Numerical Linear Algebra

 EECS 442 - David Fouhey Winter 2023, University of Michigan http://web.eecs.umich.edu/~fouhey/teaching/EECS442_W23/
Today - Math

Two goals for the class:

- Math with computers $=$ Math
- Practical math you need to know but may not have been taught

Adding Numbers

- Suppose b>0
- Is $a+b>a$?
- Is $a+b=a$?

Adding Numbers

- $1+1=$?
- Suppose x_{i} is normally distributed with mean μ and standard deviation σ for $1 \leq i \leq N$
- How is the average, or $\widehat{\mu}=\frac{1}{N} \sum_{i=1}^{N} x_{i}$, distributed (qualitatively), in terms of variance?
- The Free Drinks in Vegas Theorem*: $\hat{\mu}$ has mean μ and standard deviation $\frac{\sigma}{\sqrt{N}}$.
*Not the real name. More un-fun name: law of large numbers.

Free Drinks in Vegas

Each game/variable has mean $\$ 0.10$, std $\$ 2$

100K games is guaranteed profit: 99.999999\% lowest value is $\$ 0.064$. $\$ 0.01$ for drinks $\$ 0.054$ for profits

Let's Make It Big

- Suppose I average 50M normally distributed numbers (mean: 31, standard deviation: 1)
- For instance: have predicted and actual depth for 200480×640 images and want to know the average error (|predicted - actual|)

$$
\begin{aligned}
& \text { numerator }=0 \\
& \text { for } \mathrm{x} \text { in } \mathrm{xs}: \\
& \text { numerator }+=x \\
& \text { return numerator / len (xs) }
\end{aligned}
$$

Let's Make It Big

- What should happen qualitatively?
- Theory says that the average is distributed with mean 31 and standard deviation $\frac{1}{\sqrt{50 M}} \approx\left(10^{-5}\right)$
-What will happen?
- Reality: 17.47

Trying it Out

Trying it Out

Take-homes

- Computer numbers aren't math numbers
- Overflow, accidental zeros, roundoff error, and basic equalities are almost certainly incorrect for some values
- Floating points and numpy try to protect you.
- Generally safe to use a double and use built-infunctions in numpy (not necessarily others!)
- Spooky behavior = look for numerical issues

Operations They Don't Teach

You Probably Saw Matrix Addition

$$
\begin{gathered}
{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]+\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]=\left[\begin{array}{ll}
a+e & b+f \\
c+g & d+h
\end{array}\right]} \\
\text { What is this if e is a scalar? } \\
{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]+e=\quad\left[\begin{array}{ll}
a+e & b+e \\
c+e & d+e
\end{array}\right]}
\end{gathered}
$$

Broadcasting

If you want to be pedantic and proper, you expand e by multiplying a matrix of 1 s (denoted 1)

$$
\begin{aligned}
{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]+e } & =\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]+\mathbf{1}_{2 \times 2} e \\
& =\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]+\left[\begin{array}{ll}
e & e \\
e & e
\end{array}\right]
\end{aligned}
$$

Many smart matrix libraries do this automatically.
This is the source of many, many bugs.

Broadcasting Example

Given: a nx2 matrix \mathbf{P} and a 2D column vector \mathbf{v}, Want: nx2 difference matrix D

$$
\begin{gathered}
\boldsymbol{P}=\left[\begin{array}{cc}
x_{1} & y_{1} \\
\vdots & \vdots \\
x_{n} & y_{n}
\end{array}\right] \quad \boldsymbol{v}=\left[\begin{array}{l}
a \\
b
\end{array}\right] \quad \boldsymbol{D}=\left[\begin{array}{cc}
x_{1}-a & y_{1}-b \\
\vdots & \vdots \\
x_{n}-a & y_{n}-b
\end{array}\right] \\
\boldsymbol{P}-\boldsymbol{v}^{T}=\left[\begin{array}{cc}
x_{1} & y_{1} \\
\vdots & \vdots \\
x_{n} & y_{n}
\end{array}\right]-\begin{array}{lll}
{[a} & b
\end{array} \quad \begin{array}{l}
\text { Blue stuff is } \\
\vdots
\end{array} \\
\left.\begin{array}{ll}
a & b
\end{array}\right] \\
\text { assumed } / \\
\text { broadcast }
\end{gathered} ~ . ~ م
$$

Two Uses for Matrices

1. Storing things in a rectangular array (images, maps)

- Typical operations: element-wise operations, convolution (which we'll cover next)
- Atypical operations: almost anything you learned in a math linear algebra class

2. A linear operator that maps vectors to another space ($\mathbf{A x}$)

- Typical/Atypical: reverse of above

Images as Matrices

Suppose someone hands you this matrix. What's wrong with it?

