Transformations

and Fitting

EECS 442 - David Fouhey
Winter 2023, University of Michigan
https://web.eecs.umich.edu/~fouhey/teaching/EECS442_W23/

So Far

1. How do we find distinctive / easy to locate features? (Harris/Laplacian of Gaussian)
2. How do we describe the regions around them? (histogram of gradients)
3. How do we match features? (L2 distance)
4. How do we handle outliers? (RANSAC)

Today

As promised: warping one image to another

Why Mosaic?

- Compact Camera FOV $=50 \times 35^{\circ}$

Why Mosaic?

- Compact Camera FOV $=50 \times 35^{\circ}$
- Human FOV $=200 \times 135^{\circ}$

Why Mosaic?

- Compact Camera FOV $=50 \times 35^{\circ}$
- Human FOV
$=200 \times 135^{\circ}$
- Panoramic Mosaic $=360 \times 180^{\circ}$

Why Bother With This Math?

Homework 1 Style

Translation only via alignment

Result

Image Transformations

Image filtering: change range of image

$$
g(x)=T(f(x))
$$

Image warping: change domain of image

$$
g(x)=f(T(x))
$$

Image Transformations

Image filtering: change range of image

$$
g(x, y)=T(f(x, y))
$$

Image warping: change domain of image

$$
g(x, y)=f(T(x, y))
$$

Parametric (Global) warping

 Examples of parametric warps
translation

affine

rotation

perspective

aspect

cylindrical

Parametric (Global) Warping

 T is a coordinate changing machine$$
\boldsymbol{p}^{\prime}=T(\boldsymbol{p})
$$

Note: T is the same for all points, has relatively few parameters, and does not depend on image content

$p^{\prime}=\left(x^{\prime}, y^{\prime}\right)$

Parametric (Global) Warping

Today we'll deal with linear warps

$$
p^{\prime} \equiv \boldsymbol{T} p
$$

T: matrix; p, p': 2D points. Start with normal points and $=$, then do homogeneous cords and \equiv

$p^{\prime}=\left(x^{\prime}, y^{\prime}\right)$

Scaling

Scaling multiplies each component (x, y) by a scalar. Uniform scaling is the same for all components.

Note the corner goes from $(1,1)$ to $(2,2)$

Scaling

Non-uniform scaling multiplies each component by a different scalar.

Scaling

What does T look like?

$$
\begin{aligned}
& x^{\prime}=a x \\
& y^{\prime}=b y
\end{aligned}
$$

Let's convert to a matrix:

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\underbrace{\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right]}_{\text {scaling matrix } S}\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

What's the inverse of \mathbf{S} ?

2D Rotation

Rotation Matrix

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

But wait! Aren't sin/cos non-linear?
x^{\prime} is a linear combination/function of x, y x^{\prime} is not a linear function of θ

What's the inverse of $\mathrm{R}_{\boldsymbol{\theta}}$? $\boldsymbol{I}=\boldsymbol{R}_{\boldsymbol{\theta}}^{T} \boldsymbol{R}_{\boldsymbol{\theta}}$

Things You Can Do With 2x2

Identity / No Transformation

$$
\left[\begin{array}{l}
x_{x}^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Shear

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
1 & s h_{x} \\
s h_{y} & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Things You Can Do With 2x2

2D Mirror About Y-Axis

$$
\begin{gathered}
{\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]} \\
\text { 2D Mirror About X,Y } \\
{\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]}
\end{gathered}
$$

What's Preserved?

