Numerical Linear Algebra EECS 442 – David Fouhey Winter 2023, University of Michigan

http://web.eecs.umich.edu/~fouhey/teaching/EECS442_W23/

Today – Math

Two goals for the class:

- Math with computers \neq Math
- Practical math you need to know but may not have been taught

Adding Numbers

- Suppose b > 0
- Is a+b > a?
- Is a+b = a?

Adding Numbers

- 1 + 1 = ?
- Suppose x_i is normally distributed with mean μ and standard deviation σ for $1 \le i \le N$
- How is the average, or $\hat{\mu} = \frac{1}{N} \sum_{i=1}^{N} x_i$, distributed (qualitatively), in terms of variance?
- The Free Drinks in Vegas Theorem*: $\hat{\mu}$ has mean μ and standard deviation $\frac{\sigma}{\sqrt{N}}$.

*Not the real name. More un-fun name: law of large numbers.

Free Drinks in Vegas

Each game/variable has mean \$0.10, std \$2

Let's Make It Big

- Suppose I average 50M normally distributed numbers (mean: 31, standard deviation: 1)
- For instance: have predicted and actual depth for 200 480x640 images and want to know the average error (|predicted actual|)

```
numerator = 0
for x in xs:
    numerator += x
return numerator / len(xs)
```

Let's Make It Big

- What should happen qualitatively?
- Theory says that the average is distributed with mean 31 and standard deviation $\frac{1}{\sqrt{50M}} \approx (10^{-5})$
- What will happen?
- Reality: 17.47

Trying it Out

Trying it Out

Take-homes

- Computer numbers aren't math numbers
- Overflow, accidental zeros, roundoff error, and basic equalities are almost certainly incorrect for some values
- Floating points and numpy try to protect you.
- Generally safe to use a double and use built-infunctions in numpy (not necessarily others!)
- Spooky behavior = look for numerical issues

Operations They Don't Teach

You Probably Saw Matrix Addition

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} a+e & b+f \\ c+g & d+h \end{bmatrix}$$

What is this if e is a scalar?

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} + e = \begin{bmatrix} a+e & b+e \\ c+e & d+e \end{bmatrix}$$

Broadcasting

If you want to be pedantic and proper, you expand e by multiplying a matrix of 1s (denoted **1**)

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} + e = \begin{bmatrix} a & b \\ c & d \end{bmatrix} + \mathbf{1}_{2x2}e$$
$$= \begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} e & e \\ e & e \end{bmatrix}$$

Many smart matrix libraries do this automatically. This is the source of many, many bugs.

Broadcasting Example

Given: a nx2 matrix **P** and a 2D column vector **v**, Want: nx2 difference matrix **D**

$$\boldsymbol{P} = \begin{bmatrix} x_1 & y_1 \\ \vdots & \vdots \\ x_n & y_n \end{bmatrix} \quad \boldsymbol{v} = \begin{bmatrix} a \\ b \end{bmatrix} \quad \boldsymbol{D} = \begin{bmatrix} x_1 - a & y_1 - b \\ \vdots & \vdots \\ x_n - a & y_n - b \end{bmatrix}$$

 $\boldsymbol{P} - \boldsymbol{v}^T = \begin{bmatrix} x_1 & y_1 \\ \vdots & \vdots \\ x_n & y_n \end{bmatrix} - \begin{bmatrix} a & b \end{bmatrix} \quad \begin{array}{c} \text{Blue stuff is} \\ assumed / \\ broadcast \end{bmatrix}$

Two Uses for Matrices

- 1. Storing things in a rectangular array (images, maps)
 - *Typical operations*: element-wise operations, convolution (which we'll cover next)
 - Atypical operations: almost anything you learned in a math linear algebra class
- 2. A linear operator that maps vectors to another space (**Ax**)
 - *Typical/Atypical:* reverse of above

Images as Matrices

Suppose someone hands you this matrix. What's wrong with it?

Contrast – Gamma curve

Typical way to change the contrast is to apply a nonlinear correction

pixelvalue^{γ}

The quantity γ controls how much contrast gets added

Contrast – Gamma curve

Now the darkest regions (10th pctile) are **much** darker than the moderately dark regions (50th pctile).

Images as Matrices

Suppose someone hands you this matrix. The contrast is wrong!

