
Transformations
and Fitting
EECS 442 – David Fouhey

Winter 2023, University of Michigan
https://web.eecs.umich.edu/~fouhey/teaching/EECS442_W23/

So Far

1. How do we find distinctive / easy to locate

features? (Harris/Laplacian of Gaussian)

2. How do we describe the regions around

them? (histogram of gradients)

3. How do we match features? (L2 distance)

4. How do we handle outliers? (RANSAC)

Today

As promised: warping one image to another

Why Mosaic?

• Compact Camera FOV = 50 x 35°

Slide credit: Brown & Lowe

Why Mosaic?

• Compact Camera FOV = 50 x 35°

• Human FOV = 200 x 135°

Slide credit: Brown & Lowe

Why Mosaic?

• Compact Camera FOV = 50 x 35°

• Human FOV = 200 x 135°

• Panoramic Mosaic = 360 x 180°

Slide credit: Brown & Lowe

Why Bother With This Math?

Slide credit: A. Efros

Homework 1 Style

Translation only via alignment

Slide credit: A. Efros

Result

Slide credit: A. Efros

Image Transformations

f

x

T
g

x

f

x

T
g

x

Image filtering: change range of image

𝑔 𝑥 = 𝑇(𝑓 𝑥)

𝑔 𝑥 = 𝑓 𝑇(𝑥)
Image warping: change domain of image

Slide credit: A. Efros

Image Transformations

T

T

Image filtering: change range of image

𝑔 𝑥, 𝑦 = 𝑇(𝑓 𝑥, 𝑦)

𝑔 𝑥, 𝑦 = 𝑓 𝑇(𝑥, 𝑦)
Image warping: change domain of image

f g

f g

Slide credit: A. Efros

Parametric (Global) warping

translation rotation aspect

affine perspective cylindrical

Examples of parametric warps

Slide credit: A. Efros

Parametric (Global) Warping

T

p’ = (x’,y’)

T is a coordinate changing machine

p = (x,y)

Note: T is the same for all points, has relatively few

parameters, and does not depend on image content

𝒑′ = 𝑇(𝒑)

Slide credit: A. Efros

Parametric (Global) Warping

T

p’ = (x’,y’)
p = (x,y)

Today we’ll deal with linear warps

𝒑′ ≡ 𝑻𝒑
T: matrix; p, p’: 2D points. Start with normal points

and =, then do homogeneous cords and ≡

Slide credit: A. Efros

Scaling

 2

Scaling multiplies each component (x,y) by a scalar.

Uniform scaling is the same for all components.

Note the corner goes from (1,1) to (2,2)

Slide credit: A. Efros

Scaling

Non-uniform scaling multiplies each component by

a different scalar.

X 2,

Y 0.5

Slide credit: A. Efros

Scaling

What does T look like?

𝑥′ = 𝑎𝑥

𝑦′ = 𝑏𝑦
Let’s convert to a matrix:

𝑥′
𝑦′

=
𝑎 0
0 𝑏

𝑥
𝑦

scaling matrix S

What’s the inverse of S?

Slide credit: A. Efros

2D Rotation

Rotation Matrix

But wait! Aren’t sin/cos non-linear?

x’ is a linear combination/function of x, y

x’ is not a linear function of θ

What’s the inverse of Rθ? 𝑰 = 𝑹𝜽
𝑇𝑹𝜽

𝑥′
𝑦′

=
cos(𝜃) − sin 𝜃

sin 𝜃 cos 𝜃

𝑥
𝑦

Slide credit: A. Efros

Things You Can Do With 2x2

Identity / No Transformation

Shear

𝑥′
𝑦′

=
1 𝑠ℎ𝑥
𝑠ℎ𝑦 1

𝑥
𝑦

𝑥′
𝑦′

=
1 0
0 1

𝑥
𝑦

Slide credit: A. Efros

Things You Can Do With 2x2

2D Mirror About Y-Axis

𝑥′
𝑦′

=
−1 0
0 1

𝑥
𝑦

Before

After

2D Mirror About X,Y

𝑥′
𝑦′

=
−1 0
0 −1

𝑥
𝑦

Before

After

Slide credit: A. Efros

What’s Preserved?