Contrast - Gamma curve

Typical way to change the contrast is to apply a nonlinear correction pixelvalue ${ }^{\gamma}$

The quantity γ controls how much contrast gets added

Contrast - Gamma curve

Now the darkest regions ($10^{\text {th }}$ pctile) are much darker than the moderately dark regions (50 ${ }^{\text {th }}$ pctile).

Images as Matrices

Suppose someone hands you this matrix. The contrast is wrong!

Results

Phew! Much Better.

Implementation

Python+Numpy (right way):

$$
\text { imNew }=\text { im**4 }
$$

Python+Numpy (slow way - why?):
imNew $=$ np.zeros (im.shape)
for y in range(im.shape[0]):

$$
\text { for } x \text { in range(im.shape[1]): }
$$

imNew $[y, x]=$ im $[y, x] * * \operatorname{expFactor}$

Element-wise Operations

Element-wise power - beware notation

$$
\left(\boldsymbol{A}^{p}\right)_{i j}=A_{i j}^{p}
$$

"Hadamard Product" / Element-wise multiplication

$$
(\boldsymbol{A} \odot \boldsymbol{B})_{i j}=\boldsymbol{A}_{i j} * \boldsymbol{B}_{i j}
$$

Element-wise division

$$
(\boldsymbol{A} / \boldsymbol{B})_{i j}=\frac{A_{i j}}{B_{i j}}
$$

Story time: I swear this is relevant

Vien
Profile
Frontal
Figure 1 front
Example of stimuli used in the experiment of the recognition of a familiar Prim'Holstein individual.
Ten views represented the sample individuals (A) and ten views represented three other individuals (B). In
training, a frontal view of a face (the first line of the figure) of the sample individual (A) had to be
discriminated from a frontal view of an individual in the group (B). In generalization test, for each trial, an
image of the sample individual (A) and an image of a cow from the group (B) were randomly selected and
third experiment unfamiliar Normande cows and for the last experiment unfamiliar Charolaise cows.

Sums Across Axes

$\begin{aligned} & \text { Suppose have } \\ & \mathrm{N} \times 2 \text { matrix } \mathbf{A}\end{aligned} \quad \boldsymbol{A}=\left[\begin{array}{cc}x_{1} & y_{1} \\ \vdots & \vdots \\ x_{n} & y_{n}\end{array}\right]$
ND col. vec.

$$
\Sigma(\boldsymbol{A}, 1)=\left[\begin{array}{c}
x_{1}+y_{1} \\
\vdots \\
x_{n}+y_{n}
\end{array}\right]
$$

$$
\Sigma(\boldsymbol{A}, 0)=\left[\sum_{i=1}^{n} x_{i} \quad, \sum_{i=1}^{n} y_{i}\right]
$$

Note - libraries distinguish between N-D column vector and Nx1 matrix.

Vectorizing Example

- Suppose I represent each image as a 128dimensional vector
- I want to compute all the pairwise distances between $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right\}$ and $\left\{\mathbf{y}_{1}, \ldots, \mathbf{y}_{\mathrm{M}}\right\}$ so I can find, the nearest \mathbf{y}_{j} for every \mathbf{x}_{i}
- Identity: $\|x-y\|^{2}=\|x\|^{2}+\|y\|^{2}-2 x^{T} y$
- Or: $\|\boldsymbol{x}-\boldsymbol{y}\|=\left(\|x\|^{2}+\|y\|^{2}-2 \boldsymbol{x}^{T} \boldsymbol{y}\right)^{1 / 2}$

Vectorizing Example

$$
\boldsymbol{X}=\left[\begin{array}{ccc}
- & x_{1} & - \\
& \vdots & \\
- & x_{N} & -
\end{array}\right] \boldsymbol{Y}=\left[\begin{array}{ccc}
- & y_{1} & - \\
& \vdots & \\
- & \boldsymbol{y}_{M} & -
\end{array}\right] \boldsymbol{Y}^{\boldsymbol{T}}=\left[\begin{array}{ccc}
\mid & & \mid \\
\boldsymbol{y}_{1} & \cdots & \boldsymbol{y}_{M} \\
\mid & & \mid
\end{array}\right]
$$

Compute a Nx1 vector of norms (can also do Mx1)

$$
\Sigma\left(X^{2}, 1\right)=\left[\begin{array}{c}
\left\|x_{1}\right\|^{2} \\
\vdots \\
\left\|x_{N}\right\|^{2}
\end{array}\right]
$$