Results

Phew! Much Better.

Implementation

Python+Numpy (right way):

imNew = im**4

Python+Numpy (slow way – why?):

imNew = np.zeros(im.shape)
for y in range(im.shape[0]):
 for x in range(im.shape[1]):
 imNew[y,x] = im[y,x]**expFactor

Element-wise Operations

Element-wise power – beware notation $(A^p)_{ij} = A^p_{ij}$

"Hadamard Product" / Element-wise multiplication $(A \odot B)_{ij} = A_{ij} * B_{ij}$

Element-wise division

$$(\boldsymbol{A}/\boldsymbol{B})_{ij} = \frac{A_{ij}}{B_{ij}}$$

Story time: I swear this is relevant

Image credit: Coulon et al. Individual Recognition in Domestic Cattle (Bos taurus): Evidence from 2D-Images of Heads from Different Breeds. PLoS One. 2009; 4(2): e4441.

Note – libraries distinguish between N-D column vector and Nx1 matrix.

Vectorizing Example

- Suppose I represent each image as a 128dimensional vector
- I want to compute all the pairwise distances between {x₁, ..., x_N} and {y₁, ..., y_M} so I can find, the nearest y_i for every x_i
- Identity: $||x y||^2 = ||x||^2 + ||y||^2 2x^T y$
- Or: $||x y|| = (||x||^2 + ||y||^2 2x^T y)^{1/2}$

Vectorizing Example

$$X = \begin{bmatrix} - & x_1 & - \\ & \vdots & \\ - & x_N & - \end{bmatrix} Y = \begin{bmatrix} - & y_1 & - \\ & \vdots & \\ - & y_M & - \end{bmatrix} Y^T = \begin{bmatrix} | & & | \\ y_1 & \cdots & y_M \\ | & & | \end{bmatrix}$$

Compute a Nx1 vector of norms (can also do Mx1)

$$\Sigma(X^2, \mathbf{1}) = \begin{bmatrix} \|x_1\|^2 \\ \vdots \\ \|x_N\|^2 \end{bmatrix}$$

Compute a NxM matrix of dot products

$$\left(XY^T\right)_{ij} = x_i^T y_j$$

Vectorizing Example

$$\mathbf{D} = \left(\Sigma(X^2, 1) + \Sigma(Y^2, 1)^T - 2XY^T\right)^{1/2}$$

$$\mathbf{D}_{ij} = ||\mathbf{x}_i||^2 + ||\mathbf{y}_j||^2 - 2\mathbf{x}_i^T \mathbf{y}_j$$

Numpy code:

XNorm = np.sum(X**2,axis=1,keepdims=True)

YNorm = np.sum(Y**2,axis=1,keepdims=True)

D = (XNorm+YNorm.T-2*np.dot(X,Y.T))**0.5

*May have to make sure this is at least 0 (sometimes roundoff issues happen)

Does it Make a Difference?

Computing pairwise distances between 300 and 400 128-dimensional vectors

- 1. for x in X, for y in Y, using native python: 9s
- 2. for x in X, for y in Y, using numpy to compute distance: 0.8s
- vectorized: 0.0045s (~2000x faster than 1, 175x faster than 2)

Expressing things in primitives that are optimized is usually faster

Rank

- Rank of a nxn matrix A number of linearly independent columns (or rows) of A / the dimension of the span of the columns
- Matrices with *full rank* (n x n, rank n) behave nicely: can be inverted, span the full output space, are one-to-one.

Symmetric Matrices

- Symmetric: $A^T = A$ or $A_{ij} = A_{ji}$
- Have lots of special properties

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

Any matrix of the form $A = X^T X$ is symmetric.