Projections of parallel 3D

lines are not necessarily

parallel, so not parallelism

3D lines project to 2D lines

so lines are preserved

Distant objects are smaller

so size is not preserved

What’s Preserved With a 2x2

𝑥′
𝑦′

=
𝑎 𝑏
𝑐 𝑑

𝑥
𝑦 = 𝑇

𝑥
𝑦

After multiplication by T (irrespective of T)

• Origin is origin: 0 = T0

• Lines are lines

• Parallel lines are parallel

Things You Can’t Do With 2x2

What about translation?

x’ = x + tx, y’ = y+ty

+(2,2)

How do we make it linear?

Homogeneous Coordinates Again

What about translation?

x’ = x + tx, y’ = y+ty

+(2,2)

𝑥 + 𝑡𝑥
𝑦 + 𝑡𝑦
1

≡
𝑥′

𝑦′

1

≡
1 0 𝑡𝑥
0 1 𝑡𝑦
0 0 1

𝑥
𝑦
1

Slide credit: A. Efros

Representing 2D Transformations
How do we represent a 2D transformation?

Let’s pick scaling

𝑥′

𝑦′

1

≡

𝑠𝑥 0 𝑎
0 𝑠𝑦 𝑏

𝑑 𝑒 𝑓

𝑥
𝑦
1

a b d e f

0 0 0 0 1

What’s

Affine Transformations

Affine: linear transformation plus translation

In general (without homogeneous coordinates)

𝒙′ = 𝑨𝒙 + 𝒃

Will the last coordinate w’ always be 1?

𝑥′

𝑦′

𝑤′

≡
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
0 0 1

𝑥
𝑦
1t

Matrix Composition

𝑥′

𝑦′

𝑤′

≡
1 0 𝑡𝑥
0 1 𝑡𝑦
0 0 1

cos 𝜃 − sin 𝜃 0
sin 𝜃 cos 𝜃 0
0 0 1

𝑠𝑥 0 0
0 𝑠𝑦 0

0 0 1

𝑥
𝑦
𝑤

𝑇 𝑡𝑥, 𝑡𝑦 𝑅 𝜃 𝑆 𝑠𝑥, 𝑠𝑦

We can combine transformations via matrix

multiplication.

Does order matter?

Slide credit: A. Efros

What’s Preserved With Affine

After multiplication by T (irrespective of T)

• Origin is origin: 0 = T0

• Lines are lines

• Parallel lines are parallel

𝑥′

𝑦′

1

≡
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
0 0 1

𝑥
𝑦
1

≡ 𝑻
𝑥
𝑦
1

Homogeneous Equivalence

z

x

y

[x,y,w]

λ[x,y,w]

Two homogeneous coordinates are

equivalent if they are proportional

to each other. Not = !

𝑢
𝑣
𝑤

≡
𝑢′

𝑣′

𝑤′
↔

𝑢
𝑣
𝑤

= 𝜆
𝑢′

𝑣′

𝑤′

𝜆 ≠ 0

Triple /

Equivalent

Double /

Equals

Perspective Transformations

Set bottom row to not [0,0,1]

Called a perspective/projective transformation or a

homography

𝑥′

𝑦′

𝑤′

≡
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

𝑥
𝑦
𝑤

Can compute [x’,y’,w’] via matrix multiplication.

How do we get a 2D point?

(x’/w’, y’/w’)

Perspective Transformations

Set bottom row to not [0,0,1]

Called a perspective/projective transformation or a

homography

𝑥′

𝑦′

𝑤′

≡
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

𝑥
𝑦
𝑤

How many degrees of freedom?

How Many Degrees of Freedom?

Can always scale coordinate by non-zero value

𝑥′

𝑦′

𝑤′

≡

𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

𝑥
𝑦
𝑤

Perspective

𝑥′

𝑦′

𝑤′

≡
1

𝑖

𝑥′

𝑦′

𝑤′

Homography can always be re-scaled by λ≠0

Typically pick it so last entry is 1.

≡
1

𝑖

𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

𝑥
𝑦
𝑤

≡

𝑎/𝑖 𝑏/𝑖 𝑐/𝑖
𝑑/𝑖 𝑒/𝑖 𝑓/𝑖
𝑔/𝑖 ℎ/𝑖 1

𝑥
𝑦
𝑤

What’s Preserved With Perspective

After multiplication by T (irrespective of T)

• Origin is origin: 0 = T0

• Lines are lines

• Parallel lines are parallel

• Ratios between distances

𝑥′

𝑦′

1

≡
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

𝑥
𝑦
1

≡ 𝑻
𝑥
𝑦
1

Transformation Families

In general: transformations are a nested set of groups

Diagram credit: R. Szeliski

What Can Homographies Do?

