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Today – Math

Two goals for the class:

• Math with computers ≠ Math

• Practical math you need to know but 

may not have been taught



Adding Numbers

• Suppose b > 0

• Is a+b > a?

• Is a+b = a?



Adding Numbers

• 1 + 1 = ? 

• Suppose 𝑥𝑖 is normally distributed with mean 𝜇
and standard deviation 𝜎 for 1 ≤ 𝑖 ≤ 𝑁

• How is the average, or ෝ𝝁 =
𝟏

𝑵
σ𝒊=𝟏
𝑵 𝒙𝒊, 

distributed (qualitatively), in terms of 
variance? 

• The Free Drinks in Vegas Theorem*: ො𝜇 has 

mean 𝜇 and standard deviation 
𝜎

𝑁
.

*Not the real name. More un-fun name: law of large numbers.



Free Drinks in Vegas

Each game/variable has mean $0.10, std $2

100 games 

is uncertain 

and fun!

100K games is 

guaranteed profit: 

99.999999% lowest 

value is $0.064.

$0.01 for drinks

$0.054 for profits



Let’s Make It Big

• Suppose I average 50M normally distributed 
numbers (mean: 31, standard deviation: 1)

• For instance: have predicted and actual depth 
for 200 480x640 images and want to know the 
average error (|predicted – actual|)

numerator = 0

for x in xs:

numerator += x

return numerator / len(xs)



Let’s Make It Big

• What should happen qualitatively?

• Theory says that the average is distributed with 

mean 31 and standard deviation 
1

50𝑀
≈ 10−5

• What will happen?

• Reality: 17.47



Trying it Out

Hmm.

Hmm.



Trying it Out

a+b=a -> 

numerator is 

stuck, 

denominator 

isn’t

Roundoff 

error occurs



Take-homes

• Computer numbers aren’t math numbers

• Overflow, accidental zeros, roundoff error, and 
basic equalities are almost certainly incorrect 
for some values

• Floating points and numpy try to protect you.

• Generally safe to use a double and use built-in-
functions in numpy (not necessarily others!)

• Spooky behavior = look for numerical issues



Operations They Don’t Teach

𝑎 + 𝑒 𝑏 + 𝑒
𝑐 + 𝑒 𝑑 + 𝑒

𝑎 𝑏
𝑐 𝑑

+
𝑒 𝑓
𝑔 ℎ

=
𝑎 + 𝑒 𝑏 + 𝑓
𝑐 + 𝑔 𝑑 + ℎ

You Probably Saw Matrix Addition 

𝑎 𝑏
𝑐 𝑑

+ 𝑒 =

What is this if e is a scalar?



Broadcasting

𝑎 𝑏
𝑐 𝑑

+ 𝑒

=
𝑎 𝑏
𝑐 𝑑

+
𝑒 𝑒
𝑒 𝑒

=
𝑎 𝑏
𝑐 𝑑

+ 𝟏2𝑥2𝑒

If you want to be pedantic and proper, you expand 

e by multiplying a matrix of 1s (denoted 1)

Many smart matrix libraries do this automatically. 

This is the source of many, many bugs.



Broadcasting Example

𝑷 =

𝑥1 𝑦1
⋮ ⋮
𝑥𝑛 𝑦𝑛

𝒗 =
𝑎
𝑏

Given: a nx2 matrix P and a 2D column vector v, 

Want: nx2 difference matrix D

𝑫 =
𝑥1 − 𝑎 𝑦1 − 𝑏

⋮ ⋮
𝑥𝑛 − 𝑎 𝑦𝑛 − 𝑏

𝑷 − 𝒗𝑇 =

𝑥1 𝑦1
⋮ ⋮
𝑥𝑛 𝑦𝑛

−
𝑎 𝑏

𝑎 𝑏
⋮

Blue stuff is 

assumed / 

broadcast



Two Uses for Matrices

1. Storing things in a rectangular array (images, 
maps)
• Typical operations: element-wise operations, 

convolution (which we’ll cover next)

• Atypical operations: almost anything you learned in 
a math linear algebra class

2. A linear operator that maps vectors to 
another space (Ax)
• Typical/Atypical: reverse of above



Images as Matrices

Suppose someone hands you this matrix.

