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Today — Math

Two goals for the class:

* Math with computers # Math

* Practical math you need to know but
may not have been taught

UNIVERSI




Adding Numbers

* Suppose b >0
 |Is at+b > a?
 |Is at+b = a?



Adding Numbers

c1+1=7?

» Suppose x; is normally distributed with mean u
and standard deviationg for1 <i <N

* How is the average, or u = %Z’i"zl X;,
distributed (qualitatively), in terms of
variance?

* The Free Drinks in Vegas Theorem™. ji has

. . o
mean u and standard deviation R

*Not the real name. More un-fun name: law of large numbers.



Value of average of variables
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Free Drinks in Vegas
Each game/variable has mean $0.10, std $2
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Number of variables

100K games is
guaranteed profit:
99.999999% lowest
value is $0.064.
$0.01 for drinks
$0.054 for profits



Let's Make It Big

» Suppose | average 50M normally distributed
numbers (mean: 31, standard deviation: 1)

* For instance: have predicted and actual depth
for 200 480x640 images and want to know the
average error (|predicted — actuall|)

numerator = 0
for x 1n xs:
numerator += X
return numerator / len (xs)



Let's Make It Big

 What should happen qualitatively?

* Theory says that the average is distributed with

o 1 a5
mean 31 and standard deviation —— ~ (107°)

 What will happen?
* Reality: 17.47



Empirical average

Trying it Out

Hmm.
o —
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pe— Theory
- Reality with 32 bit
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Number of numbers le7



Trying it Out
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Take-homes

 Computer numbers aren’'t math numbers

* Overflow, accidental zeros, roundoff error, and
basic equalities are almost certainly incorrect
for some values

 Floating points and numpy try to protect you.

* Generally safe to use a double and use built-in-
functions in numpy (not necessarily others!)

» Spooky behavior = look for numerical issues



Operations They Don’t Teach
You Probably Saw Matrix Addition

[a b]+e fl l|ate b-
c d g h|

c+g d-
What is this if e is a scalar?

a b - a+e b-
[c d+e_ [c——e d -




Broadcasting

If you want to be pedantic and proper, you expand
e by multiplying a matrix of 1s (denoted 1)

b a b]
[? d +e = -(; d_ + 123(,'28
_la bl e e
e d T [8 e]

Many smart matrix libraries do this automatically.
This is the source of many, many bugs.



Broadcasting Example

Given: a nx2 matrix P and a 2D column vector v,
Want: nx2 difference matrix D

x1 )’1 a _x1 —a Yy — b
i X 1 vT [b] D = . .
Xn  Ynl Xn—a Yp— b_
X1 V1] a b] Bluestuffis
P—-vi=|: ‘|- assumed /

x, Y.l |a b] broadcast




Two Uses for Matrices

1. Storing things in a rectangular array (images,
maps)
 Typical operations. element-wise operations,
convolution (which we’ll cover next)

 Alypical operations: almost anything you learned in
a math linear algebra class

2. Alinear operator that maps vectors to
another space (Ax)
 Typical/Atypical: reverse of above



Images as Matrices

Suppose someone hands you this matrix.
What’s wrong with it?




Contrast — Gamma curve

Typical way to 10
change the contrast
IS to apply a

nonlinear correction

o
o

o
o

pixelvalue?

Output Value
o
n

The quantity y
controls how much 02
contrast gets added

0.0

— Y=X"4 (post-gamma)
m— Y=X (N0 gamma)

0.0 0.2 0.4 0.6 0.8 1.0
Input Value




Contrast — Gamma curve

Now the darkest Lo| — v=x°4 (postganm) 009
regions (10 pctile) 0
are much darker 08
than the moderately
dark regions (50"
pctile).

o
o

Output Value

=
N

o
N

0.0

0.0 0.2 0.4 0.6 0.8 1.0
Input Value



Images as Matrices

Suppose someone hands you this matrix.
The contrast is wrong!
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Implementation

Python+Numpy (right way):
imNew = 1m**4
Python+Numpy (slow way — why? ):

imNew = np.zeros(im.shape)
for vy 1n range(im.shape[0]) :
for x 1n range(im.shapel[l]) :
imNew[y,x] = 1m[y,Xx]**expFactor



Element-wise Operations

Element-wise power — beware notation
_ AP
(Ap)ij — Aij

“Hadamard Product” / Element-wise multiplication
(A O B);j = A;j * By
Element-wise division

(A/B);; = i



Story time: | swear this is relevant

Sample Individu al Individuaks rewsarded
Wiew

Front | % i “ Qg.