Homography example 1: any two views

of a planar surface

Figure Credit: S. Lazebnik

What Can Homographies Do?

Homography example 2: any images from two

cameras sharing a camera center

Figure Credit: S. Lazebnik

What Can Homographies Do?

Homography sort of example “3”: far away

scene that can be approximated by a plane

Figure credit: Brown & Lowe

Fun With Homographies

Original image

St. Petersburg

photo by A. Tikhonov

Virtual camera rotations

Slide Credit: A. Efros

Analyzing Patterns

Automatically

rectified floor

The floor (enlarged)
Slide from A. Criminisi

Analyzing Patterns

Slide from A. Criminisi
A

u
to

m
a
ti

c
 r

e
c
ti

fi
c
a

ti
o

n

From Martin Kemp The Science of Art

(manual reconstruction)

Fitting Transformations

Setup: have pairs of correspondences

𝑥𝑖 , 𝑦𝑖 𝑥′𝑖 , 𝑦′𝑖M,t

𝑥𝑖′

𝑦𝑖′
= 𝑴

𝑥𝑖
𝑦𝑖

+ 𝒕

Slide Credit: S. Lazebnik

Fitting Transformation

Data: (xi,yi,x’i,y’i) for

i=1,…,k

Model:

[x’i,y’i] = M[xi,yi]+t

Objective function:

||[x’i,y’i] – (M[xi,yi]+t)||2

M,t

Affine Transformation: M,t

Fitting Transformations

⋮
𝑥𝑖
′

𝑦𝑖
′

⋮

=

⋯

𝑥𝑖 𝑦𝑖
0 0

0 0
𝑥𝑖 𝑦𝑖

1 0
0 1

⋯

𝑚1

𝑚2
𝑚3

𝑚4

𝑡𝑥
𝑡𝑦

𝑥𝑖′

𝑦𝑖′
=

𝑚1 𝑚2

𝑚3 𝑚4

𝑥𝑖
𝑦𝑖

+
𝑡𝑥
𝑡𝑦

Given correspondences: [x’i,y’i] ↔ [xi,yi]

Set up two equations per point

Fitting Transformations

⋮
𝑥𝑖
′

𝑦𝑖
′

⋮

=

⋯

𝑥𝑖 𝑦𝑖
0 0

0 0
𝑥𝑖 𝑦𝑖

1 0
0 1

⋯

𝑚1

𝑚2
𝑚3

𝑚4

𝑡𝑥
𝑡𝑦

2 equations per point, 6 unknowns

How many points do we need to properly

constrain the problem?

2k

6

Fitting Transformations

⋮
𝑥𝑖
′

𝑦𝑖
′

⋮

=

⋯

𝑥𝑖 𝑦𝑖
0 0

0 0
𝑥𝑖 𝑦𝑖

1 0
0 1

⋯

𝑚1

𝑚2
𝑚3

𝑚4

𝑡𝑥
𝑡𝑦

Want: b = Ax (x contains all parameters)

Overconstrained, so solve argmin 𝑨𝒙 − 𝒃

How?

2k

6

b A x

Fitting Transformation

Data: (xi,yi,x’i,y’i) for

i=1,…,k

Model:

[x’i,y’i,1] ≡ H[xi,yi,1]

Objective function:

It’s complicated

H

Homography: H

9

k points → 2k

𝑨𝒉 = 𝟎

What do we use from last time?

ℎ∗ = arg min
ℎ =1

𝐴ℎ 2 Eigenvector of ATA with

smallest eigenvalue

𝒑𝒊 =
𝑥𝑖
𝑦𝑖
1

Fitting Transformation

𝟎𝑇 −𝒑1
𝑇 𝑦1

′𝒑1
𝑇

𝒑1
𝑇 𝟎𝑇 −𝑥1

′𝒑1
𝑇

⋮
𝟎𝑇 −𝒑𝑛

𝑇 𝑦𝑛
′𝒑𝑛

𝑇

𝒑𝑛
𝑇 𝟎𝑇 −𝑥𝑛

′ 𝒑𝑛
𝑇

𝒉𝟏
𝒉𝟐
𝒉𝟑

= 𝟎
Row 1 of H

In Practice

𝟎𝑇 −𝒑1
𝑇 𝑦1

′𝒑1
𝑇

𝒑1
𝑇 𝟎𝑇 −𝑥1

′𝒑1
𝑇

⋮
𝟎𝑇 −𝒑𝑛

𝑇 𝑦𝑛
′𝒑𝑛

𝑇

𝒑𝑛
𝑇 𝟎𝑇 −𝑥𝑛

′ 𝒑𝑛
𝑇

𝒉𝟏
𝒉𝟐
𝒉𝟑

= 𝟎

9

k points → 2k

𝑨𝒉 = 𝟎
Should consist of lots of {x,y,x’,y’,0, and 1}.