Compute a NxM matrix of dot products

$$
\left(X Y^{T}\right)_{i j}=x_{i}^{T} y_{j}
$$

Vectorizing Example

$$
\begin{aligned}
& \mathbf{D}=\left(\Sigma\left(X^{2}, 1\right)+\Sigma\left(Y^{2}, 1\right)^{T}-2 X Y^{T}\right)^{1 / 2} \\
& {\left[\begin{array}{ccc}
\left\|x_{1}\right\|^{2} \\
\vdots \\
\left\|x_{N}\right\|^{2}
\end{array}\right]+\left[\begin{array}{lll}
\left\|y_{1}\right\|^{2} & \cdots & \left\|y_{M}\right\|^{2}
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
\left\|x_{1}\right\|^{2}+\left\|y_{1}\right\|^{2} & \cdots & \left\|x_{1}\right\|^{2}+\left\|y_{M}\right\|^{2} \\
\vdots & \ddots & \vdots \\
\left\|x_{N}\right\|^{2}+\left\|y_{1}\right\|^{2} & \cdots & \left\|x_{N}\right\|^{2}+\left\|y_{M}\right\|^{2}
\end{array}\right] \quad \text { Why? }} \\
& \left(\Sigma\left(X^{2}, 1\right)+\Sigma\left(Y^{2}, 1\right)^{T}\right)_{i j}=\left\|x_{i}\right\|^{2}+\left\|y_{j}\right\|^{2}
\end{aligned}
$$

Vectorizing Example

$$
\begin{aligned}
& \mathbf{D}=\left(\Sigma\left(X^{2}, 1\right)+\Sigma\left(Y^{2}, 1\right)^{T}-2 X Y^{T}\right)^{1 / 2} \\
& \mathbf{D}_{i j}=\left\|x_{i}\right\|^{2}+\left\|y_{j}\right\|^{2}-2 x_{i}^{T} y_{j}
\end{aligned}
$$

Numpy code:
XNorm = np.sum(X**2,axis=1,keepdims=True)
YNorm = np.sum(Y**2,axis=1,keepdims=True)
D = (XNorm+YNorm.T-2*np.dot (X,Y.T))**0.5
*May have to make sure this is at least 0 (sometimes roundoff issues happen)

Does it Make a Difference?

Computing pairwise distances between 300 and 400 128-dimensional vectors

1. for x in X, for y in Y, using native python: $9 s$
2. for x in X, for y in Y, using numpy to compute distance: 0.8 s
3. vectorized: 0.0045 s ($\sim 2000 x$ faster than 1 , 175x faster than 2)
Expressing things in primitives that are optimized is usually faster

Rank

- Rank of a nxn matrix A - number of linearly independent columns (or rows) of $A /$ the dimension of the span of the columns
- Matrices with full rank ($\mathrm{n} \times \mathrm{n}$, rank n) behave nicely: can be inverted, span the full output space, are one-to-one.

Symmetric Matrices

- Symmetric: $\boldsymbol{A}^{\boldsymbol{T}}=\boldsymbol{A}$ or $\boldsymbol{A}_{i j}=\boldsymbol{A}_{j i}$
- Have lots of special
 properties

Any matrix of the form $A=X^{T} X$ is symmetric.
Quick check: $\quad A^{T}=\left(X^{T} X\right)^{T}$

$$
\begin{aligned}
& A^{T}=X^{T}\left(X^{T}\right)^{T} \\
& A^{T}=X^{T} X
\end{aligned}
$$

Special Matrices - Rotations

$$
\left[\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right]
$$

- Rotation matrices R rotate vectors and do not change vector L2 norms $\left(\|R x\|_{2}=\|x\|_{2}\right)$
- Every row/column is unit norm
- Every row is linearly independent
- Transpose is inverse $\boldsymbol{R} \boldsymbol{R}^{T}=\boldsymbol{R}^{\boldsymbol{T}} \boldsymbol{R}=\boldsymbol{I}$
- Determinant is 1 (otherwise it's also a coordinate flip/reflection), eigenvalues are 1

Eigensystems

- An eigenvector v_{i} and eigenvalue λ_{i} of a matrix \boldsymbol{A} satisfy $\boldsymbol{A} \boldsymbol{v}_{\boldsymbol{i}}=\lambda_{i} \boldsymbol{v}_{\boldsymbol{i}}\left(\boldsymbol{A} \boldsymbol{v}_{\boldsymbol{i}}\right.$ is scaled by $\left.\lambda_{i}\right)$
- Vectors and values are always paired and typically you assume $\left\|v_{i}\right\|^{2}=1$
- Biggest eigenvalue of A gives bounds on how much $f(\boldsymbol{x})=\boldsymbol{A} \boldsymbol{x}$ stretches a vector \mathbf{x}.
- Hints of what people really mean:
- "Largest eigenvector" = vector w/ largest value
- Spectral just means there's eigenvectors

Suppose I have points in a grid

Now I apply $\mathrm{f}(\mathbf{x})=\mathbf{A x}$ to these points
Pointy-end: Ax . Non-Pointy-End: x

$$
\begin{aligned}
& {\left[\begin{array}{c}
1.1 \\
0
\end{array}\right.}
\end{aligned}
$$

Red box - unit square, Blue box - after $f(x)=\mathbf{A x}$. What are the yellow lines and why?