What’s wrong with it?



Contrast – Gamma curve

Typical way to 

change the contrast 

is to apply a 

nonlinear correction

pixelvalue𝛾

The quantity 𝛾
controls how much 

contrast gets added 



Contrast – Gamma curve

10%

50%

90%
Now the darkest 

regions (10th pctile) 

are much darker 

than the moderately 

dark regions (50th

pctile).

new 10%

new 

50%

new 

90%



Images as Matrices

Suppose someone hands you this matrix.

The contrast is wrong!



Results

Phew! Much Better. 



Implementation

imNew = im**4

Python+Numpy (right way):

Python+Numpy (slow way – why? ):

imNew = np.zeros(im.shape)

for y in range(im.shape[0]):

for x in range(im.shape[1]):

imNew[y,x] = im[y,x]**expFactor



Element-wise Operations

𝑨⊙𝑩 𝑖𝑗 = 𝑨𝑖𝑗 ∗ 𝑩𝑖𝑗

“Hadamard Product” / Element-wise multiplication

𝑨/𝑩 𝑖𝑗 =
𝐴𝑖𝑗

𝐵𝑖𝑗

Element-wise division

𝑨𝑝 𝑖𝑗 = 𝐴𝑖𝑗
𝑝

Element-wise power – beware notation



Story time: I swear this is relevant

Image credit: Coulon et al. Individual Recognition in Domestic Cattle (Bos taurus): Evidence from 2D-Images of Heads from 

Different Breeds. PLoS One. 2009; 4(2): e4441.



Sums Across Axes

𝑨 =

𝑥1 𝑦1
⋮ ⋮
𝑥𝑛 𝑦𝑛

Suppose have 

Nx2 matrix A

Σ(𝑨, 1) =

𝑥1 + 𝑦1
⋮

𝑥𝑛 + 𝑦𝑛

ND col. vec.

Σ(𝑨, 0) = 

𝑖=1

𝑛

𝑥𝑖 ,

𝑖=1

𝑛

𝑦𝑖2D row vec

Note – libraries distinguish between N-D column vector and Nx1 matrix.



Vectorizing Example

• Suppose I represent each image as a 128-
dimensional vector

• I want to compute all the pairwise distances 
between {x1, …, xN} and {y1, …, yM} so I can 
find, the nearest yj for every xi

• Identity: 𝒙 − 𝒚 2 = 𝒙 2 + 𝒚 2 − 2𝒙𝑇𝒚

• Or: 𝒙 − 𝒚 = 𝒙 2 + 𝒚 2 − 2𝒙𝑇𝒚
1/2



Vectorizing Example

𝑿 =

− 𝒙1 −
⋮

− 𝒙𝑁 −
𝒀 =

− 𝒚1 −
⋮

− 𝒚𝑀 −

𝑿𝒀𝑻
𝑖𝑗
= 𝒙𝒊

𝑻𝒚𝒋

𝒀𝑻 =
| |
𝒚1 ⋯ 𝒚𝑀
| |

𝚺 𝑿𝟐, 𝟏 =
𝒙𝟏

𝟐

⋮
𝒙𝑵

𝟐

Compute a Nx1 

vector of norms

(can also do Mx1)

Compute a NxM

matrix of dot products



Vectorizing Example

𝐃 = Σ 𝑿𝟐, 1 + Σ 𝒀𝟐, 1
𝑻
− 2𝑿𝒀𝑻

1/2

𝒙𝟏
𝟐

⋮
𝒙𝑵

𝟐

+ 𝒚1
𝟐 ⋯ 𝒚𝑀

𝟐

Σ 𝑿2, 1 + Σ 𝒀2, 1
𝑇

𝑖𝑗
= 𝒙𝑖

2 + 𝒚𝑗
2

𝒙𝟏
2 + 𝒚𝟏

2 ⋯ 𝒙𝟏
2 + 𝒚𝑴

2

⋮ ⋱ ⋮
𝒙𝑵

2 + 𝒚𝟏
2 ⋯ 𝒙𝑵

2 + 𝒚𝑴
2

Why?