Quick check:

$$A^{T} = (X^{T}X)^{T}$$
$$A^{T} = X^{T}(X^{T})^{T}$$
$$A^{T} = X^{T}X$$

Special Matrices – Rotations

r_{11}	r_{12}	r_{13}
r_{21}	r_{22}	r_{23}
r_{31}	r_{32}	r_{33}]

- Rotation matrices *R* rotate vectors and *do not* change vector L2 norms $(||Rx||_2 = ||x||_2)$
- Every row/column is unit norm
- Every row is linearly independent
- Transpose is inverse $RR^T = R^T R = I$
- Determinant is 1 (otherwise it's also a coordinate flip/reflection), eigenvalues are 1

Eigensystems

- An eigenvector v_i and eigenvalue λ_i of a matrix A satisfy $Av_i = \lambda_i v_i$ (Av_i is scaled by λ_i)
- Vectors and values are always paired and typically you assume $\|v_i\|^2 = 1$
- Biggest eigenvalue of A gives bounds on how much f(x) = Ax stretches a vector **x**.
- Hints of what people really mean:
 - "Largest eigenvector" = vector w/ largest value
 - Spectral just means there's eigenvectors

2.0											
2.0											
1.5											
1.5										• •	
1.0 -		· ·									
0.5						•					
		· ·						· ·	· · ·		
0.0						-					
						•					
-0.5 ⁻		· ·						· ·	· · ·		
-1.0						• •					
	-	· ·						· ·	· · ·	· ·	· · ·
-1.5											
						•					
-2.0						·					
	-2.0) -1	5	-1.0	-0.5	0.0	0	0.5	1.0	1.5	2.0
Suppose I have points in a grid											
Suppose i nave points in a grid											

Pointy-end: Ax . Non-Pointy-End: x

Red box – unit square, Blue box – after f(x) = Ax. What are the yellow lines and why?

Red box – unit square, Blue box – after f(x) = Ax. What are the yellow lines and why?

Red box – unit square, Blue box – after f(x) = Ax. Can we draw any yellow lines?

Eigenvectors of Symmetric Matrices

- Always n mutually orthogonal eigenvectors with n (not necessarily) distinct eigenvalues
- For symmetric *A*, the eigenvector with the largest eigenvalue maximizes $\frac{x^T A x}{x^T x}$ (smallest/min)
- So for unit vectors (where $x^T x = 1$), that eigenvector maximizes $x^T A x$
- A surprisingly large number of optimization problems rely on (max/min)imizing this

The Singular Value Decomposition Can **always** write a mxn matrix **A** as: $A = U\Sigma V^T$

The Singular Value Decomposition Can **always** write a mxn matrix **A** as: $A = U\Sigma V^T$

Singular Value Decomposition

- Every matrix is a rotation, scaling, and rotation
- Number of non-zero singular values = rank / number of linearly independent vectors
- "Closest" matrix to **A** with a lower rank

Singular Value Decomposition

- Every matrix is a rotation, scaling, and rotation
- Number of non-zero singular values = rank / number of linearly independent vectors
- "Closest" matrix to **A** with a lower rank

Singular Value Decomposition

- Every matrix is a rotation, scaling, and rotation
- Number of non-zero singular values = rank / number of linearly independent vectors
- "Closest" matrix to **A** with a lower rank
- Secretly behind basically many things you do with matrices

Start with two points (x_i, y_i) y = Av $\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} x_1 & 1 \\ x_2 & 1 \end{bmatrix} \begin{bmatrix} m \\ b \end{bmatrix}$ $\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} mx_1 + b \\ mx_2 + b \end{bmatrix}$

We know how to solve this – invert **A** and find **v** (i.e., (m,b) that fits points)

Start with two points (x_i, y_i) (x_2, y_2) v = Av $\begin{vmatrix} y_1 \\ y_2 \end{vmatrix} = \begin{vmatrix} x_1 & 1 \\ x_2 & 1 \end{vmatrix} \begin{bmatrix} m \\ b \end{bmatrix}$ $||y - Av||^{2} = \left\| \begin{bmatrix} y_{1} \\ y_{2} \end{bmatrix} - \begin{bmatrix} mx_{1} + b \\ mx_{2} + b \end{bmatrix} \right\|^{2}$ $= (y_1 - (mx_1 + b))^2 + (y_2 - (mx_2 + b))^2$ The sum of squared differences between the actual value of y and what the model says y should be.