Profile
3 front
34 back

Mirror

Figure 1
Example of stimuli used in the experiment of the recognition of a familiar Prim'Holstein individual.

Ten views represented the sample individuals (A) and ten views represented three other individuals (B). In
training, a frontal view of a face (the first line of the ﬁgure,u of the sample individual (A) had to be
discriminated from a frontal view of an individual in the group (B). In generalization test, for each trial, an

image of the sample individual (A) and an image of a cow from the group (B) were randomly selected and

presented simultaneously. For the second experiment, individuals were unfamiliar Prim'H. in cows, for the

third experiment unfamiliar Normande cows and for the last experiment unfamiliar Charolaise cows.

Image credit: Coulon et al. Individual Recognition in Domestic Cattle (Bos taurus): Evidence from 2D-Images of Heads from
Different Breeds. PLoS One. 2009; 4(2): e4441.



Sums Across Axes

Suppose have
Nx2 matrix A

ND col. vec.

2D row vec

X1 Y1
X1+ Y1
2(A4,1) = :
_le + yTl
- L
Z(A'O) — zxi ’z:w
i=1 i=1

Note — libraries distinguish between N-D column vector and Nx1 matrix.




Vectorizing Example

» Suppose | represent each image as a 128-
dimensional vector

| want to compute all the pairwise distances
between {x,, ..., Xy} and {y,, ..., yu} SO | can
find, the nearest y; for every x;

+ Identity: [lx — ylI2 = [lx]|2 + lIylIZ — 2xTy
1/2
cor llx = yll = (%l + Iyl — 2x7y)"



Vectorizing Example

- x; - -
- XN |~

Compute a Nx1
vector of norms
(can also do Mx1)

Compute a NxM
matrix of dot products

Y1 ]

Y .

Z(X%,1) =

YT =y,

11

_||xN||2_

(XYT)U = X] Y

Ym




Vectorizing Example

/
- (Z(XZ, 1) +2(v2,1) — zxyT)1 2

—
L a2 llyul?]
llxnll?
2002+ 1y ll2 - xall? + lywll?

: : Why?
llaenll? + Dyl - el + lyull?

(2(x%,1) + 2(r2,1) )] EAESEA



Vectorizing Example
1/2
D = (2(x2,1) +3(v?1) —2xv7)
2
D;j = llxall® + [|lyl|” — 2x7;
Numpy code:
XNorm = np.sum(X**2,axis=1, keepdims=True)

YNorm = np.sum(Y**2,axis=1, keepdims=True)
D = (XNormt+YNorm.T-2*np.dot (X,Y.T))**0.5

*May have to make sure this is at least O
(sometimes roundoff issues happen)



Does it Make a Difference?

Computing pairwise distances between 300 and
400 128-dimensional vectors

1. for xin X, for y in Y, using native python: 9s

2. for xin X, for y inY, using numpy to compute
distance: 0.8s

3. vectorized: 0.0045s (~2000x faster than 1,
175x faster than 2)

Expressing things in primitives that are
optimized is usually faster



Rank

* Rank of a nxn matrix A — number of linearly
iIndependent columns (or rows) of A/ the
dimension of the span of the columns

» Matrices with full rank (n x n, rank n) behave
nicely: can be inverted, span the full output
space, are one-to-one.



Symmetric Matrices

. . T — _ -
Symmetric: A" = A or (111/ a1 413

A = A.
S | az1q 2 423
« Have lots of special 0. 0.
. az{“ azy" asz.
properties

Any matrix of the form A = XTX is symmetric.