Vectorizing Example

𝐃𝑖𝑗 = 𝒙𝒊
2 + 𝒚𝒋

2
− 2𝒙𝒊

𝑻𝒚𝒋

Numpy code:
XNorm = np.sum(X**2,axis=1,keepdims=True) 

YNorm = np.sum(Y**2,axis=1,keepdims=True)

D = (XNorm+YNorm.T-2*np.dot(X,Y.T))**0.5

𝐃 = Σ 𝑿𝟐, 1 + Σ 𝒀𝟐, 1
𝑻
− 2𝑿𝒀𝑻

1/2

*May have to make sure this is at least 0 

(sometimes roundoff issues happen)



Does it Make a Difference?

Computing pairwise distances between 300 and 
400 128-dimensional vectors

1. for x in X, for y in Y, using native python: 9s

2. for x in X, for y in Y, using numpy to compute 
distance: 0.8s

3. vectorized: 0.0045s (~2000x faster than 1, 
175x faster than 2)

Expressing things in primitives that are 
optimized is usually faster



Rank

• Rank of a nxn matrix A – number of linearly 
independent columns (or rows) of A / the 
dimension of the span of the columns

• Matrices with full rank (n x n, rank n) behave 
nicely: can be inverted, span the full output 
space, are one-to-one. 



Symmetric Matrices

• Symmetric: 𝑨𝑻 = 𝑨 or 
𝑨𝑖𝑗 = 𝑨𝑗𝑖

• Have lots of special 
properties

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

Any matrix of the form 𝑨 = 𝑿𝑻𝑿 is symmetric.

Quick check: 𝑨𝑻 = 𝑿𝑻𝑿
𝑻

𝑨𝑻 = 𝑿𝑻 𝑿𝑻 𝑻

𝑨𝑻 = 𝑿𝑻𝑿



Special Matrices – Rotations

𝑟11 𝑟12 𝑟13
𝑟21 𝑟22 𝑟23
𝑟31 𝑟32 𝑟33

• Rotation matrices 𝑹 rotate vectors and do not 

change vector L2 norms ( 𝑹𝒙 2 = 𝒙 2)

• Every row/column is unit norm

• Every row is linearly independent

• Transpose is inverse 𝑹𝑹𝑻 = 𝑹𝑻𝑹 = 𝑰
• Determinant is 1 (otherwise it’s also a coordinate 

flip/reflection), eigenvalues are 1



Eigensystems

• An eigenvector 𝒗𝒊 and eigenvalue 𝜆𝑖 of a 
matrix 𝑨 satisfy 𝑨𝒗𝒊 = 𝜆𝑖𝒗𝒊 (𝑨𝒗𝒊 is scaled by 𝜆𝑖)

• Vectors and values are always paired and 
typically you assume 𝒗𝒊

2 = 1

• Biggest eigenvalue of A gives bounds on how 
much 𝑓 𝒙 = 𝑨𝒙 stretches a vector x. 

• Hints of what people really mean:
• “Largest eigenvector” = vector w/ largest value

• Spectral just means there’s eigenvectors



Suppose I have points in a grid



Now I apply f(x) = Ax to these points

Pointy-end: Ax . Non-Pointy-End: x



Red box – unit square, Blue box – after f(x) = Ax. 

What are the yellow lines and why?

𝑨 =
1.1 0
0 1.1



𝑨 =
0.8 0
0 1.25

Now I apply f(x) = Ax to these points

Pointy-end: Ax . Non-Pointy-End: x



Red box – unit square, Blue box – after f(x) = Ax. 

What are the yellow lines and why?

𝑨 =
0.8 0
0 1.25



Red box – unit square, Blue box – after f(x) = Ax. 

Can we draw any yellow lines?