Now I apply $\mathrm{f}(\mathbf{x})=\mathbf{A x}$ to these points Pointy-end: Ax . Non-Pointy-End: \mathbf{x}

Red box - unit square, Blue box - after $f(\mathbf{x})=\mathbf{A x}$. What are the yellow lines and why?

Eigenvectors of Symmetric Matrices

- Always n mutually orthogonal eigenvectors with n (not necessarily) distinct eigenvalues
- For symmetric \boldsymbol{A}, the eigenvector with the largest eigenvalue maximizes $\frac{x^{T} A x}{x^{T} x}$ (smallest/min)
- So for unit vectors (where $\boldsymbol{x}^{T} \boldsymbol{x}=1$), that eigenvector maximizes $\boldsymbol{x}^{\boldsymbol{T}} \boldsymbol{A x}$
- A surprisingly large number of optimization problems rely on (max/min)imizing this

The Singular Value Decomposition

Can always write a mxn matrix \mathbf{A} as: $\boldsymbol{A}=U \Sigma \boldsymbol{V}^{T}$

Rotation

Eigenvectors of $\mathbf{A A}^{\top}$

Scale

Sqrt of
Eigenvalues of $\mathbf{A}^{\top} \mathbf{A}$

The Singular Value Decomposition

Can always write a mxn matrix \mathbf{A} as: $\boldsymbol{A}=U \Sigma \boldsymbol{V}^{T}$

Rotation

Scale

Eigenvectors

 of $\boldsymbol{A A}^{\boldsymbol{T}}$Sqrt of
Eigenvalues
of $\mathbf{A}^{\top} \mathbf{A}$

Eigenvectors of $\mathbf{A}^{\top} \mathbf{A}$

Singular Value Decomposition

- Every matrix is a rotation, scaling, and rotation
- Number of non-zero singular values = rank / number of linearly independent vectors
- "Closest" matrix to A with a lower rank

Singular Value Decomposition

- Every matrix is a rotation, scaling, and rotation
- Number of non-zero singular values = rank / number of linearly independent vectors
- "Closest" matrix to A with a lower rank

Singular Value Decomposition

- Every matrix is a rotation, scaling, and rotation
- Number of non-zero singular values = rank / number of linearly independent vectors
- "Closest" matrix to A with a lower rank
- Secretly behind basically many things you do with matrices

Least-Squares

Start with two points $\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right)$

$$
y=\dot{A} v
$$

$$
\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{ll}
x_{1} & 1 \\
x_{2} & 1
\end{array}\right]\left[\begin{array}{c}
m \\
b
\end{array}\right]
$$

$$
\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{l}
m x_{1}+b \\
m x_{2}+b
\end{array}\right]
$$

We know how to solve this invert A and find v (i.e., (m,b) that fits points)

Least-Squares

$$
\begin{aligned}
& \text { Start with two points (}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right) \\
& y=A v \\
& {\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{ll}
x_{1} & 1 \\
x_{2} & 1
\end{array}\right]\left[\begin{array}{c}
m \\
b
\end{array}\right]} \\
& \left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)\|y-\mathbf{A v}\|^{2}=\left\|\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]-\left[\begin{array}{l}
m x_{1}+b \\
m x_{2}+b
\end{array}\right]\right\|^{2} \\
& =\left(y_{1}-\left(m x_{1}+b\right)\right)^{2}+\left(y_{2}-\left(m x_{2}+b\right)\right)^{2}
\end{aligned}
$$

The sum of squared differences between the actual value of y and what the model says y should be.

Least-Squares

Suppose there are $\mathrm{n}>2$ points

$$
y=A v
$$

$$
\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{N}
\end{array}\right]=\left[\begin{array}{cc}
x_{1} & 1 \\
\vdots & \vdots \\
x_{N} & 1
\end{array}\right]\left[\begin{array}{c}
m \\
b
\end{array}\right]
$$

Compute $\|y-A v\|^{2}$ again

$$
\|y-\boldsymbol{A v}\|^{2}=\sum_{i=1}^{n}\left(y_{i}-\left(m x_{i}+b\right)\right)^{2}
$$

Least-Squares

Suppose there are $\mathrm{n}>2$ points

$$
y=A v
$$

$$
\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{N}
\end{array}\right]=\left[\begin{array}{cc}
x_{1} & 1 \\
\vdots & \vdots \\
x_{N} & 1
\end{array}\right]\left[\begin{array}{c}
m \\
b
\end{array}\right]
$$

Want to minimize $\|y-A v\|^{2}$ We can control the entries of v , but columns of A can't possibly be put together in any way to produce y

Solving Least-Squares

Given y, A, and v with $y=A v o v e r d e t e r m i n e d$ (A tall / more equations than unknowns) We want to minimize $\|y-A v\|^{2}$, or find:

$$
\arg \min _{v}\|y-A v\|^{2}
$$

(The value of v that makes
the expression smallest)
Solution satisfies $\left(A^{T} A\right) v^{*}=A^{T} y$

$$
v^{*}=\left(A^{\frac{\mathrm{or}}{T} A}\right)^{-1} A^{T} y
$$

(Don't actually compute the inverse!)