Quick check: AT = (XTx)'
AT — XT(XT)T
AT = xTx



Special Matrices — Rotations

111 T12 1137
21 Tz T23
31 132 T33.

Rotation matrices R rotate vectors and do not
change vector L2 norms (||Rx||, = ||x]|,)
Every row/column is unit norm

Every row is linearly independent

Transpose is inverse RRT = RTR =1

* Determinant is 1 (otherwise it's also a coordinate
flip/reflection), eigenvalues are 1



Eigensystems

* An eigenvector v; and eigenvalue A; of a
matrix A satisfy Av; = A;v; (Av; is scaled by A;)

* Vectors and values are always paired and
typically you assume ||v;]|? = 1

* Biggest eigenvalue of A gives bounds on how
much f(x) = Ax stretches a vector x.

* Hints of what people really mean:
 “Largest eigenvector’ = vector w/ largest value
« Spectral just means there’s eigenvectors



2.0

1.5

1.0

0.5

0.0

—1.0;

—-1.5

20 -15 -10 -05 00 05 10 15 20

Suppose | have points in a grid




T T L . T T D R R R R A A
e T S S O N L T I R I i

¥ " I T T e

e, ey, ey, e, e, W, Wm A » 13 &

L L - - P G g

— — T T TS 8 - - -

= = e - = — — ——

- s - T, T, T, T, g

e e il . . ) - - v .

L R T T e

2.0

AXx to these points

1.5

1.0

0.5

0.0

Pl S S S S A . B T . T e e e e
Pl AV A A S N e R N T T o et

20 -15 -1.0 —-05

Pl ol ol o o r L

0.5

DG-—-—-—-—-—-— - - -

Pointy-end: Ax . Non-Pointy-End: x

Now | apply f(x)
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Eigenvectors of Symmetric Matrices

* Always n mutually orthogonal eigenvectors
with n (not necessarily) distinct eigenvalues

* For symmetric A, the eigenvector with the

xT Ax

largest eigenvalue maximizes
(smallest/min)

» So for unit vectors (where x'x = 1), that
eigenvector maximizes xT Ax

A surprisingly large number of optimization
problems rely on (max/min)imizing this

xTx



The Singular Value Decomposition

Can always write a mxn matrix A as: 4 = UzVT

=

Rotation Scale

Eigenvectors  Sqgrt of O
of AAT Eigenvalues

of ATA

0




The Singular Value Decomposition

Can always write a mxn matrix A as: 4 = UzVT

=

Rotation Scale

Rotation

Eigenvectors  Sqrt of Eigenvectors
of AAT Eigenvalues of ATA
of ATA



Singular Value Decomposition

* Every matrix is a rotation, scaling, and rotation

* Number of non-zero singular values = rank /
number of linearly independent vectors

» “Closest” matrix to A with a lower rank

0




Singular Value Decomposition

* Every matrix is a rotation, scaling, and rotation

* Number of non-zero singular values = rank /
number of linearly independent vectors

» “Closest” matrix to A with a lower rank

0

0




Singular Value Decomposition

* Every matrix is a rotation, scaling, and rotation

* Number of non-zero singular values = rank /
number of linearly independent vectors

» “Closest” matrix to A with a lower rank

« Secretly behind basically many things you do
with matrices




(X2,Y>)

Least-Squares

Start with two points (x;y;)
y = Av

v,
V2
.
V2]

-xl 1] [m]
x, 1]Lb
-mxl + b
UZY) ~+ b

We know how to solve this —
invert A and find v (i.e., (m,b)
that fits points)



Least-Squares

(X,,V-) Start with two points (x;,y;)
y = Av
y1] [ 1] 'm]
Y2 B X9 1 _b
(X1,Y+) ] 2_|[y1]_'mx1+b ?
Ly = Avii® =|i]y. mx, + b

2 2
= (1 = (e 4 D))" +(v2 =~ (g b))
The sum of squared differences between

and
what the model says y should be.