3D lines project to 2D lines so lines are preserved
Projections of parallel 3D lines are not necessarily parallel, so not parallelism

Distant objects are smaller so size is not preserved

栄

What's Preserved With a 2×2

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=T\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

After multiplication by T (irrespective of T)

- Origin is origin: $\mathbf{0}=\mathbf{T 0}$
- Lines are lines
- Parallel lines are parallel

Things You Can't Do With 2×2

What about translation?

$$
\begin{gathered}
x^{\prime}=x+t_{x}, y^{\prime}=y+t_{y} \\
\text { How do we make it linear? }
\end{gathered}
$$

Homogeneous Coordinates Again

 What about translation?$$
x^{\prime}=x+t_{x}, y^{\prime}=y+t_{y}
$$

$$
\left[\begin{array}{c}
x+t_{x} \\
y+t_{y} \\
1
\end{array}\right] \equiv\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right] \equiv\left[\begin{array}{ccc}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

Representing 2D Transformations

 How do we represent a 2D transformation?Let's pick scaling

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right] \equiv\left[\begin{array}{ccc}
s_{x} & 0 & a \\
0 & s_{y} & b \\
d & e & f
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

What's $a \operatorname{b} d \quad f$
$\begin{array}{lllll}0 & 0 & 0 & 0 & 1\end{array}$

Affine Transformations

Affine: linear transformation plus translation

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right] \equiv\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

Will the last coordinate w' always be 1 ?
In general (without homogeneous coordinates)

$$
x^{\prime}=A x+b
$$

Matrix Composition

We can combine transformations via matrix multiplication.

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right] \equiv \underbrace{\left[\begin{array}{ccc}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]}_{T\left(t_{x}, t_{y}\right)} \underbrace{\left[\begin{array}{ccc}
\cos (\theta) & -\sin (\theta) & 0 \\
\sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right]}_{R(\theta)} \underbrace{\left[\begin{array}{ccc}
s_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & 1
\end{array}\right]}_{S\left(s_{x}, s_{y}\right)}\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right]
$$

Does order matter?

What's Preserved With Affine

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right] \equiv\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \equiv \boldsymbol{T}\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right]
$$

After multiplication by T (irrespective of T)

- Origin is origin: $0=T 0$
- Lines are lines
- Parallel lines are parallel

Homogeneous Equivalence

$$
\lambda[x, y, w]
$$

Triple /
Equivalent
Double /
Equals

$$
\lambda \neq 0
$$

Two homogeneous coordinates are equivalent if they are proportional to each other. Not = !

Perspective Transformations

Set bottom row to not $[0,0,1]$
Called a perspective/projective transformation or a homography

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right] \equiv\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right]
$$

Can compute $\left[x^{\prime}, y^{\prime}, w^{\prime}\right]$ via matrix multiplication. How do we get a 2D point?
(x'/w', y'/w')

Perspective Transformations

Set bottom row to not $[0,0,1]$
Called a perspective/projective transformation or a homography

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right] \equiv\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right]
$$

How many degrees of freedom?

How Many Degrees of Freedom?

Can always scale coordinate by non-zero value
Perspective $\left[\begin{array}{l}x^{\prime} \\ y^{\prime} \\ w^{\prime}\end{array}\right] \equiv\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]\left[\begin{array}{l}x \\ y \\ w\end{array}\right]$

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right] \equiv \frac{1}{i}\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right] \equiv \frac{1}{i}\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right] \equiv\left[\begin{array}{ccc}
a / i & b / i & c / i \\
d / i & e / i & f / i \\
g / i & h / i & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
w
\end{array}\right]
$$

Homography can always be re-scaled by $\lambda \neq 0$ Typically pick it so last entry is 1.

What's Preserved With Perspective

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right] \equiv\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right] \equiv \boldsymbol{T}\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

After multiplication by T (irrespective of T)

- Origin is origin: $0=T 0$
- Lines are lines
- Parallel lines are parallel
- Ratios between distances

Transformation Families

In general: transformations are a nested set of groups

Name	Matrix	\# D.O.F.	Preserves:	Icon
translation	$[\boldsymbol{I} \mid \boldsymbol{t}]_{2 \times 3}$	2	orientation $+\cdots$	\square
rigid (Euclidean)	$[\boldsymbol{R} \mid \boldsymbol{t}]_{2 \times 3}$	3	lengths $+\cdots$	\square
similarity	$[s \boldsymbol{R} \mid \boldsymbol{t}]_{2 \times 3}$	4	angles $+\cdots$	\square
affine	$[\boldsymbol{A}]_{2 \times 3}$	6	parallelism $+\cdots$	\square
projective	$[\tilde{\boldsymbol{H}}]_{3 \times 3}$	8	straight lines	\square

What Can Homographies Do?