Suppose there are n > 2 points $\mathbf{y} = A\mathbf{v}$ $\begin{bmatrix} y_1 \\ \vdots \\ y_N \end{bmatrix} = \begin{vmatrix} x_1 & 1 \\ \vdots & \vdots \\ x_N & 1 \end{vmatrix} \begin{bmatrix} m \\ b \end{bmatrix}$ Compute $\|\mathbf{y} - \mathbf{A}\mathbf{v}\|^2$ again $\|\mathbf{y} - A\mathbf{v}\|^2 = \sum (y_i - (mx_i + b))^2$

Suppose there are n > 2 points v = Av $\begin{bmatrix} y_1 \\ \vdots \\ y_N \end{bmatrix} = \begin{vmatrix} x_1 & 1 \\ \vdots & \vdots \\ x_N & 1 \end{vmatrix} \begin{bmatrix} m \\ b \end{bmatrix}$ Want to minimize $\|y - Av\|^2$ We can control the entries of v, but columns of A can't possibly be put together in any way to produce y

Solving Least-Squares

Given y, A, and v with y = Av overdetermined (A tall / more equations than unknowns) We want to minimize $||y - Av||^2$, or find:

$$\arg \min_{\boldsymbol{v}} \| \boldsymbol{y} - \boldsymbol{A} \boldsymbol{v} \|^2$$

(The value of v that makes the expression smallest) Solution satisfies $(A^T A)v^* = A^T y$ $\frac{Or}{v^*} = (A^T A)^{-1}A^T y$

(Don't actually compute the inverse!)

When is Least-Squares Possible? Given y, A, and v. Want y = Av

Want n outputs, have n knobs
to fiddle with, every knob is
useful if A is full rank.

A: rows (outputs) > columns (knobs). Thus can't get precise output you want (not enough knobs). So settle for "closest" knob setting.

When is Least-Squares Possible? Given y, A, and v. Want y = Av

Want n outputs, have n knobs
 to fiddle with, every knob is
 useful if A is full rank.

A: columns (knobs) > rows (outputs). Thus, any output can be expressed in infinite ways.

Given a set of unit vectors (aka directions) $x_1, ..., x_n$ and I want vector v that is as orthogonal to all the x_i as possible (for some definition of orthogonal)

Stack x_i into A, compute Av $Av = \begin{vmatrix} - & x_1^T & - \\ & \vdots & \\ - & x_n^T & - \end{vmatrix} v = \begin{pmatrix} x_1^T v \\ \vdots \\ x_n^T v \end{pmatrix}$ orthog Compute $||Av||^2 = \sum_{i=1}^{n} (x_i^T v)^2$ Sum of how orthog. v is to each x

- A lot of times, given a matrix **A** we want to find the **v** that minimizes $||Av||^2$.
- I.e., want $\mathbf{v}^* = \arg\min_{\mathbf{v}} \|A\mathbf{v}\|_2^2$
- What's a trivial solution?
- Set $\mathbf{v} = \mathbf{0} \rightarrow \mathbf{A}\mathbf{v} = \mathbf{0}$
- Exclude this by forcing v to have unit norm

Let's look at $||Av||_2^2$

 $\|Av\|_{2}^{2} = \text{Rewrite as dot product}$ $\|Av\|_{2}^{2} = (Av)^{T}(Av) \text{Distribute transpose}$ $\|Av\|_{2}^{2} = v^{T}A^{T}Av = v^{T}(A^{T}A)v$

We want the vector minimizing this quadratic form Where have we seen this?

Ubiquitious tool in vision:

 $\arg\min_{\|\boldsymbol{v}\|^2=1}\|\boldsymbol{A}\boldsymbol{v}\|^2$

For min \rightarrow max, switch smallest \rightarrow largest

*Note: $A^{T}A$ is positive semi-definite so it has all non-negative eigenvalues

Derivatives

Remember derivatives?

Derivative: rate at which a function f(x) changes at a point as well as the direction that increases the function

Given quadratic function f(x) $f(x,y) = (x-2)^2 + 5$

Rates of change $f(x, y) = (x - 2)^2 + 5$

Suppose I want to increase f(x) by changing x:

Blue area: move left Red area: move right

Derivative tells you direction of ascent and rate

What Calculus Should I Know

- Really need intuition
- Need chain rule
- Rest you should look up / use a computer algebra system / use a cookbook
- Partial derivatives (and that's it from multivariable calculus)