Least-Squares

-

YN _
Compute ||y — Av||* again

y = Av

X1 1]

|l

xy 1

Suppose there are n > 2 points

)

n
Iy = 4vl? = ) (v = (max; + b))?
=1



Least-Squares

® Suppose there are n > 2 points

y = Av
'}’1- -xl 1-
YN _XN 1_

|

)

Want to minimize ||y — Av||?
We can control the entries of v,

but columns of A can’t possibly
be put together in any way to
produce



Solving Least-Squares

Given vy, A, and v with y = Av overdetermined
(A tall / more equations than unknowns)
We want to minimize ||y — Av||?, or find:

arg min, ||y — Av||*
(The value of v that makes
the expression smallest)

Solution satisfies (A"A)v* = ATy
or
v = (ATA) AT
(Don’t actually compute the inverse!)




When is Least-Squares Possible?
Giveny, A, and v. Wanty = Av

Want n outputs, have n knobs
A YA to fiddle with, every knob is
useful if Ais full rank.
A: rows (outputs) > columns
V4 (knobs). Thus can’t get precise
A output you want (not enough

knobs). So settle for “closest”
knob setting.




When is Least-Squares Possible?
Giveny, A, and v. Wanty = Av

Want n outputs, have n knobs
2 = L A to fiddle with, every knob is
useful if A is full rank.

- I A: columns (knobs) > rows
%

(outputs). Thus, any output can
be expressed in infinite ways.



Homogeneous Least-Squares

Given a set of unit vectors (aka directions) x4, ..., x,,
and | want vector v that is as orthogonal to all the x;
as possible (for some definition of orthogonal)

Stack x; into A, compute Av

xn--- -
x%ﬁ i O T
AV = : v=| : |orthog
- x5 — X5V

XV

2

Compute [14vI? 5 ) (x/v)
0

Sum of how orthog. v is to each x



Homogeneous Least-Squares

* A lot of times, given a matrix A we want to find
the v that minimizes ||Av||? .

* |.e., want v* = arg min||Av||5
v

* What’s a trivial solution?
e Setv=0—>Av=0
» Exclude this by forcing v to have unit norm



Homogeneous Least-Squares

_et’s look at ||Av||5

Av||5 = Rewrite as dot product
Av||%2 = (Av)T(Av) Distribute transpose
Av||3 =vTATAv = vT(ATA)v

We want the vector minimizing this quadratic form
Where have we seen this?



Homogeneous Least-Squares

Ubiquitious tool in vision:

arg min ||Av||?
5 lv]|4=1

—p (1) “Smallest™ eigenvector of A" A
(2) “Smallest” right singular vector of 4

For min — max, switch smallest — largest

*Note: AT A is positive semi-definite so it has all non-negative eigenvalues



Derivatives

Remember derivatives?

Derivative: rate at which a function f(x) changes
at a point as well as the direction that increases

the function



Given quadratic function f(x)
fO,y)=(x—-2)*+5
f(x) is function 0 22ts

== g(x) = 2(x-2)

40

glx) = f"(x)

30

aka

20

g(x) = —f(X)

-
ﬂ"
-
-
-

-‘“
-
-
-
-




Given quadratic function f(x)
fO,y)=(x—-2)*+5

50

What'’s special — ) = (x2)"2 +5

—'_Q(X) = 2(x-2)

about x=27?

40

f(x) minim.at2
gx)=0at2

a = minimum of f —
gla) =0 ?

Reverse Is noft true




Rates of change
fl,y)=(x—2)*+5

50
Suppose | want to — f(x) = (x2)"2 + 5

== g(x) = 2(x-2)

iIncrease f(x) by
changing x:

40

30

Blue area: move left
Red area: move right 20
Derivative tells you *°
direction of ascent
and rate




What Calculus Should | Know

* Really need intuition
* Need chain rule

* Rest you should look up / use a computer
algebra system / use a cookbook

 Partial derivatives (and that's it from
multivariable calculus)



Partial Derivatives

* Pretend other variables are constant, take a

derivative. That’s it.