 Homography example 1: any two views of a planar surface

Figure Credit: S. Lazebnik

What Can Homographies Do?

Homography example 2: any images from two cameras sharing a camera center

Figure Credit: S. Lazebnik

What Can Homographies Do?

Homography sort of example " 3 ": far away scene that can be approximated by a plane

Figure credit: Brown \& Lowe

Fun With Homographies

Original image
St. Petersburg photo by A. Tikhonov

Virtual camera rotations

Slide Credit: A. Efros

Analyzing Patterns

The floor (enlarged)
Automatically rectified floor

Analyzing Patterns

From Martin Kemp The Science of Art (manual reconstruction)

Fitting Transformations

Setup: have pairs of correspondences

Fitting Transformation

Affine Transformation: M,t

Data: $\left(x_{i}, y_{i}, x_{i}^{\prime}, y_{i}^{\prime}\right)$ for $i=1, \ldots, k$

Model:
$\left[x_{i}^{\prime}, y_{i}^{\prime}\right]=M\left[x_{i}, y_{i}\right]+\mathbf{t}$
Objective function:
$\left\|\left[x_{i}^{\prime}, y_{i}^{\prime}\right]-\left(M\left[x_{i}, y_{i}\right]+t\right)\right\|^{2}$

Fitting Transformations

Given correspondences: $\left[\mathrm{x}^{\prime}, \mathrm{y}^{\prime}{ }_{\mathrm{i}}\right] \leftrightarrow\left[\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right]$

$$
\left[\begin{array}{l}
x_{i}^{\prime} \\
y_{i}^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
m_{1} & m_{2} \\
m_{3} & m_{4}
\end{array}\right]\left[\begin{array}{l}
x_{i} \\
y_{i}
\end{array}\right]+\left[\begin{array}{l}
t_{x} \\
t_{y}
\end{array}\right]
$$

Set up two equations per point

$$
\left[\begin{array}{c}
\vdots \\
x_{i}^{\prime} \\
y_{i}^{\prime} \\
\vdots
\end{array}\right]=\left[\begin{array}{cccccc}
& \cdots \\
x_{i} & y_{i} & 0 & 0 & 1 & 0 \\
0 & 0 & x_{i} & y_{i} & 0 & 1 \\
& \cdots &
\end{array}\right]\left[\begin{array}{c}
m_{1} \\
m_{2} \\
m_{3} \\
m_{4} \\
t_{x} \\
t_{y}
\end{array}\right]
$$

Fitting Transformations

$$
\stackrel{\rightharpoonup}{6} \quad\left[\begin{array}{c}
\vdots \\
x_{i}^{\prime} \\
y_{i}^{\prime} \\
\vdots
\end{array}\right]=\left[\begin{array}{cccccc}
& \cdots & \\
x_{i} & y_{i} & 0 & 0 & 1 & 0 \\
0 & 0 & x_{i} & y_{i} & 0 & 1 \\
& \cdots &
\end{array}\right]\left[\begin{array}{c}
m_{1} \\
m_{2} \\
m_{3} \\
m_{4} \\
t_{x} \\
t_{y}
\end{array}\right]
$$

2 equations per point, 6 unknowns How many points do we need to properly constrain the problem?

Fitting Transformations

Want: b=Ax (x contains all parameters)
Overconstrained, so solve arg min $||\boldsymbol{A x}-\boldsymbol{b}||$ How?

Fitting Transformation

Homography: H

Data: $\left(x_{i}, y_{i}, x_{i}^{\prime}, y_{i}^{\prime}\right)$ for $\mathrm{i}=1, \ldots, \mathrm{k}$

Model:

$\left[\mathrm{x}_{\mathrm{i}}^{\prime}, \mathrm{y}_{\mathrm{i}}{ }^{\prime}, 1\right] \equiv \mathrm{H}\left[\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}, 1\right]$
Objective function: It's complicated

What do we use from last time?

$$
h^{*}=\arg \min _{\|h\|=1}\|A h\|^{2} \rightarrow \begin{aligned}
& \text { Eigenvector of } \mathrm{A}^{\top} \mathrm{A} \text { with } \\
& \text { smallest eigenvalue }
\end{aligned}
$$

In Practice

Should consist of lots of $\left\{x, y, x^{\prime}, y^{\prime}, 0\right.$, and 1$\}$. If it fails, assume you mistyped.
Re-type differently and compare all entries.
Debug first with transformations you know.