When is Least-Squares Possible?

 Given y, A, and v. Want $\mathrm{y}=\mathrm{Av}$

Want n outputs, have n knobs to fiddle with, every knob is useful if A is full rank.

A: rows (outputs) > columns (knobs). Thus can't get precise output you want (not enough knobs). So settle for "closest" knob setting.

When is Least-Squares Possible?

Given y, A, and v. Want $\mathrm{y}=\mathrm{Av}$

$$
\begin{aligned}
& \mathrm{y}=\mathrm{A} \quad \mathrm{~V} \begin{array}{l}
\text { Want } \mathrm{n} \text { outputs, have } \mathrm{n} \text { knobs } \\
\text { to fiddle with, every knob is } \\
\text { useful if } \mathrm{A} \text { is full rank. }
\end{array} \\
& \mathrm{y}=\mathrm{A} \\
& \begin{array}{l}
\text { A: columns (knobs) > rows } \\
\text { (outputs). Thus, any output can } \\
\text { be expressed in infinite ways. }
\end{array}
\end{aligned}
$$

Homogeneous Least-Squares

Given a set of unit vectors (aka directions) x_{1}, \ldots, x_{n} and I want vector v that is as orthogonal to all the x_{i} as possible (for some definition of orthogonal)

Stack x_{i} into A, compute Av

$$
\begin{aligned}
& A v= {\left[\begin{array}{ccc}
- & x_{1}^{T} & - \\
& \vdots & \\
- & x_{n}^{T} & -
\end{array}\right] v=\left[\begin{array}{c}
x_{1}^{T} v \\
\vdots \\
x_{n}^{T} v
\end{array}\right] \text { if } } \\
& \text { orthog } \\
& \text { Compute }\|A v\|^{2}=\sum_{i}\left(x_{i}^{T} v\right)^{2}
\end{aligned}
$$

Sum of how orthog. v is to each x

Homogeneous Least-Squares

- A lot of times, given a matrix A we want to find the \mathbf{v} that minimizes $\|\boldsymbol{A v}\|^{2}$.
- I.e., want $\mathbf{v}^{*}=\arg \min _{\boldsymbol{v}}\|A v\|_{2}^{2}$
-What's a trivial solution?
- Set $\mathbf{v}=\mathbf{0} \rightarrow \mathbf{A v}=\mathbf{0}$
- Exclude this by forcing v to have unit norm

Homogeneous Least-Squares

Let's look at $\|\boldsymbol{A v}\|_{2}^{2}$
$\|\boldsymbol{A} \boldsymbol{v}\|_{2}^{2}=\quad$ Rewrite as dot product
$\|\boldsymbol{A} \boldsymbol{v}\|_{2}^{2}=(\mathbf{A v})^{\mathrm{T}}(\mathbf{A v}) \quad$ Distribute transpose
$\|\boldsymbol{A v}\|_{2}^{2}=\boldsymbol{v}^{\boldsymbol{T}} \boldsymbol{A}^{\boldsymbol{T}} \mathbf{A v}=\mathbf{v}^{\mathbf{T}}\left(\mathbf{A}^{\mathbf{T}} \mathbf{A}\right) \mathbf{v}$

We want the vector minimizing this quadratic form Where have we seen this?

Homogeneous Least-Squares

Ubiquitious tool in vision:

$$
\arg \min _{\|v\|^{2}=1}\|\boldsymbol{A} \boldsymbol{v}\|^{2}
$$

\longrightarrow (1) "Smallest"* eigenvector of $A^{T} A$
(2) "Smallest" right singular vector of \boldsymbol{A}

For min \rightarrow max, switch smallest \rightarrow largest
*Note: $\boldsymbol{A}^{\boldsymbol{T}} \boldsymbol{A}$ is positive semi-definite so it has all non-negative eigenvalues

Derivatives

Remember derivatives?

Derivative: rate at which a function $f(x)$ changes at a point as well as the direction that increases the function

Given quadratic function $f(x)$

$$
f(x, y)=(x-2)^{2}+5
$$

$f(x)$ is function

$$
g(x)=f^{\prime}(x)
$$

aka
$g(x)=\frac{d}{d x} f(x)$

Given quadratic function $f(x)$

$$
f(x, y)=(x-2)^{2}+5
$$

What's special about $\mathrm{x}=2$?
$f(x)$ minim. at 2 $g(x)=0$ at 2
$a=$ minimum of $f \rightarrow$

$$
g(a)=0
$$

Reverse is not true

> Rates of change $f(x, y)=(x-2)^{2}+5$

Suppose I want to increase $f(x)$ by changing x :