 Make our function a function of two variables

fG)=x—-2)"+5

0
af(x)=2(x—2)*1=2(x_2)

f26y)=(x—-2)*+5+

0
afz(x) = 2(x — 2)

(y + 1)*

Pretend it's
constant —
derivative = 0



Zooming Out
foe,y) = (x=2)>+5+ (y + 1)

3 :

Dark = f(x,y) low
Bright = f(x,y) high 2




Taking a slice of
f(6,y) = (x—2)" + 5+ (y + 1)

3_

Slice of y=0 is the i
function from before: 2|
fO)=@—-2?*+5 |
fl(x) =2(x-2)

— f(X) = (X-2)"2 + 5
== g(x) = 2(x-2)

50

40

30

-
-
-
-
-




Taking a slice of
f(6,y) = (x—2)" + 5+ (y + 1)
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Zooming Out
f26,y) =(x—-2)*"+5+ (y+1)*

Gradient/Jacobian:
Making a vector of
af of
sz )
dx "0y
gives rate and
direction of change. -1 il

Arrows point OUT of _
minimum / basin.




What Should | Know?

» Gradients are simply partial derivatives per-
dimension: if x in f(x) has n dimensions, V,(x)
has n dimensions

» Gradients point in direction of ascent and tell
the rate of ascent

e If ais minimum of f(x) — V¢(a) =0

* Reverse is not true, especially in high-
dimensional spaces






For the Curious

* | used to teach floating point stuff. Here's a
condensed explanation

 The tl;dr is that floating points are not real
numbers.



What's a Number?

27 20 25 24 23 22 21 20
1 01 1 1 0 0 1 185
128+ 32+16+8+1= 185



Adding Two Numbers
28 27 26 25 24 23 22 21 20

1 01 1 1 0 0 1 185
+0 1 1 01 0 O 1 105
1 O 01 0 0 0 1 0 34
—l—
Carry Result
Flag

“Integers” on a computer are integers modulo 2%




Some Gotchas

32+ (3/4)x40= 32

Why?
32+ (3x40)/4= 62
Underflow No Underflow
32+ 3/4 x40 = 32+3x40/4 =
32+0 x40= 32+120 /4=
32+0 = 32 + 30 =

32 62
Ok — you have to multiply before dividing



Some Gotchas
Should be:

S —
math 32 +{9 x 40)/ 10|=68 X436

uint8 32+ (9x40)/10=42
Overflow

32 +9 x40/ 10 = Why 1047
32 /10 = 9 x 40 = 360
32 + 10 = 360 % 256 = 104

42




What's a Number?

27 20 25 24 23 22 21 20
1T 01 1 1 0 0 1 185

How can we do fractions?
2° 24 23 22 2 2&2'1 272
1 0 1 1 1 0g0 14525
45 0.25



Fixed-Point Arithmetic
25 24 23 22 21 20‘2'1 22
1 01 1 1 0 0 14525

What’s the largest number we can represent?
63.75 — Why?
How precisely can we measure at 63?
0.25

How precisely can we measure at 0?
0.25

Fine for many purposes but for science, seems silly



Floating Point
Slgn (S) Exponent Fractlon

-1 2-7=20=1 1+1/8 =1.125

(—1°%)(2F+Ptas) (1 + ;3)

Bias: allows exponent to be negative; Note: fraction = significant = mantissa;
exponents of all ones or all zeros are special numbers