Small Nagging Detail

$\|A h\|^{2}$ doesn't measure model fit (it's an algebraic error that's mainly just convenient to minimize)

Also, there's a least-squares setup that's wrong but often works.

Really want geometric error:

$$
\sum_{i=1}^{k}\left\|\left[x_{i}^{\prime}, y_{i}^{\prime}\right]-T\left(\left[x_{i}, y_{i}\right]\right)\right\|^{2}+\left\|\left[x_{i}, y_{i}\right]-T^{-1}\left(\left[x_{i}^{\prime}, y_{i}^{\prime}\right]\right)\right\|^{2}
$$

Small Nagging Detail

Solution: initialize with algebraic (min \|Ah\|), optimize with geometric using standard non-linear optimizer

In RANSAC, we always take just enough points to fit. Why might this not make a big difference when fitting a model with RANSAC?

Image Warping

Given a coordinate transform $\left(x^{\prime}, y^{\prime}\right)=T(x, y)$ and a source image $f(x, y)$, how do we compute a transformed image $g\left(x^{\prime}, y^{\prime}\right)=f(T(x, y))$?

Forward Warping

Send the value at each pixel (x, y) to the new pixel $\left(x^{\prime}, y^{\prime}\right)=T([x, y])$

Forward Warping

If you don't hit an exact pixel, give the value to each of the neighboring pixels ("splatting").

Forward Warping

Suppose $T(x, y)$ scales by a factor of 3 . Hmmmm.

Inverse Warping

Find out where each pixel $g\left(x^{\prime}, y^{\prime}\right)$ should get its value from, and steal it.
Note: requires ability to invert T

Inverse Warping

If you don't hit an exact pixel, figure out how to take it from the neighbors.

Mosaicing

Warped Input 1 I_{1}

Warped Input 2

Can warp an image. Pixels that don't have a corresponding pixel in the image are set to a chosen value (often 0)

Mosaicing

Warped Input 1 I_{1}

Warped Input 2

$$
\begin{gathered}
\alpha l_{1}+ \\
\left.(1-\alpha)\right|_{2}
\end{gathered}
$$

Mosaicing

Can also warp an image containing 1s. Pixels that don't have a corresponding pixel in the image are set to a chosen value (often 0)

α

Putting it Together

How do you make a panorama?

Step 1: Find "features" to match Step 2: Describe Features
Step 3: Match by Nearest Neighbor Step 4: Fit H via RANSAC Step 5: Blend Images

Putting It Together 1

Find corners/blobs

- (Multi-scale) Harris; or
- Laplacian of Gaussian

Putting It Together 2

Describe Regions Near Features

\[

\]

Build histogram of gradient orientations (SIFT) (But in practice use opencv)

Putting It Together 3

Match Features Based On Region

Sort by distance to: $x_{q} \quad\left\|x_{q}-x_{1}\right\|<\left\|x_{q}-x_{2}\right\|<\left\|x_{q}-x_{3}\right\|$ Accept match if:

$$
\left\|x_{q}-x_{1}\right\| /\left\|x_{q}-x_{2}\right\|
$$

Nearest neighbor is far closer than $2^{\text {nd }}$ nearest neighbor

Putting It Together 4

Fit transformation H via RANSAC

for trial in range(Ntrials):
Pick sample

$$
\arg \min _{\|\boldsymbol{h}\|=1}\|\boldsymbol{A} \boldsymbol{h}\|^{2}
$$

Fit model
Check if more inliers
Re-fit model with most inliers

Putting It Together 5

Warp images together

Resample images with inverse warping and blend
(but in practice, just call opencv for inverse warping)

Backup

A pencil of rays contains all views

Can generate any synthetic camera view as long as it has the same center of projection!

