
Numerical
Linear Algebra

EECS 442 – David Fouhey

Winter 2023, University of Michigan
http://web.eecs.umich.edu/~fouhey/teaching/EECS442_W23/

Today – Math

Two goals for the class:

• Math with computers ≠ Math

• Practical math you need to know but

may not have been taught

Adding Numbers

• Suppose b > 0

• Is a+b > a?

• Is a+b = a?

Adding Numbers

• 1 + 1 = ?

• Suppose 𝑥𝑖 is normally distributed with mean 𝜇
and standard deviation 𝜎 for 1 ≤ 𝑖 ≤ 𝑁

• How is the average, or ෝ𝝁 =
𝟏

𝑵
σ𝒊=𝟏
𝑵 𝒙𝒊,

distributed (qualitatively), in terms of
variance?

• The Free Drinks in Vegas Theorem*: ො𝜇 has

mean 𝜇 and standard deviation
𝜎

𝑁
.

*Not the real name. More un-fun name: law of large numbers.

Free Drinks in Vegas

Each game/variable has mean $0.10, std $2

100 games

is uncertain

and fun!

100K games is

guaranteed profit:

99.999999% lowest

value is $0.064.

$0.01 for drinks

$0.054 for profits

Let’s Make It Big

• Suppose I average 50M normally distributed
numbers (mean: 31, standard deviation: 1)

• For instance: have predicted and actual depth
for 200 480x640 images and want to know the
average error (|predicted – actual|)

numerator = 0

for x in xs:

numerator += x

return numerator / len(xs)

Let’s Make It Big

• What should happen qualitatively?

• Theory says that the average is distributed with

mean 31 and standard deviation
1

50𝑀
≈ 10−5

• What will happen?

• Reality: 17.47

Trying it Out

Hmm.

Hmm.

Trying it Out

a+b=a ->

numerator is

stuck,

denominator

isn’t

Roundoff

error occurs

Take-homes

• Computer numbers aren’t math numbers

• Overflow, accidental zeros, roundoff error, and
basic equalities are almost certainly incorrect
for some values

• Floating points and numpy try to protect you.

• Generally safe to use a double and use built-in-
functions in numpy (not necessarily others!)

• Spooky behavior = look for numerical issues

Operations They Don’t Teach

𝑎 + 𝑒 𝑏 + 𝑒
𝑐 + 𝑒 𝑑 + 𝑒

𝑎 𝑏
𝑐 𝑑

+
𝑒 𝑓
𝑔 ℎ

=
𝑎 + 𝑒 𝑏 + 𝑓
𝑐 + 𝑔 𝑑 + ℎ

You Probably Saw Matrix Addition

𝑎 𝑏
𝑐 𝑑

+ 𝑒 =

What is this if e is a scalar?

Broadcasting

𝑎 𝑏
𝑐 𝑑

+ 𝑒

=
𝑎 𝑏
𝑐 𝑑

+
𝑒 𝑒
𝑒 𝑒

=
𝑎 𝑏
𝑐 𝑑

+ 𝟏2𝑥2𝑒

If you want to be pedantic and proper, you expand

e by multiplying a matrix of 1s (denoted 1)

Many smart matrix libraries do this automatically.

This is the source of many, many bugs.

Broadcasting Example

𝑷 =

𝑥1 𝑦1
⋮ ⋮
𝑥𝑛 𝑦𝑛

𝒗 =
𝑎
𝑏

Given: a nx2 matrix P and a 2D column vector v,

Want: nx2 difference matrix D

𝑫 =
𝑥1 − 𝑎 𝑦1 − 𝑏

⋮ ⋮
𝑥𝑛 − 𝑎 𝑦𝑛 − 𝑏

𝑷 − 𝒗𝑇 =

𝑥1 𝑦1
⋮ ⋮
𝑥𝑛 𝑦𝑛

−
𝑎 𝑏

𝑎 𝑏
⋮

Blue stuff is

assumed /

broadcast

Two Uses for Matrices

1. Storing things in a rectangular array (images,
maps)
• Typical operations: element-wise operations,

convolution (which we’ll cover next)

• Atypical operations: almost anything you learned in
a math linear algebra class

2. A linear operator that maps vectors to
another space (Ax)
• Typical/Atypical: reverse of above

Images as Matrices

Suppose someone hands you this matrix.