𝑨 =
cos(𝑡) −sin(𝑡)
sin(𝑡) cos(𝑡)



Eigenvectors of Symmetric Matrices

• Always n mutually orthogonal eigenvectors 
with n (not necessarily) distinct eigenvalues

• For symmetric 𝑨, the eigenvector with the 

largest eigenvalue maximizes 
𝒙𝑻𝑨𝒙

𝒙𝑻𝒙
(smallest/min)

• So for unit vectors (where 𝒙𝑻𝒙 = 1), that 
eigenvector maximizes 𝒙𝑻𝑨𝒙

• A surprisingly large number of optimization 
problems rely on (max/min)imizing this



The Singular Value Decomposition

UA =

Rotation

Can always write a mxn matrix A as: 𝑨 = 𝑼𝚺𝑽𝑻

Eigenvectors 

of AAT

∑

Scale

Sqrt of 

Eigenvalues 

of ATA

σ1

σ2

σ3

0

0



The Singular Value Decomposition

U ∑A =

Rotation Scale

VT

Rotation

Can always write a mxn matrix A as: 𝑨 = 𝑼𝚺𝑽𝑻

Eigenvectors 

of AAT

Sqrt of 

Eigenvalues 

of ATA

Eigenvectors 

of ATA



Singular Value Decomposition

• Every matrix is a rotation, scaling, and rotation

• Number of non-zero singular values = rank / 
number of linearly independent vectors

• “Closest” matrix to A with a lower rank

UA =

σ1

σ2

σ3

0

0
VT



Singular Value Decomposition

• Every matrix is a rotation, scaling, and rotation

• Number of non-zero singular values = rank / 
number of linearly independent vectors

• “Closest” matrix to A with a lower rank

UÂ =

σ1

σ2

0

0
VT

0



Singular Value Decomposition

• Every matrix is a rotation, scaling, and rotation

• Number of non-zero singular values = rank / 
number of linearly independent vectors

• “Closest” matrix to A with a lower rank

• Secretly behind basically many things you do 
with matrices



Least-Squares

Start with two points (xi,yi)

𝑦1
𝑦2

=
𝑥1 1
𝑥2 1

𝑚
𝑏

𝒚 = 𝑨𝒗

𝑦1
𝑦2

=
𝑚𝑥1 + 𝑏
𝑚𝑥2 + 𝑏

We know how to solve this –

invert A and find v (i.e., (m,b) 

that fits points) 

(x1,y1)

(x2,y2)



Least-Squares

Start with two points (xi,yi)

𝑦1
𝑦2

=
𝑥1 1
𝑥2 1

𝑚
𝑏

𝒚 = 𝑨𝒗

𝑦1
𝑦2

−
𝑚𝑥1 + 𝑏
𝑚𝑥2 + 𝑏

2

𝒚 − 𝑨𝒗 2 =

= 𝑦1 − 𝑚𝑥1 + 𝑏
2
+ 𝑦2 − 𝑚𝑥2 + 𝑏

2

(x1,y1)

(x2,y2)

The sum of squared differences between 

the actual value of y and 

what the model says y should be.



Least-Squares

Suppose there are n > 2 points

𝑦1
⋮
𝑦𝑁

=
𝑥1 1
⋮ ⋮
𝑥𝑁 1

𝑚
𝑏

𝒚 = 𝑨𝒗

Compute 𝒚 − 𝑨𝒗 2 again  

𝒚 − 𝑨𝒗 2 =

𝑖=1

𝑛

𝑦𝑖 − (𝑚𝑥𝑖 + 𝑏) 2



Least-Squares

Suppose there are n > 2 points

𝑦1
⋮
𝑦𝑁

=
𝑥1 1
⋮ ⋮
𝑥𝑁 1

𝑚
𝑏

𝒚 = 𝑨𝒗

Want to minimize 𝒚 − 𝑨𝒗 2

We can control the entries of v, 

but columns of A can’t possibly 

be put together in any way to 

produce y



Solving Least-Squares

Given y, A, and v with y = Av overdetermined 

(A tall / more equations than unknowns) 

We want to minimize 𝒚 − 𝑨𝒗 𝟐, or find:

arg min𝒗 𝒚 − 𝑨𝒗 2

(The value of v that makes 

the expression smallest)

Solution satisfies 𝑨𝑻𝑨 𝒗∗ = 𝑨𝑻𝒚

or

𝒗∗ = 𝑨𝑻𝑨
−1
𝑨𝑻𝒚

(Don’t actually compute the inverse!)