Blue area: move left Red area: move right

Derivative tells you direction of ascent and rate

What Calculus Should I Know

- Really need intuition
- Need chain rule
- Rest you should look up / use a computer algebra system / use a cookbook
- Partial derivatives (and that's it from multivariable calculus)

Partial Derivatives

- Pretend other variables are constant, take a derivative. That's it.
- Make our function a function of two variables

$$
\begin{array}{ll}
f(x)=(x-2)^{2}+5 & \\
\frac{\partial}{\partial x} f(x)=2(x-2) * 1=2(x-2) & \\
f_{2}(x, y)=(x-2)^{2}+5+(y+1)^{2} & \begin{array}{l}
\text { Pretend it's } \\
\text { constant } \rightarrow \\
\text { derivative }=0
\end{array} \\
\frac{\partial}{\partial x} f_{2}(x)=2(x-2) &
\end{array}
$$

Zooming Out

$$
f_{2}(x, y)=(x-2)^{2}+5+(y+1)^{2}
$$

Dark $=f(x, y)$ low Bright $=f(x, y)$ high

Taking a slice of

$$
f_{2}(x, y)=(x-2)^{2}+5+(y+1)^{2}
$$

Slice of $\mathrm{y}=0$ is the function from before: 2
$f(x)=(x-2)^{2}+5$ $f^{\prime}(x)=2(x-2)$

Taking a slice of

$$
f_{2}(x, y)=(x-2)^{2}+5+(y+1)^{2}
$$

$\frac{\partial}{\partial x} f_{2}(x, y)$ is rate of

change \& direction in x dimension

Zooming Out

$$
f_{2}(x, y)=(x-2)^{2}+5+(y+1)^{2}
$$

$$
\begin{gathered}
\frac{\partial}{\partial y} f_{2}(x, y) \text { is } \\
2(y+1)
\end{gathered}
$$

Zooming Out

$$
f_{2}(x, y)=(x-2)^{2}+5+(y+1)^{2}
$$

Gradient/Jacobian: Making a vector of

What Should I Know?

- Gradients are simply partial derivatives perdimension: if \boldsymbol{x} in $f(\boldsymbol{x})$ has n dimensions, $\nabla_{f}(x)$ has n dimensions
- Gradients point in direction of ascent and tell the rate of ascent
- If a is minimum of $f(\boldsymbol{x}) \rightarrow \nabla_{\mathrm{f}}(\mathrm{a})=\mathbf{0}$
- Reverse is not true, especially in highdimensional spaces

For the Curious

- I used to teach floating point stuff. Here's a condensed explanation
- The tl;dr is that floating points are not real numbers.

What's a Number?

$$
\begin{array}{ccccccccc}
2^{7} & 2^{6} & 2^{5} & 2^{4} & 2^{3} & 2^{2} & 2^{1} & 2^{0} \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 185 \\
& 128+32+16+8+1 & & & & 185
\end{array}
$$

Adding Two Numbers

Flag
"Integers" on a computer are integers modulo 2^{k}

Some Gotchas

$$
\begin{aligned}
& 32+(3 / 4) \times 40=32 \\
& 32+(3 \times 40) / 4=62 \\
& \text { Underflow } \\
& 32+3 / 4 \times 40= \\
& 32+0 \times 40= \\
& 32+0 \\
& \text { = } \\
& 32
\end{aligned}
$$

Some Gotchas

Should be:
math $32+(9 \times 40) / 10=68 \quad 9 \times 4=36$
uint8 $32+(9 \times 40) / 10=42$

Overflow

$32+9 \times 40 / 10=$
Why 104?
$32+104 / 10=$
$32+10$
=

$$
\begin{aligned}
& 9 \times 40=360 \\
& 360 \% 256=104
\end{aligned}
$$

42

What's a Number?

$$
\begin{array}{ccccccccc}
2^{7} & 2^{6} & 2^{5} & 2^{4} & 2^{3} & 2^{2} & 2^{1} & 2^{0} & \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 185
\end{array}
$$

How can we do fractions?
$2^{5} \quad 2^{4} \quad 2^{3} \quad 2^{2} \quad 2^{1} \quad 2^{0} 2^{-1} 2^{-2}$

1	0	1	1	1	0	0

$45 \quad 0.25$

$$
2^{3} 2^{2} 2^{1} 2^{0} 0^{-1} 2^{-2} .
$$

What's the largest number we can represent?

$$
63.75 \text { - Why? }
$$

How precisely can we measure at 63?

$$
0.25
$$

How precisely can we measure at $\mathbf{0}$?

$$
0.25
$$

Fine for many purposes but for science, seems silly

Floating Point

Exponent (E)

Fraction (F)

1
17
1

$$
\begin{aligned}
& -1 \quad 2^{7-7}=2^{0}=1 \quad 1+1 / 8=1.125 \\
& \left(-1^{S}\right)\left(2^{E+\text { bias }}\right)\left(1+\frac{F}{2^{3}}\right)
\end{aligned}
$$