Partial Derivatives

- Pretend other variables are constant, take a derivative. That's it.
- Make our function a function of two variables

$$f(x) = (x - 2)^{2} + 5$$

$$\frac{\partial}{\partial x}f(x) = 2(x - 2) * 1 = 2(x - 2)$$

$$f_{2}(x, y) = (x - 2)^{2} + 5 + (y + 1)^{2}$$

$$\frac{\partial}{\partial x}f_{2}(x) = 2(x - 2)$$

Pretend it's constant \rightarrow
derivative = 0

Zooming Out $f_2(x, y) = (x - 2)^2 + 5 + (y + 1)^2$ 3 $\frac{\partial}{\partial y}f_2(x,y)$ is 2 2(y+1)and is the rate of 1 change & direction in 0 y dimension $^{-1}$

Zooming Out $f_2(x, y) = (x - 2)^2 + 5 + (y + 1)^2$

Gradient/Jacobian:

Making a vector of $\nabla_{f} = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$ gives rate and direction of change.

Arrows point OUT of minimum / basin.

What Should I Know?

- Gradients are simply partial derivatives perdimension: if x in f(x) has n dimensions, $\nabla_f(x)$ has n dimensions
- Gradients point in direction of ascent and tell the rate of ascent
- If a is minimum of $f(\mathbf{x}) \rightarrow \nabla_{f}(a) = \mathbf{0}$
- Reverse is not true, especially in highdimensional spaces

For the Curious

- I used to teach floating point stuff. Here's a condensed explanation
- The tl;dr is that floating points are not real numbers.

What's a Number?

 $2^7 \ 2^6 \ 2^5 \ 2^4 \ 2^3 \ 2^2 \ 2^1 \ 2^0$ 1 0 1 1 1 0 0 1 185 128 + 32 + 16 + 8 + 1 = 185

Adding Two Numbers

"Integers" on a computer are integers modulo 2^k

Some Gotchas

32 + (3 / 4) x 40 =	32 Why?
32 + (3 x 40) / 4 =	62 VVII
<u>Underflow</u>	No Underflow
32 + 3 / 4 x 40 =	32 + 3 x 40 / 4 =
32 + 0 x 40 =	32 + 120 / 4 =
32 + 0 =	32 + 30 =
32	62

Ok – you have to multiply before dividing

What's a Number?

27 26 25 24 23 22 21 20 1 0 1 1 1 0 0 1 185 How can we do fractions? 2⁵ 2⁴ 2³ 2² 2¹ 2⁰ 2⁻¹ 2⁻² 1 0 1 1 1 0 0 1 45.25 45 0.25

Fixed-Point Arithmetic 2⁵ 2⁴ 2³ 2² 2¹ 2⁰ 2⁻¹ 2⁻² 1 0 1 1 1 0 0 1 45.25 What's the largest number we can represent? 63.75 – Why? How precisely can we measure at 63? 0.25 How precisely can we measure at 0? 0.25

Fine for many purposes but for science, seems silly

Bias: allows exponent to be negative; Note: fraction = significant = mantissa; exponents of all ones or all zeros are special numbers

Gap between numbers is *relative*, not absolute

Actual implementation is complex

Revisiting Adding Numbers Sign Exponent Fraction 1 0100 000 -2⁻³ x 1.00 = -0.125 1 1001 000 -2² x 1.00 = -4

$$-2^{2} \times 1.03125 = -4.125$$
1 1001 000 $-2^{2} \times 1.00 = -4$
1 1001 001 $-2^{2} \times 1.125 = -4.5$

Revisiting Adding Numbers Sign Exponent Fraction 1 0100 000 -2⁻³ x 1.00 = -0.125 + 1 1001 000 -2² x 1.00 = -4

$$-2^{2} \times 1.03125 = -4.125$$

1 1 0 0 1 0 0 0 $-2^{2} \times 1.00 = -4$
For a and b, these can happen
 $a + b = a$ $a+b-a \neq b$

Revisiting Adding Numbers		
IEEE 754 Single Precision / Single		
8 bits	23 bits	
2 ¹²⁷ ≈ 10 ³⁸	≈ 7 decimal digits	
S Exponent	Fraction	

IEEE 754 Double Precision / Double 11 bits 52 bits $2^{1023} \approx 10^{308} \approx 15$ decimal digits

s Exponent

Revisiting Adding Numbers		
IEEE 754 Half Precision		
5 bits	10 bits	
2 ¹⁶ ≈ 10 ⁵	≈ 3 decimal digits	
Exponent	Fraction	

S

Past Stuff

Cross Product

- Set $\{z: z \cdot x = 0, z \cdot y = 0\}$ has an ambiguity in sign and magnitude
 - Cross product $x \times y$ is: (1) orthogonal to x, y (2) has sign given by right hand rule and (3) has magnitude given by area of parallelogram of **x** and **y**
 - **Important**: if x and y are the same direction or either is **0**, then $x \times$
 - y = 0.
 - Only in 3D!