When is Least-Squares Possible?

Given y, A, and v. Want y = Av

Ay = v
Want n outputs, have n knobs 

to fiddle with, every knob is 

useful if A is full rank.

Ay

=
v

A: rows (outputs) > columns 

(knobs). Thus can’t get precise 

output you want (not enough 

knobs). So settle for “closest” 

knob setting.



When is Least-Squares Possible?

Given y, A, and v. Want y = Av

Ay = v
Want n outputs, have n knobs 

to fiddle with, every knob is 

useful if A is full rank.

Ay =
v

A: columns (knobs) > rows 

(outputs). Thus, any output can 

be expressed in infinite ways.



Homogeneous Least-Squares

Given a set of unit vectors (aka directions) 𝒙𝟏, … , 𝒙𝒏
and I want vector 𝒗 that is as orthogonal to all the 𝒙𝒊
as possible (for some definition of orthogonal)

𝑨𝒗 =
− 𝒙𝟏

𝑻 −
⋮

− 𝒙𝒏
𝑻 −

𝒗

Stack 𝒙𝒊 into A, compute Av

=
𝒙𝟏
𝑻𝒗
⋮

𝒙𝒏
𝑻𝒗

𝒙𝟏
𝒙𝟐

𝒙𝒏…

𝒗
𝑨𝒗 𝟐 =

𝒊

𝒏

𝒙𝒊
𝑻𝒗

𝟐
Compute

0 if 

orthog

Sum of how orthog. v is to each x



Homogeneous Least-Squares

• A lot of times, given a matrix A we want to find 
the v that minimizes 𝑨𝒗 2 .

• I.e., want 𝐯∗ = argmin
𝒗

𝑨𝒗 2
2

• What’s a trivial solution? 

• Set v = 0 → Av = 0

• Exclude this by forcing v to have unit norm



Homogeneous Least-Squares

Let’s look at 𝑨𝒗 2
2

𝑨𝒗 2
2 = Rewrite as dot product

𝑨𝒗 2
2 = 𝒗𝑻𝑨𝑻𝐀𝐯 = 𝐯𝐓 𝐀𝐓𝐀 𝐯

𝑨𝒗 2
2 = 𝐀𝐯 T(𝐀𝐯) Distribute transpose

We want the vector minimizing this quadratic form

Where have we seen this?



Homogeneous Least-Squares

arg min
𝒗 2=1

𝑨𝒗 2

*Note: 𝑨𝑻𝑨 is positive semi-definite so it has all non-negative eigenvalues

(1) “Smallest”* eigenvector of 𝑨𝑻𝑨

(2) “Smallest” right singular vector of 𝑨

Ubiquitious tool in vision:

For min → max, switch smallest → largest



Derivatives

Remember derivatives? 

Derivative: rate at which a function f(x) changes 
at a point as well as the direction that increases 
the function



Given quadratic function f(x)

𝑓 𝑥 is function

𝑔 𝑥 = 𝑓′ 𝑥

aka

𝑔 𝑥 =
𝑑

𝑑𝑥
𝑓(𝑥)

𝑓 𝑥, 𝑦 = 𝑥 − 2 2 + 5



Given quadratic function f(x)

What’s special 

about x=2?

𝑓 𝑥 minim. at 2

𝑔 𝑥 = 0 at 2

a = minimum of f →

𝑔 𝑎 = 0

Reverse is not true

𝑓 𝑥, 𝑦 = 𝑥 − 2 2 + 5



Rates of change

Suppose I want to 

increase f(x) by 

changing x:

Blue area: move left

Red area: move right

Derivative tells you 

direction of ascent 

and rate

𝑓 𝑥, 𝑦 = 𝑥 − 2 2 + 5



What Calculus Should I Know

• Really need intuition

• Need chain rule

• Rest you should look up / use a computer 
algebra system / use a cookbook 

• Partial derivatives (and that’s it from 
multivariable calculus)



Partial Derivatives

• Pretend other variables are constant, take a 
derivative. That’s it.