Floating Point

Fraction

0/8[000] -20x 1.00 = -1

1781001 -2°x1.125 =-1.125

E t
ﬁ % 218[0 1 0] 20 x 1.25 = -1.25

7-7=0 50 _
«(bias)" 6/81110]| -2°x1.75=-1.75
71811111 -29x 1.875 =-1.875



Floating Point

Fraction

0/8[000] -22x1.00 = -4
1/8{00 1] -22x1.125=-4.5

Slgn ExpOorcl)ent o 8- _22 « 1 25 =

- O-7=2 _H2 _
“(-bias)* 6/81110| -22x1.75=-7
71811111 -22x1.875=-7.5



Floating Point

Fractlon
Slgn Exponen

- 001]-20x1.125=-1.125
(1] [ro01] st 2m
-22x1.125 =-4.5

Gap between numbers is relative, not absolute



Revisiting Adding Numbers

Sign Exponent Fraction

[000] -2x1.00=-05
+ 1] [000] -22x1.00 = -4

22%1.125=-4.5

Actual implementation is complex



Revisiting Adding Numbers

Sign Exponent Fraction

[000] -2 x 1.00 = -0.125
+ 1] [000] -22x1.00 = -4

-22x1.03125 = -4.125




Revisiting Adding Numbers

Sign Exponent Fraction

[000] -2 x 1.00 = -0.125
+ 1] [000] -22x1.00 = -4

-22x1.03125 =-4.125

(111001]000]-22x100=-4

For a and b, these can happen
atb=a atb-a#b




Revisiting Adding Numbers
IEEE 754 Single Precision / Single

8 bits 23 bits
2127 = 1038 ~ 7 decimal digits
S Exponent Fraction

|IEEE 754 Double Precision / Double

11 bits 52 bits
21023 = 1()308 ~ 15 decimal digits

s Exponent Fraction



Revisiting Adding Numbers
IEEE 754 Half Precision

S bits 10 bits
216 = 10° ~ 3 decimal digits
Exponent Fraction

BFloat16 From Google
8 bits 7 bits
2127 = 1038 ~ 2 decimal digits

Exponent Fraction



Past Stuff



Cross Product

e Set{z:z-x=0,z-y=0}hasan
ambiguity in sign and magnitude

* Cross product x X yis: (1)
orthogonal to x, y (2) has sign
given by right hand rule and (3)
has magnitude given by area of
parallelogram of x and y

* Important: if x and y are the same

-~ direction or either is 0, then x X

1) /\ / y — O )

&~ =/ <+ Onlyin 3D!

Image credit: Wikipedia.org




Span

Span: all linear
combinations of a
set of vectors

span({ { }) =
Span({[0,2]}) = ?
All vertical lines
through origin =
{1[0,1]: 1 € R}

Is blue in {red}’s
span?



Span

Span: all linear
combinations of a
set of vectors

Span({{ ,—»}) =72



Span

Span: all linear
combinations of a
set of vectors

span({f ., | =7



Recall:
R
y=A|x, — [/
X3

Linear Independence

Ax = (x; + ax,)cq + x5¢5

— <x1 +%— ax, —%) ¢, + x5

Can write y an infinite number of ways by
adding S to x4 and subtracting gfrom X,

Or, given a vector y there’s not a unique
vector x s.t. y =AX
Not all y have a corresponding x s.t. y=AX



Linear Independence

Ax = (x; + ax,)cq + x5¢5

e ;
y=A|-f/a =(ﬁ—a5)c1+062
L O .

What else can we cancel out?

An infinite number of non-zero vectors x can
map to a zero-vector y
Called the right null-space of A.



Linear Independence

A set of vectors is linearly independent if you can’t
write one as a linear combination of the others.

Suppose: a =
0
xX=|0|=2a
4.

0

y:

b =

0

0

6

11,
2473

* Is the set {a,b,c} linearly independent?
* Is the set {a,b,x} linearly independent?
 Max # of independent 3D vectors?



Matrix-Vector Product

N ']  Right-muttiplying A by x
Ax =|cq1 -+ €,|x mixes columns of A
| | according to entries of x

* The output space of f(x) = Ax is constrained to
be the span of the columns of A.

« Can'’t output things you can’t construct out of
your columns



An Intuition

I N B
y=Ax =|€C1 Cz Cyu||X2
s
yy1|_| |_|x
e OO0
Ys M

X — knobs on machine (e.g., fuel, brakes)
y — state of the world (e.g., where you are)
A — machine (e.g., your car)



Linear Independence

Suppose the columns of 3x3 matrix A are not
linearly independent (c,, ac,, ¢, for instance)

| R ey
y = Ax = C1 acq1 CollX2
i I I [ S

Yy = X1€1 —+ ax,Cq —+ X5Co
y = (x; + ax;)cq + x3€3



Linear Independence Intuition

Knobs of x are redundant. Even if y has 3
outputs, you can only control it in two directions

y = (x1 + ax;)cq + %3¢,

- =

yil- AX Sie @@

Y3 M




Inverses

* Given y = Ax, y is a linear combination of
columns of A proportional to x. If Ais full-rank,
we should be able to invert this mapping.

* Given some y (output) and A, what x (inputs)
produced it?
e X = A'1y

* Note: if you don’t need to compute it, don’t
compute it. Solving for x is much faster and
stable than obtaining A-1.
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