Bias: allows exponent to be negative; Note: fraction = significant = mantissa; exponents of all ones or all zeros are special numbers

Floating Point

Fraction

Sign Exponent
$0 / 8000-2^{0} \times 1.00=-1$
$1 / 8001-2^{0} \times 1.125=-1.125$
$2 / 8010-2^{0} \times 1.25=-1.25$
0111
$-1 \quad \begin{gathered}7-7=0 \\ \\ \\ \\ (- \text {-bias })^{*}\end{gathered}$
$6 / 8110-2^{0} \times 1.75=-1.75$
$7 / 8111-2^{0} \times 1.875=-1.875$

Floating Point

Fraction

Sign Exponent
 1001

$0 / 8000-2^{2} \times 1.00=-4$
$1 / 8001-2^{2} \times 1.125=-4.5$
$2 / 8010-2^{2} \times 1.25=-5$
-1
9-7=2
(-bias)
$6 / 8110-2^{2} \times 1.75=-7$
$7 / 8111-2^{2} \times 1.875=-7.5$

Floating Point

Fraction

Sign Exponent
 1
 0111

$$
\begin{array}{|l|}
\hline 000 \\
\hline 001
\end{array}-^{2} \times 1.00=-1.12 \times 1.125=-1.125
$$

$$
\begin{array}{|ll}
\hline 000 & -2^{2} \times 1.00=-4 \\
\hline 001 & -2^{2} \times 1.125=-4.5 \\
\hline
\end{array}
$$

Gap between numbers is relative, not absolute

Revisiting Adding Numbers

Sign Exponent Fraction

1
0110
$000-2^{-1} \times 1.00=-0.5$

1001

000
$-2^{2} \times 1.00=-4$
$+1$
1
1001
$001-2^{2} \times 1.125=-4.5$

Actual implementation is complex

Revisiting Adding Numbers

Sign Exponent Fraction

$$
\begin{array}{r|}
\hline 10100 \\
+1000 \\
\hline
\end{array} 1002^{-3} \times 1.00=-0.125
$$

$$
-2^{2} \times 1.03125=-4.125
$$

$$
000-2^{2} \times 1.00=-4
$$

$1001001-2^{2} \times 1.125=-4.5$

Revisiting Adding Numbers

Sign Exponent Fraction

$$
\begin{array}{r|}
\hline 10100 \\
+1000 \\
\hline 1000 \\
\hline
\end{array}
$$

$$
-2^{2} \times 1.03125=-4.125
$$

$1001000-2^{2} \times 1.00=-4$
For a and b, these can happen

$$
\mathbf{a}+\mathbf{b}=\mathbf{a} \quad \mathbf{a}+\mathrm{b}-\mathbf{a} \neq \mathrm{b}
$$

Revisiting Adding Numbers

IEEE 754 Single Precision / Single

23 bits
 ≈ 7 decimal digits

Fraction

IEEE 754 Double Precision / Double
11 bits
$2^{1023} \approx 10^{308}$

52 bits
≈ 15 decimal digits

Revisiting Adding Numbers

IEEE 754 Half Precision
5 bits
$2^{16} \approx 10^{5}$
Exponent

Fraction

BFloat16 From Google
8 bits
$2^{127} \approx 10^{38}$
≈ 2 decimal digits
S Exponent

Fraction

Past Stuff

Cross Product

- Set $\{\mathbf{z}: \mathbf{z} \cdot \boldsymbol{x}=0, \mathbf{z} \cdot \boldsymbol{y}=0\}$ has an ambiguity in sign and magnitude
- Cross product $x \times y$ is: (1) orthogonal to x, y (2) has sign given by right hand rule and (3) has magnitude given by area of parallelogram of \mathbf{x} and \mathbf{y}
- Important: if x and y are the same direction or either is $\mathbf{0}$, then $\boldsymbol{x} \times$ $\boldsymbol{y}=0$.
Only in 3D!

Span

Span: all linear combinations of a set of vectors

$\operatorname{Span}(\{\uparrow\})=$ Span(\{[0,2]\}) = ? All vertical lines through origin $=$ $\{\lambda[0,1]: \lambda \in R\}$ Is blue in \{red\}'s span?

Span

Span: all linear combinations of a set of vectors
 $\operatorname{Span}(\{\uparrow, \rightarrow\})=$?