If it fails, assume you mistyped.

Re-type differently and compare all entries.

Debug first with transformations you know.

𝒑𝒊 =
𝑥𝑖
𝑦𝑖
1

Row 1 of H

Small Nagging Detail

||Ah||2 doesn’t measure model fit (it’s an algebraic

error that’s mainly just convenient to minimize)

Also, there’s a least-squares setup that’s wrong but

often works.

𝑖=1

𝑘

𝑥𝑖
′, 𝑦𝑖

′ − 𝑇 𝑥𝑖 , 𝑦𝑖
2
+ 𝑥𝑖 , 𝑦𝑖 − 𝑇−1 𝑥𝑖

′, 𝑦𝑖
′ 2

Really want geometric error:

Small Nagging Detail

In RANSAC, we always take just enough points to

fit. Why might this not make a big difference when

fitting a model with RANSAC?

Solution: initialize with algebraic (min ||Ah||), optimize

with geometric using standard non-linear optimizer

Image Warping

x

y

x

y

f(x,y) g(x,y)

T(x,y)

Given a coordinate transform (x’,y’) = T(x,y) and a

source image f(x,y), how do we compute a

transformed image g(x’,y’) = f(T(x,y))?

Slide Credit: A. Efros

Forward Warping

x

y

x'

y'

f(x,y) g(x’,y’)

T(x,y)

Send the value at each pixel (x,y) to

the new pixel (x’,y’) = T([x,y])

Slide Credit: A. Efros

Forward Warping

x

y

f(x,y)

x-1 x x+1

y-1

y

y+1

x'-1 x' x'+1

y'-1

y'

y'+1

x'

y’

g(x’,y’)

If you don’t hit an exact pixel, give the value to each of

the neighboring pixels (“splatting”).

T(x,y)

Forward Warping

Suppose T(x,y) scales by a factor of 3.

Hmmmm.

Inverse Warping

x

y

x'

y'

f(x,y) g(x’,y’)

T-1(x,y)

Find out where each pixel g(x’,y’) should get its value

from, and steal it.

Note: requires ability to invert T

Slide Credit: A. Efros

Inverse Warping

x'-1 x' x'+1

y'-1

y'

y'+1

x'

y’

g(x’,y’)
x

y

f(x,y)

x-1 x x+1

y-1

y

y+1

If you don’t hit an exact pixel, figure out how to take it

from the neighbors.

T-1(x,y)

Mosaicing

Warped

Input 1

I1

Warped

Input 2

I2

Image Credit: A. Efros

Can warp an image. Pixels that don’t have a

corresponding pixel in the image are set to a

chosen value (often 0)

Mosaicing

Warped

Input 1

I1

α

Warped

Input 2

I2

αI1 +

(1-α)I2

Image Credit: A. Efros

Mosaicing

Warped

Input 1

I1

α

Warped

Input 2

I2

αI1 +

(1-α)I2

Slide Credit: A. Efros

Can also warp an image containing 1s. Pixels

that don’t have a corresponding pixel in the

image are set to a chosen value (often 0)

Putting it Together

How do you make a panorama?

Step 1: Find “features” to match

Step 2: Describe Features

Step 3: Match by Nearest Neighbor

Step 4: Fit H via RANSAC

Step 5: Blend Images

Putting It Together 1

• (Multi-scale) Harris; or

• Laplacian of Gaussian

Find corners/blobs

Putting It Together 2

Describe Regions Near Features

Build histogram of

gradient

orientations (SIFT)

(But in practice use

opencv)

𝑥𝑞 ∈ 𝑅128

Putting It Together 3

Match Features Based On Region

𝑥1 ∈ 𝑅128 𝑥2 ∈ 𝑅128

𝑥3
∈ 𝑅128

𝑥𝑞 ∈ 𝑅128

𝑥𝑞Sort by distance to: 𝑥𝑞 − 𝑥1 < 𝑥𝑞 − 𝑥2 < 𝑥𝑞 − 𝑥3

Accept match if: 𝑥𝑞 − 𝑥1 / 𝑥𝑞 − 𝑥2

Nearest neighbor is far closer than 2nd nearest neighbor

Putting It Together 4

Fit transformation H via RANSAC

for trial in range(Ntrials):

Pick sample

Fit model

Check if more inliers

Re-fit model with most inliers

arg min
𝒉 =1

𝑨𝒉 2

Putting It Together 5

Warp images together

Resample images with inverse

warping and blend

(but in practice, just call opencv for

inverse warping)

Backup

A pencil of rays contains all views

real

camera
synthetic

camera

Can generate any synthetic camera view

as long as it has the same center of projection!