What’s wrong with it?

Contrast – Gamma curve

Typical way to

change the contrast

is to apply a

nonlinear correction

pixelvalue𝛾

The quantity 𝛾
controls how much

contrast gets added

Contrast – Gamma curve

10%

50%

90%
Now the darkest

regions (10th pctile)

are much darker

than the moderately

dark regions (50th

pctile).

new 10%

new

50%

new

90%

Images as Matrices

Suppose someone hands you this matrix.

The contrast is wrong!

Results

Phew! Much Better.

Implementation

imNew = im**4

Python+Numpy (right way):

Python+Numpy (slow way – why?):

imNew = np.zeros(im.shape)

for y in range(im.shape[0]):

for x in range(im.shape[1]):

imNew[y,x] = im[y,x]**expFactor

Element-wise Operations

𝑨⊙𝑩 𝑖𝑗 = 𝑨𝑖𝑗 ∗ 𝑩𝑖𝑗

“Hadamard Product” / Element-wise multiplication

𝑨/𝑩 𝑖𝑗 =
𝐴𝑖𝑗

𝐵𝑖𝑗

Element-wise division

𝑨𝑝 𝑖𝑗 = 𝐴𝑖𝑗
𝑝

Element-wise power – beware notation

Story time: I swear this is relevant

Image credit: Coulon et al. Individual Recognition in Domestic Cattle (Bos taurus): Evidence from 2D-Images of Heads from

Different Breeds. PLoS One. 2009; 4(2): e4441.

Sums Across Axes

𝑨 =

𝑥1 𝑦1
⋮ ⋮
𝑥𝑛 𝑦𝑛

Suppose have

Nx2 matrix A

Σ(𝑨, 1) =

𝑥1 + 𝑦1
⋮

𝑥𝑛 + 𝑦𝑛

ND col. vec.

Σ(𝑨, 0) =

𝑖=1

𝑛

𝑥𝑖 ,

𝑖=1

𝑛

𝑦𝑖2D row vec

Note – libraries distinguish between N-D column vector and Nx1 matrix.

Vectorizing Example

• Suppose I represent each image as a 128-
dimensional vector

• I want to compute all the pairwise distances
between {x1, …, xN} and {y1, …, yM} so I can
find, the nearest yj for every xi

• Identity: 𝒙 − 𝒚 2 = 𝒙 2 + 𝒚 2 − 2𝒙𝑇𝒚

• Or: 𝒙 − 𝒚 = 𝒙 2 + 𝒚 2 − 2𝒙𝑇𝒚
1/2

Vectorizing Example

𝑿 =

− 𝒙1 −
⋮

− 𝒙𝑁 −
𝒀 =

− 𝒚1 −
⋮

− 𝒚𝑀 −

𝑿𝒀𝑻
𝑖𝑗
= 𝒙𝒊

𝑻𝒚𝒋

𝒀𝑻 =
| |
𝒚1 ⋯ 𝒚𝑀
| |

𝚺 𝑿𝟐, 𝟏 =
𝒙𝟏

𝟐

⋮
𝒙𝑵

𝟐

Compute a Nx1

vector of norms

(can also do Mx1)

Compute a NxM

matrix of dot products

Vectorizing Example

𝐃 = Σ 𝑿𝟐, 1 + Σ 𝒀𝟐, 1
𝑻
− 2𝑿𝒀𝑻

1/2

𝒙𝟏
𝟐

⋮
𝒙𝑵

𝟐

+ 𝒚1
𝟐 ⋯ 𝒚𝑀

𝟐

Σ 𝑿2, 1 + Σ 𝒀2, 1
𝑇

𝑖𝑗
= 𝒙𝑖

2 + 𝒚𝑗
2

𝒙𝟏
2 + 𝒚𝟏

2 ⋯ 𝒙𝟏
2 + 𝒚𝑴

2

⋮ ⋱ ⋮
𝒙𝑵

2 + 𝒚𝟏
2 ⋯ 𝒙𝑵

2 + 𝒚𝑴
2

Why?