Bonus Art

Analyzing Patterns

What is the (complicated) shape of the floor pattern?

Automatically rectified floor

St. Lucy Altarpiece, D. Veneziano

Slide from A. Criminisi

Analyzing Patterns

Automatic rectification

From Martin Kemp, The Science of Art (manual reconstruction)

Homography Derivation

- This has gotten cut in favor of showing more of the setup.
- The key to the set-up is to try to move towards a setup where you can pull [h1,h2,h3] out, or where each row is a linear equation in [h1,h2,h3]

Want:

$$
\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]\left[\begin{array}{l}
x_{i} \\
y_{i} \\
w_{i}
\end{array}\right] \equiv H p_{i} \equiv\left[\begin{array}{l}
h_{1}^{T} \\
h_{2}^{T} \\
h_{3}^{T}
\end{array}\right] p_{i} \equiv\left[\begin{array}{l}
h_{1}^{T} p_{i} \\
h_{2}^{T} p_{i} \\
h_{3}^{T} p_{i}
\end{array}\right]
$$

Recall: $a \equiv b \rightarrow a=\lambda b \quad$ In turn $\longrightarrow a \times b=0$

In the end want:
\(\left[$$
\begin{array}{c}x_{i}^{\prime} \\
y_{i}^{\prime} \\
w_{i}^{\prime}\end{array}
$$\right] \times\left[\begin{array}{c}\boldsymbol{h}_{1}^{T} p_{i}

\boldsymbol{h}_{2}^{T} p_{i}

\boldsymbol{h}_{3}^{T} p_{i}\end{array}\right]=\)| Why Cross products? |
| :---: |
| $\mathbf{0}$ Cross products have |
| explicit forms |

Fitting Transformation

Want:

Crossproduct

Re-arrange and put 0 s in

$$
\begin{aligned}
& {\left[\begin{array}{l}
x_{i}^{\prime} \\
y_{i}^{\prime} \\
w_{i}^{\prime}
\end{array}\right] \times\left[\begin{array}{l}
\boldsymbol{h}_{\mathbf{1}}^{\boldsymbol{T}} \boldsymbol{p}_{\boldsymbol{i}} \\
\boldsymbol{h}_{\mathbf{2}}^{\boldsymbol{T}} \boldsymbol{p}_{\boldsymbol{i}} \\
\boldsymbol{h}_{\mathbf{3}}^{\boldsymbol{T}} \boldsymbol{p}_{\boldsymbol{i}}
\end{array}\right]=\mathbf{0} \begin{array}{l}
\text { Note: calculate } \\
\text { this explicitly. It } \\
\text { looks ugly, but do } \\
\text { it by doing [a,b,c] } \\
\text { x [a', b', c'] then } \\
\text { re-substituting. }
\end{array}} \\
& {\left[\begin{array}{ll}
y_{i}^{\prime} \boldsymbol{h}_{\mathbf{3}}^{\boldsymbol{T}} \boldsymbol{p}_{\boldsymbol{i}}-w_{i}^{\prime} \boldsymbol{h}_{\mathbf{2}}^{\boldsymbol{T}} \boldsymbol{p}_{\boldsymbol{i}} \\
w_{i}^{\prime} \boldsymbol{h}_{\mathbf{1}}^{\boldsymbol{T}} \boldsymbol{p}_{\boldsymbol{i}}-x_{i}^{\prime} \boldsymbol{h}_{\mathbf{3}}^{\boldsymbol{T}} \boldsymbol{p}_{\boldsymbol{i}} \\
x_{i}^{\prime} \boldsymbol{h}_{\mathbf{2}}^{\boldsymbol{T}} \boldsymbol{p}_{\boldsymbol{i}}-y_{i}^{\prime} \boldsymbol{h}_{\mathbf{1}}^{\boldsymbol{T}} \boldsymbol{p}_{\boldsymbol{i}}
\end{array}\right]=\mathbf{0} \begin{array}{l}
\text { You want to be } \\
\text { able to right- } \\
\text { multiply by } \\
\text { [h1,h2,h3] }
\end{array}} \\
& {\left[\begin{array}{l}
\boldsymbol{h}_{\mathbf{1}}^{\boldsymbol{T}} \mathbf{0}-w_{i}^{\prime} \boldsymbol{h}_{\mathbf{2}}^{\boldsymbol{T}} \boldsymbol{p}_{\boldsymbol{i}}+y_{i}^{\prime} \boldsymbol{h}_{\mathbf{3}}^{\boldsymbol{T}} \boldsymbol{p}_{\boldsymbol{i}} \\
w_{i}^{\prime} \boldsymbol{h}_{\mathbf{1}}^{\boldsymbol{T}} \boldsymbol{p}_{\boldsymbol{i}}+\boldsymbol{h}_{\mathbf{2}}^{\boldsymbol{T}} \mathbf{0}-x_{i}^{\prime} \boldsymbol{h}_{\mathbf{3}}^{\boldsymbol{T}} \boldsymbol{p}_{\boldsymbol{i}} \\
-y_{i}^{\prime} \boldsymbol{h}_{\mathbf{1}}^{\boldsymbol{T}} \boldsymbol{p}_{\boldsymbol{i}}+x_{i}^{\prime} \boldsymbol{h}_{\mathbf{2}}^{\boldsymbol{T}} \boldsymbol{p}_{\boldsymbol{i}}+\boldsymbol{h}_{\mathbf{3}}^{\mathbf{T}} \mathbf{0}
\end{array}\right]=\mathbf{0}}
\end{aligned}
$$