Span

Span: all linear combinations of a set of vectors
 $\operatorname{Span}(\{\uparrow, \downarrow\})=?$

Linear Independence

Recall: $\quad \boldsymbol{A} \boldsymbol{x}=\left(x_{1}+\alpha x_{2}\right) \boldsymbol{c}_{\mathbf{1}}+x_{3} \boldsymbol{c}_{\mathbf{2}}$

$$
\boldsymbol{y}=\boldsymbol{A}\left[\begin{array}{c}
x_{1}+\beta \\
x_{2}-\beta / \alpha \\
x_{3}
\end{array}\right]=\left(x_{1}+/+\alpha x_{2}-\alpha / \alpha\right) c_{1}+x_{3} c_{2}
$$

- Can write y an infinite number of ways by adding β to \mathbf{x}_{1} and subtracting $\frac{\beta}{\alpha}$ from \mathbf{x}_{2}
- Or, given a vector \mathbf{y} there's not a unique vector \mathbf{x} s.t. $\mathbf{y}=A \mathbf{x}$
- Not all \mathbf{y} have a corresponding \mathbf{x} s.t. $\mathbf{y}=\mathbf{A x}$

Linear Independence

$$
\begin{gathered}
\boldsymbol{A} \boldsymbol{x}=\left(x_{1}+\alpha x_{2}\right) \boldsymbol{c}_{\mathbf{1}}+x_{3} \boldsymbol{c}_{\mathbf{2}} \\
\boldsymbol{y}=\boldsymbol{A}\left[\begin{array}{c}
\beta \\
-\beta / \alpha \\
0
\end{array}\right]=\left(\beta-\alpha \frac{\beta}{\alpha}\right) \boldsymbol{c}_{\mathbf{1}}+0 \boldsymbol{c}_{\mathbf{2}}
\end{gathered}
$$

- What else can we cancel out?
- An infinite number of non-zero vectors \mathbf{x} can map to a zero-vector \mathbf{y}
- Called the right null-space of A.

Linear Independence

A set of vectors is linearly independent if you can't write one as a linear combination of the others.

$$
\begin{gathered}
\text { Suppose: } \boldsymbol{a}=\left[\begin{array}{l}
0 \\
0 \\
2
\end{array}\right] \boldsymbol{b}=\left[\begin{array}{l}
0 \\
6 \\
0
\end{array}\right] c=\left[\begin{array}{l}
5 \\
0 \\
0
\end{array}\right] \\
\boldsymbol{x}=\left[\begin{array}{l}
0 \\
0 \\
4
\end{array}\right]=2 \boldsymbol{a} \quad \boldsymbol{y}=\left[\begin{array}{c}
0 \\
-2 \\
1
\end{array}\right]=\frac{1}{2} \boldsymbol{a}-\frac{1}{3} \boldsymbol{b}
\end{gathered}
$$

- Is the set $\{a, b, c\}$ linearly independent?
- Is the set $\{a, b, x\}$ linearly independent?
- Max \# of independent 3D vectors?

Matrix-Vector Product

- The output space of $f(\mathbf{x})=\mathbf{A} \mathbf{x}$ is constrained to be the span of the columns of \mathbf{A}.
- Can't output things you can't construct out of your columns

An Intuition

$$
\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x}=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
\boldsymbol{c}_{1} & \boldsymbol{c}_{2} & \boldsymbol{c}_{\boldsymbol{n}} \\
\mid & \mid & \mid
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

\mathbf{x} - knobs on machine (e.g., fuel, brakes) \mathbf{y} - state of the world (e.g., where you are) A - machine (e.g., your car)

Linear Independence

Suppose the columns of 3×3 matrix \mathbf{A} are not linearly independent ($\mathrm{c}_{1}, \mathrm{ac}_{1}, \mathrm{c}_{2}$ for instance)

$$
\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x}=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
\boldsymbol{c}_{\boldsymbol{1}} & \alpha \boldsymbol{c}_{\boldsymbol{1}} & \boldsymbol{c}_{\mathbf{2}} \\
\mid & \mid & \mid
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

$$
\boldsymbol{y}=x_{1} \boldsymbol{c}_{\mathbf{1}}+\alpha x_{2} \boldsymbol{c}_{\mathbf{1}}+x_{3} \boldsymbol{c}_{\mathbf{2}}
$$

$$
\boldsymbol{y}=\left(x_{1}+\alpha x_{2}\right) \boldsymbol{c}_{\mathbf{1}}+x_{3} \boldsymbol{c}_{\mathbf{2}}
$$

Linear Independence Intuition

Knobs of \mathbf{x} are redundant. Even if \mathbf{y} has 3 outputs, you can only control it in two directions

$$
\boldsymbol{y}=\left(x_{1}+\alpha x_{2}\right) \boldsymbol{c}_{\boldsymbol{1}}+x_{3} \boldsymbol{c}_{\mathbf{2}}
$$

Inverses

- Given $\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x}, \boldsymbol{y}$ is a linear combination of columns of \mathbf{A} proportional to \mathbf{x}. If A is full-rank, we should be able to invert this mapping.
- Given some \mathbf{y} (output) and \mathbf{A}, what \mathbf{x} (inputs) produced it?
- $\mathbf{x}=\mathbf{A}^{-1} \mathbf{y}$
- Note: if you don't need to compute it, don't compute it. Solving for \mathbf{x} is much faster and stable than obtaining \mathbf{A}^{-1}.

