris; or
- Laplacian of Gaussian

Putting It Together 2 Describe Regions Near Features

Build histogram of gradient orientations (SIFT) (But in practice use opency)

Putting It Together 3 Match Features Based On Region

 $\begin{aligned} x_q \in R^{128} & x_1 \in R^{128} & x_2 \in R^{128} \\ \text{Sort by distance to: } x_q & \|x_q - x_1\| < \|x_q - x_2\| < \|x_q - x_3\| \\ \text{Accept match if:} & \|x_q - x_1\| / \|x_q - x_2\| \end{aligned}$

Nearest neighbor is far closer than 2nd nearest neighbor

Putting It Together 4 Fit transformation H via RANSAC

for trial in range(Ntrials): Pick sample Fit model Check if more inliers Re-fit model with most inliers

Putting It Together 5 Warp images together

Resample images with inverse warping and blend (but in practice, just call opencv for inverse warping)

Backup

A pencil of rays contains all views

Slide Credit: A. Efros

Bonus Art

Analyzing Patterns

St. Lucy Altarpiece, D. Veneziano

Slide from A. Criminisi

What is the (complicated) shape of the floor pattern?

Automatically rectified floor

Analyzing Patterns

Automatic rectification

From Martin Kemp, *The Science of Art* (manual reconstruction)

Slide from A. Criminisi

Homography Derivation

- This has gotten cut in favor of showing more of the setup.
- The key to the set-up is to try to move towards a setup where you can pull [h1,h2,h3] out, or where each row is a linear equation in [h1,h2,h3]

$$\boldsymbol{p_i} = \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x_i \\ y_i \\ w_i \end{bmatrix} \equiv Hp_i \equiv \begin{bmatrix} h_1^T \\ h_2^T \\ h_3^T \end{bmatrix} p_i \equiv \begin{bmatrix} h_1^T p_i \\ h_2^T p_i \\ h_3^T p_i \end{bmatrix}$$

Recall: $a \equiv b \rightarrow a = \lambda b$ In turn $\rightarrow a \times b = 0$

In the end want:

$$\begin{bmatrix} x_i' \\ y_i' \\ y_i' \end{bmatrix} \times \begin{bmatrix} h_1^T p_i \\ h_2^T p_i \\ h_3^T p_i \end{bmatrix} = 0 C$$

Why Cross products? O Cross products have explicit forms

Want:

Crossproduct

Re-arrange and put 0s in

$$\begin{bmatrix} x_i' \\ y_i' \\ y_i' \\ w_i' \end{bmatrix} \times \begin{bmatrix} h_1^T p_i \\ h_2^T p_i \\ h_3^T p_i \end{bmatrix} = \mathbf{0}$$
$$\begin{bmatrix} y_i' h_3^T p_i - w_i' h_2^T p_i \\ w_i' h_1^T p_i - x_i' h_3^T p_i \\ x_i' h_2^T p_i - y_i' h_1^T p_i \end{bmatrix} = \mathbf{0}$$

Fitting Transformation

Note: calculate this explicitly. It looks ugly, but do it by doing [a,b,c] x [a',b',c'] then re-substituting.

You want to be able to rightmultiply by [h1,h2,h3]

 $\begin{bmatrix} h_1^T \mathbf{0} - w_i' h_2^T p_i + y_i' h_3^T p_i \\ w_i' h_1^T p_i + h_2^T \mathbf{0} - x_i' h_3^T p_i \\ -y_i' h_1^T p_i + x_i' h_2^T p_i + h_3^T \mathbf{0} \end{bmatrix} = \mathbf{0}$

Fitting Transformation $\begin{bmatrix} h_1^T \mathbf{0} - w_i' h_2^T p_i + y_i' h_3^T p_i \\ w_i' h_1^T p_i + h_2^T \mathbf{0} - x_i' h_3^T p_i \\ -y_i' h_1^T p_i + x_i' h_2^T p_i + h_3^T \mathbf{0} \end{bmatrix} = \mathbf{0}$ Equation Pull out h $\begin{bmatrix} \mathbf{0}^T & -w'_i \mathbf{p}_i^T & y'_i \mathbf{p}_i^T \\ w'_i \mathbf{p}_i^T & \mathbf{0}^T & -x'_i \mathbf{p}_i^T \\ -y'_i \mathbf{p}_i^T & x'_i \mathbf{p}_i^T & \mathbf{0}^T \end{bmatrix} \begin{bmatrix} \mathbf{h}_1 \\ \mathbf{h}_2 \\ \mathbf{h}_3 \end{bmatrix} = \mathbf{0}$ Only two linearly independent equations

Yank out **h** once you have all the coefficients.

If you're head-scratching about the two equations, it's not obvious to me at first glance that the three equations aren't linearly independent either.

Simplification: Two-band Blending

- Brown & Lowe, 2003
 - Only use two bands: high freq. and low freq.
 - Blend low freq. smoothly
 - Blend high freq. with no smoothing: binary alpha

Figure Credit: Brown & Lowe

2-band "Laplacian Stack" Blending

Low frequency ($\lambda > 2$ pixels)

High frequency (λ < 2 pixels)

Linear Blending

1

2-band Blending

4