Slide Credit: A. Efros

Bonus Art

Automatically rectified floor

St. Lucy Altarpiece, D. Veneziano

Analyzing Patterns

What is the (complicated)

shape of the floor pattern?

Slide from A. Criminisi

From Martin Kemp, The Science of Art

(manual reconstruction)

Automatic

rectification

Analyzing Patterns

Slide from A. Criminisi

Homography Derivation

• This has gotten cut in favor of showing more of
the setup.

• The key to the set-up is to try to move towards
a setup where you can pull [h1,h2,h3] out, or
where each row is a linear equation in
[h1,h2,h3]

𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

𝑥𝑖
𝑦𝑖
𝑤𝑖

≡

𝑥𝑖
′

𝑦𝑖
′

𝑤𝑖′

≡
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

𝑥𝑖
𝑦𝑖
𝑤𝑖

Want:

Recall: 𝒂 ≡ 𝒃 𝒂 = 𝜆𝒃 𝒂 × 𝒃 = 𝟎In turn

𝒑𝒊 =
𝑥𝑖
𝑦𝑖
1

𝑯𝒑𝒊 ≡

𝒉𝟏
𝑻

𝒉𝟐
𝑻

𝒉𝟑
𝑻

𝒑𝒊 ≡

𝒉𝟏
𝑻𝒑𝒊

𝒉𝟐
𝑻𝒑𝒊

𝒉𝟑
𝑻𝒑𝒊

𝑥𝑖
′

𝑦𝑖
′

𝑤𝑖
′

×

𝒉𝟏
𝑻𝒑𝒊

𝒉𝟐
𝑻𝒑𝒊

𝒉𝟑
𝑻𝒑𝒊

= 𝟎
In the end

want:

Why Cross products?

Cross products have

explicit forms

Fitting Transformation

𝑥𝑖
′

𝑦𝑖
′

𝑤𝑖
′

×

𝒉𝟏
𝑻𝒑𝒊

𝒉𝟐
𝑻𝒑𝒊

𝒉𝟑
𝑻𝒑𝒊

= 𝟎Want:

𝑦𝑖
′𝒉𝟑

𝑻𝒑𝒊 − 𝑤𝑖
′𝒉𝟐

𝑻𝒑𝒊

𝑤𝑖
′𝒉𝟏

𝑻𝒑𝒊 − 𝑥𝑖
′𝒉𝟑

𝑻𝒑𝒊
𝑥𝑖
′𝒉𝟐

𝑻𝒑𝒊 − 𝑦𝑖
′𝒉𝟏

𝑻𝒑𝒊

= 𝟎
Cross-

product

𝒉𝟏
𝑻𝟎 − 𝑤𝑖

′𝒉𝟐
𝑻𝒑𝒊 + 𝑦𝑖

′𝒉𝟑
𝑻𝒑𝒊

𝑤𝑖
′𝒉𝟏

𝑻𝒑𝒊 + 𝒉𝟐
𝑻𝟎 − 𝑥𝑖

′𝒉𝟑
𝑻𝒑𝒊

−𝑦𝑖
′𝒉𝟏

𝑻𝒑𝒊 + 𝑥𝑖
′𝒉𝟐

𝑻𝒑𝒊 + 𝒉𝟑
𝑻𝟎

= 𝟎
Re-arrange

and put 0s in

Note: calculate

this explicitly. It

looks ugly, but do

it by doing [a,b,c]

x [a’,b’,c’] then

re-substituting.