Image credit: Wikipedia.org

Span: all linear combinations of a set of vectors

Span({ \uparrow }) = Span({[0,2]}) = ? All vertical lines through origin = $\{\lambda[0,1]: \lambda \in R\}$ Is blue in {red}'s span?

Span: all linear combinations of a set of vectors

Linear Independence Recall: $Ax = (x_1 + \alpha x_2)c_1 + x_3c_2$

$$y = A \begin{bmatrix} x_1 + \beta \\ x_2 - \beta/\alpha \\ x_3 \end{bmatrix} = \left(x_1 + \beta + \alpha x_2 - \alpha \frac{\beta}{\alpha} \right) c_1 + x_3 c_2$$

- Can write **y** an infinite number of ways by adding β to **x**₁ and subtracting $\frac{\beta}{\alpha}$ from **x**₂
- Or, given a vector y there's not a unique vector x s.t. y =Ax
- Not all **y** have a corresponding **x** s.t. **y=Ax**

Linear Independence $Ax = (x_1 + \alpha x_2)c_1 + x_3c_2$

$$y = A \begin{bmatrix} \beta \\ -\beta/\alpha \\ 0 \end{bmatrix} = \left(\beta - \alpha \frac{\beta}{\alpha}\right) c_1 + 0 c_2$$

- What else can we cancel out?
- An infinite number of non-zero vectors x can map to a zero-vector y
- Called the right null-space of A.

Linear Independence

A set of vectors is linearly independent if you can't write one as a linear combination of the others.

Suppose:
$$a = \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix} b = \begin{bmatrix} 0 \\ 6 \\ 0 \end{bmatrix} c = \begin{bmatrix} 5 \\ 0 \\ 0 \end{bmatrix}$$

 $x = \begin{bmatrix} 0 \\ 0 \\ 4 \end{bmatrix} = 2a$ $y = \begin{bmatrix} 0 \\ -2 \\ 1 \end{bmatrix} = \frac{1}{2}a - \frac{1}{3}b$

- Is the set {a,b,c} linearly independent?
- Is the set {a,b,x} linearly independent?
 - Max # of independent 3D vectors?

Matrix-Vector Product

$$Ax = \begin{bmatrix} | & | \\ c_1 & \cdots & c_n \\ | & | \end{bmatrix} x \quad \begin{array}{c} \text{Right-multiplying } \mathbf{A} \text{ by } \mathbf{x} \\ \text{mixes columns of } \mathbf{A} \\ \text{according to entries of } \mathbf{x} \end{array}$$

- The output space of f(x) = Ax is constrained to be the span of the columns of A.
- Can't output things you can't construct out of your columns

x – knobs on machine (e.g., fuel, brakes)
y – state of the world (e.g., where you are)
A – machine (e.g., your car)

Linear Independence

Suppose the columns of 3x3 matrix **A** are *not* linearly independent (c_1 , αc_1 , c_2 for instance)

$$y = Ax = \begin{bmatrix} | & | & | \\ c_1 & \alpha c_1 & c_2 \\ | & | & | \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

 $y = x_1c_1 + \alpha x_2c_1 + x_3c_2$ $y = (x_1 + \alpha x_2)c_1 + x_3c_2$

Linear Independence Intuition

Knobs of **x** are redundant. Even if **y** has 3 outputs, you can only control it in two directions

$$y = (x_1 + \alpha x_2)c_1 + x_3c_2$$

Inverses

- Given y = Ax, y is a linear combination of columns of A proportional to x. If A is full-rank, we should be able to invert this mapping.
- Given some **y** (output) and **A**, what **x** (inputs) produced it?
- x = A⁻¹y
- Note: if you don't need to compute it, don't compute it. Solving for x is much faster and stable than obtaining A⁻¹.