Fitting Transformation

Equation

$$
\left[\begin{array}{c}
\boldsymbol{h}_{1}^{T} \mathbf{0}-w_{i}^{\prime} \boldsymbol{h}_{2}^{T} \boldsymbol{p}_{i}+y_{i}^{\prime} \boldsymbol{h}_{3}^{T} \boldsymbol{p}_{i} \\
w_{i}^{\prime} \boldsymbol{h}_{1}^{T} \boldsymbol{p}_{i}+\boldsymbol{h}_{2}^{T} \mathbf{0}-x_{i}^{\prime} \boldsymbol{h}_{3}^{T} \boldsymbol{p}_{i} \\
-y_{i}^{\prime} \boldsymbol{h}_{1}^{T} \boldsymbol{p}_{i}+x_{i}^{\prime} \boldsymbol{h}_{2}^{T} \boldsymbol{p}_{i}+\boldsymbol{h}_{3}^{T} \mathbf{0}
\end{array}\right]=\mathbf{0}
$$

Pull outh

$$
\left[\begin{array}{ccc}
\mathbf{0}^{T} & -w^{\prime}{ }_{i} \boldsymbol{p}_{\boldsymbol{i}}^{T} & y^{\prime}{ }_{i} \boldsymbol{p}_{\boldsymbol{i}} \\
w_{i}^{\prime} \boldsymbol{p}_{\boldsymbol{i}}^{T} & \mathbf{0}^{\boldsymbol{T}} & -x_{i}^{\prime} \boldsymbol{p}_{\boldsymbol{i}}^{T} \\
-y_{i}^{\prime} \boldsymbol{p}_{i}^{T} & x_{i}^{\prime} \boldsymbol{p}_{i}^{T} & \mathbf{0}^{\boldsymbol{T}}
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{h}_{\mathbf{1}} \\
\boldsymbol{h}_{2} \\
\boldsymbol{h}_{3}
\end{array}\right]=\mathbf{0}
$$

Only two linearly independent equations
Yank out h once you have all the coefficients.
If you're head-scratching about the two equations, it's not obvious to me at first glance that the three equations aren't linearly independent either.

Simplification: Two-band Blending

- Brown \& Lowe, 2003
- Only use two bands: high freq. and low freq.
- Blend low freq. smoothly
- Blend high freq. with no smoothing: binary alpha

2-band "Laplacian Stack" Blending

Low frequency ($\lambda>2$ pixels)

High frequency ($\lambda<2$ pixels)

Linear Blending

2-band Blending