You want to be

able to right-

multiply by

[h1,h2,h3]

Fitting Transformation

𝒉𝟏
𝑻𝟎 − 𝑤𝑖

′𝒉𝟐
𝑻𝒑𝒊 + 𝑦𝑖

′𝒉𝟑
𝑻𝒑𝒊

𝑤𝑖
′𝒉𝟏

𝑻𝒑𝒊 + 𝒉𝟐
𝑻𝟎 − 𝑥𝑖

′𝒉𝟑
𝑻𝒑𝒊

−𝑦𝑖
′𝒉𝟏

𝑻𝒑𝒊 + 𝑥𝑖
′𝒉𝟐

𝑻𝒑𝒊 + 𝒉𝟑
𝑻𝟎

= 𝟎Equation

Pull out h
𝟎𝑻 −𝑤′

𝑖𝒑𝒊
𝑻 𝑦′𝑖𝒑𝒊

𝑻

𝑤𝑖
′𝒑𝒊

𝑻 𝟎𝑻 −𝑥𝑖
′𝒑𝒊

𝑻

−𝑦𝑖
′𝒑𝒊

𝑻 𝑥𝑖
′𝒑𝒊

𝑻 𝟎𝑻

𝒉𝟏
𝒉𝟐
𝒉𝟑

= 𝟎

Only two linearly independent equations

Yank out h once you have all the coefficients.

If you’re head-scratching about the two equations, it’s not obvious to me at

first glance that the three equations aren’t linearly independent either.

Simplification: Two-band Blending

• Brown & Lowe, 2003
• Only use two bands: high freq. and low freq.

• Blend low freq. smoothly

• Blend high freq. with no smoothing: binary alpha

Figure Credit: Brown & Lowe

Low frequency (l > 2 pixels)

High frequency (l < 2 pixels)

2-band “Laplacian Stack” Blending

Linear Blending

2-band Blending

	Slide 1: Transformations and Fitting
	Slide 2: So Far
	Slide 3: Today
	Slide 4: Why Mosaic?
	Slide 5: Why Mosaic?
	Slide 6: Why Mosaic?
	Slide 7: Why Bother With This Math?
	Slide 8: Homework 1 Style
	Slide 9: Result
	Slide 10: Image Transformations
	Slide 11: Image Transformations
	Slide 12: Parametric (Global) warping
	Slide 13: Parametric (Global) Warping
	Slide 14: Parametric (Global) Warping
	Slide 15: Scaling
	Slide 16: Scaling
	Slide 17: Scaling
	Slide 18: 2D Rotation
	Slide 19: Things You Can Do With 2x2
	Slide 20: Things You Can Do With 2x2
	Slide 21: What’s Preserved?
	Slide 22: What’s Preserved With a 2x2
	Slide 23: Things You Can’t Do With 2x2
	Slide 24: Homogeneous Coordinates Again
	Slide 25: Representing 2D Transformations
	Slide 26: Affine Transformations
	Slide 27: Matrix Composition
	Slide 28: What’s Preserved With Affine
	Slide 29: Homogeneous Equivalence
	Slide 30: Perspective Transformations
	Slide 31: Perspective Transformations
	Slide 32: How Many Degrees of Freedom?
	Slide 33: What’s Preserved With Perspective
	Slide 34: Transformation Families
	Slide 35: What Can Homographies Do?
	Slide 36: What Can Homographies Do?
	Slide 37: What Can Homographies Do?
	Slide 38: Fun With Homographies
	Slide 39: Analyzing Patterns
	Slide 40: Analyzing Patterns
	Slide 41: Fitting Transformations
	Slide 42: Fitting Transformation
	Slide 43: Fitting Transformations
	Slide 44: Fitting Transformations
	Slide 45: Fitting Transformations
	Slide 46: Fitting Transformation
	Slide 47: Fitting Transformation
	Slide 48: In Practice
	Slide 49: Small Nagging Detail
	Slide 50: Small Nagging Detail
	Slide 51: Image Warping
	Slide 52: Forward Warping
	Slide 53: Forward Warping
	Slide 54: Forward Warping
	Slide 55: Inverse Warping
	Slide 56: Inverse Warping
	Slide 57: Mosaicing
	Slide 58: Mosaicing
	Slide 59: Mosaicing
	Slide 60: Putting it Together
	Slide 61: Putting It Together 1
	Slide 62: Putting It Together 2
	Slide 63: Putting It Together 3
	Slide 64: Putting It Together 4
	Slide 65: Putting It Together 5
	Slide 66
	Slide 67: Backup
	Slide 68: A pencil of rays contains all views
	Slide 69: Bonus Art
	Slide 70: Analyzing Patterns
	Slide 71: Analyzing Patterns
	Slide 72: Homography Derivation
	Slide 73
	Slide 74: Fitting Transformation
	Slide 75: Fitting Transformation
	Slide 76: Simplification: Two-band Blending
	Slide 77: 2-band “Laplacian Stack” Blending
	Slide 78: Linear Blending
	Slide 79: 2-band Blending