• Make our function a function of two variables

𝑓2 𝑥, 𝑦 = 𝑥 − 2 2 + 5 + 𝑦 + 1 2

𝑓 𝑥 = 𝑥 − 2 2 + 5
𝜕

𝜕𝑥
𝑓 𝑥 = 2 𝑥 − 2 ∗ 1 = 2(𝑥 − 2)

𝜕

𝜕𝑥
𝑓2 𝑥 = 2(𝑥 − 2)

Pretend it’s 

constant → 

derivative = 0



Zooming Out

𝑓2 𝑥, 𝑦 = 𝑥 − 2 2 + 5 + 𝑦 + 1 2

Dark = f(x,y) low

Bright = f(x,y) high



Taking a slice of

𝑓2 𝑥, 𝑦 = 𝑥 − 2 2 + 5 + 𝑦 + 1 2

Slice of y=0 is the 

function from before:

𝑓 𝑥 = 𝑥 − 2 2 + 5
𝑓′ 𝑥 = 2(𝑥 − 2)



Taking a slice of

𝑓2 𝑥, 𝑦 = 𝑥 − 2 2 + 5 + 𝑦 + 1 2

𝜕

𝜕𝑥
𝑓2 𝑥, 𝑦 is rate of 

change & direction in 

x dimension



Zooming Out

𝑓2 𝑥, 𝑦 = 𝑥 − 2 2 + 5 + 𝑦 + 1 2

𝜕

𝜕𝑦
𝑓2 𝑥, 𝑦 is

2(𝑦 + 1)
and is the rate of 

change & direction in 

y dimension



Zooming Out

𝑓2 𝑥, 𝑦 = 𝑥 − 2 2 + 5 + 𝑦 + 1 2

Gradient/Jacobian:

Making a vector of 

∇𝑓=
𝜕𝑓

𝜕𝑥
,
𝜕𝑓

𝜕𝑦

gives rate and 

direction of change.

Arrows point OUT of 

minimum / basin.



What Should I Know?

• Gradients are simply partial derivatives per-
dimension: if 𝒙 in 𝑓(𝒙) has n dimensions, ∇𝑓(𝑥)
has n dimensions

• Gradients point in direction of ascent and tell 
the rate of ascent

• If a is minimum of 𝑓(𝒙) → ∇f a = 𝟎

• Reverse is not true, especially in high-
dimensional spaces





For the Curious

• I used to teach floating point stuff. Here’s a 
condensed explanation

• The tl;dr is that floating points are not real 
numbers.



What’s a Number?

1 0 1 1 1 0 0

27 26 25 24 23 22 21 20

1 185
185128 + 32 + 16 + 8 + 1 = 



Adding Two Numbers

“Integers” on a computer are integers modulo 2k

Carry

Flag
Result

28 27

1

26

0

25

1

24

1

23

1

22

0

21

0

20

1 185
0 1 1 0 1 0 0 1 105

1 340 0 1 0 0 0 1 0



Some Gotchas

Why?
32 + (3 / 4) x 40 = 32

32 + (3 x 40) / 4 = 62

32 + 3 / 4 x 40 =

32 + 0      x 40 =

32 + 0              =

32

Underflow

32 + 3 x 40 / 4 =

32 + 120     / 4 =

32 + 30            =

62

No Underflow

Ok – you have to multiply before dividing 



Some Gotchas

42

32 + 9 x 40 / 10 =

32 + 104     / 10 =

Overflow

32 + (9 x 40) / 10 = uint8

32 + (9 x 40) / 10 = 68math

Why 104?

9 x 40 = 360

360 % 256 = 104

Should be: 

9x4=36

32 + 10              =

42



What’s a Number?

27

1

26

0

25

1

24

1

23

1

22

0

21

0

20

1 185

How can we do fractions?

25 24 23 22 21 20 2-1 2-2

1 0 1 1 1 0 0 1 45.25

45 0.25



Fixed-Point Arithmetic

25

1

24

0

23

1

22

1

21

1

20

0

2-1

0

2-2

1 45.25
What’s the largest number we can represent?

63.75 – Why?

How precisely can we measure at 63?

How precisely can we measure at 0?

0.25

0.25

Fine for many purposes but for science, seems silly



Floating Point

0 1 1 11 0 0 1

Sign (S) Exponent (E) Fraction (F)

−𝟏𝑺 𝟐𝑬+𝒃𝒊𝒂𝒔 𝟏 +
𝑭

𝟐𝟑

1 7 1

-1 27-7 = 20 =1 1+1/8 = 1.125

Bias: allows exponent to be negative; Note: fraction = significant = mantissa; 

exponents of all ones or all zeros are special numbers



Floating Point

Sign Exponent

Fraction

0 0 0 -20 x 1.00 = -1 0/8

0 0 1 -20 x 1.125 = -1.125 1/8

-20 x 1.25 = -1.25 0 1 02/8

1 1 0

1 1 1

-20 x 1.75 = -1.75 

-20 x 1.875 = -1.875 

…

6/8

7/8

1 0 1 1 1

7-7=0 

*(-bias)*

-1



Floating Point
Fraction

0 0 0 -22 x 1.00 = -4 0/8

0 0 1 -22 x 1.125 = -4.51/8

0 1 0

1 1 0

1 1 1

-22 x 1.25 = -5 

-22 x 1.75 = -7

-22 x 1.875 = -7.5

…

2/8

6/8

7/8

Sign Exponent

1 1 0 0 1

9-7=2 

*(-bias)*

-1



Floating Point

0 0 0
1 0 1 1 1

Sign Exponent
Fraction

0 0 1

-20 x 1.00 = -1 

-20 x 1.125 = -1.125 

0 0 0
1 1 0 0 1

0 0 1

-22 x 1.00 = -4 

-22 x 1.125 = -4.5

Gap between numbers is relative, not absolute



Revisiting Adding Numbers

Sign Exponent Fraction

1 1 0 0 1 0 0 0 -22 x 1.00 = -4 

1 0 1 1 0 0 0 0 -2-1 x 1.00 = -0.5 

1 1 0 0 1 0 0 1 -22 x 1.125 = -4.5 

Actual implementation is complex



Revisiting Adding Numbers

Sign Exponent Fraction

1 1 0 0 1 0 0 0 -22 x 1.00 = -4 

1 0 1 0 0 0 0 0 -2-3 x 1.00 = -0.125 

-22 x 1.00 = -4 1 1 0 0 1 0 0 0

1 1 0 0 1 0 0 1 -22 x 1.125 = -4.5 

?

-22 x 1.03125 = -4.125 



Revisiting Adding Numbers

Sign Exponent Fraction

1 1 0 0 1 0 0 0 -22 x 1.00 = -4 

1 0 1 0 0 0 0 0 -2-3 x 1.00 = -0.125 

-22 x 1.03125 = -4.125 

-22 x 1.00 = -4 1 1 0 0 1 0 0 0

For a and b, these can happen 

a + b = a a+b-a ≠ b



Revisiting Adding Numbers

S Exponent Fraction

8 bits

2127 ≈ 1038

23 bits

≈ 7 decimal digits

S Exponent Fraction

11 bits

21023 ≈ 10308

52 bits

≈ 15 decimal digits

IEEE 754 Single Precision / Single

IEEE 754 Double Precision / Double



Revisiting Adding Numbers

S Exponent Fraction

5 bits

216 ≈ 105

10 bits

≈ 3 decimal digits

IEEE 754 Half Precision

BFloat16 From Google

S Exponent

8 bits

2127 ≈ 1038

7 bits

≈ 2 decimal digits

Fraction



Past Stuff



Cross Product

• Set {𝒛: 𝒛 ⋅ 𝒙 = 0, 𝒛 ⋅ 𝒚 = 0} has an 

ambiguity in sign and magnitude

• Cross product 𝒙 × 𝒚 is: (1) 

orthogonal to x, y  (2) has sign 

given by right hand rule and (3) 

has magnitude given by area of 

parallelogram of x and y

• Important: if x and y are the same 

direction or either is 0, then 𝒙 ×
𝒚 = 𝟎 . 

• Only in 3D!

𝒙
𝒚

𝒙 × 𝒚

Image credit: Wikipedia.org



Span

Span: all linear 

combinations of a 

set of vectors

Span({    }) =

Span({[0,2]}) = ?

All vertical lines 

through origin =

𝜆 0,1 : 𝜆 ∈ 𝑅

Is blue in {red}’s 

span? 



Span

Span: all linear 

combinations of a 

set of vectors

Span({    ,      }) = ? 



Span

Span: all linear 

combinations of a 

set of vectors

Span({    ,      }) = ? 



Linear Independence

𝑨𝒙 = 𝑥1 + 𝛼𝑥2 𝒄𝟏 + 𝑥3𝒄𝟐

• Or, given a vector y there’s not a unique 

vector x s.t. y =Ax

• Not all y have a corresponding x s.t. y=Ax

𝒚 = 𝑨
𝑥1 + 𝛽
𝑥2 − 𝛽/𝛼

𝑥3

• Can write y an infinite number of ways by 

adding 𝛽 to x1 and subtracting 
𝛽

𝛼
from x2

Recall:

= 𝑥1 + 𝛽 + 𝛼𝑥2 − 𝛼
𝛽

𝛼
𝑐1 + 𝑥3𝑐2



Linear Independence

𝑨𝒙 = 𝑥1 + 𝛼𝑥2 𝒄𝟏 + 𝑥3𝒄𝟐

• An infinite number of non-zero vectors x can 

map to a zero-vector y

• Called the right null-space of A.

𝒚 = 𝑨
𝛽

−𝛽/𝛼
0

= 𝛽 − 𝛼
𝛽

𝛼
𝒄𝟏 + 0𝒄𝟐

• What else can we cancel out?



Linear Independence

𝒚 =
0
−2
1

=
1

2
𝒂 −

1

3
𝒃𝒙 =

0
0
4

= 2𝒂

• Is the set {a,b,c} linearly independent?

• Is the set {a,b,x} linearly independent?

• Max # of independent 3D vectors?

𝒂 =
0
0
2

𝒃 =
0
6
0

𝒄 =
5
0
0

Suppose:

A set of vectors is linearly independent if you can’t 

write one as a linear combination of the others.



Matrix-Vector Product

𝑨𝒙 =
| |
𝒄𝟏 ⋯ 𝒄𝒏
| |

𝒙
Right-multiplying A by x

mixes columns of A

according to entries of x

• The output space of f(x) = Ax is constrained to 

be the span of the columns of A.

• Can’t output things you can’t construct out of 

your columns



An Intuition

x
Ax

y1

y2

y3

x1 x2 x3

y

𝒚 = 𝑨𝒙 =
| | |
𝒄𝟏 𝒄𝟐 𝒄𝒏
| | |

𝑥1
𝑥2
𝑥3

x – knobs on machine (e.g., fuel, brakes)

y – state of the world (e.g., where you are)

A – machine (e.g., your car)



Linear Independence

𝒚 = 𝑨𝒙 =
| | |
𝒄𝟏 𝛼𝒄𝟏 𝒄𝟐
| | |

𝑥1
𝑥2
𝑥3

Suppose the columns of 3x3 matrix A are not

linearly independent (c1, αc1, c2 for instance)

𝒚 = 𝑥1𝒄𝟏 + 𝛼𝑥2𝒄𝟏 + 𝑥3𝒄𝟐
𝒚 = 𝑥1 + 𝛼𝑥2 𝒄𝟏 + 𝑥3𝒄𝟐



Linear Independence Intuition

Knobs of x are redundant. Even if y has 3 

outputs, you can only control it in two directions

𝒚 = 𝑥1 + 𝛼𝑥2 𝒄𝟏 + 𝑥3𝒄𝟐

x
Ax

y1

y2

y3

x1 x2 x3

y



Inverses

• Given 𝒚 = 𝑨𝒙, y is a linear combination of 
columns of A proportional to x. If A is full-rank, 
we should be able to invert this mapping.

• Given some y (output) and A, what x (inputs) 
produced it?

• x = A-1y

• Note: if you don’t need to compute it, don’t 
compute it. Solving for x is much faster and 
stable than obtaining A-1.
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