Vectorizing Example

𝐃𝑖𝑗 = 𝒙𝒊
2 + 𝒚𝒋

2
− 2𝒙𝒊

𝑻𝒚𝒋

Numpy code:
XNorm = np.sum(X**2,axis=1,keepdims=True)

YNorm = np.sum(Y**2,axis=1,keepdims=True)

D = (XNorm+YNorm.T-2*np.dot(X,Y.T))**0.5

𝐃 = Σ 𝑿𝟐, 1 + Σ 𝒀𝟐, 1
𝑻
− 2𝑿𝒀𝑻

1/2

*May have to make sure this is at least 0

(sometimes roundoff issues happen)

Does it Make a Difference?

Computing pairwise distances between 300 and
400 128-dimensional vectors

1. for x in X, for y in Y, using native python: 9s

2. for x in X, for y in Y, using numpy to compute
distance: 0.8s

3. vectorized: 0.0045s (~2000x faster than 1,
175x faster than 2)

Expressing things in primitives that are
optimized is usually faster

Rank

• Rank of a nxn matrix A – number of linearly
independent columns (or rows) of A / the
dimension of the span of the columns

• Matrices with full rank (n x n, rank n) behave
nicely: can be inverted, span the full output
space, are one-to-one.

Symmetric Matrices

• Symmetric: 𝑨𝑻 = 𝑨 or
𝑨𝑖𝑗 = 𝑨𝑗𝑖

• Have lots of special
properties

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

Any matrix of the form 𝑨 = 𝑿𝑻𝑿 is symmetric.

Quick check: 𝑨𝑻 = 𝑿𝑻𝑿
𝑻

𝑨𝑻 = 𝑿𝑻 𝑿𝑻 𝑻

𝑨𝑻 = 𝑿𝑻𝑿

Special Matrices – Rotations

𝑟11 𝑟12 𝑟13
𝑟21 𝑟22 𝑟23
𝑟31 𝑟32 𝑟33

• Rotation matrices 𝑹 rotate vectors and do not

change vector L2 norms (𝑹𝒙 2 = 𝒙 2)

• Every row/column is unit norm

• Every row is linearly independent

• Transpose is inverse 𝑹𝑹𝑻 = 𝑹𝑻𝑹 = 𝑰
• Determinant is 1 (otherwise it’s also a coordinate

flip/reflection), eigenvalues are 1

Eigensystems

• An eigenvector 𝒗𝒊 and eigenvalue 𝜆𝑖 of a
matrix 𝑨 satisfy 𝑨𝒗𝒊 = 𝜆𝑖𝒗𝒊 (𝑨𝒗𝒊 is scaled by 𝜆𝑖)

• Vectors and values are always paired and
typically you assume 𝒗𝒊

2 = 1

• Biggest eigenvalue of A gives bounds on how
much 𝑓 𝒙 = 𝑨𝒙 stretches a vector x.

• Hints of what people really mean:
• “Largest eigenvector” = vector w/ largest value

• Spectral just means there’s eigenvectors

Suppose I have points in a grid

Now I apply f(x) = Ax to these points

Pointy-end: Ax . Non-Pointy-End: x

Red box – unit square, Blue box – after f(x) = Ax.

What are the yellow lines and why?

𝑨 =
1.1 0
0 1.1

𝑨 =
0.8 0
0 1.25

Now I apply f(x) = Ax to these points

Pointy-end: Ax . Non-Pointy-End: x

Red box – unit square, Blue box – after f(x) = Ax.

What are the yellow lines and why?

𝑨 =
0.8 0
0 1.25

Red box – unit square, Blue box – after f(x) = Ax.

Can we draw any yellow lines?

𝑨 =
cos(𝑡) −sin(𝑡)
sin(𝑡) cos(𝑡)

Eigenvectors of Symmetric Matrices

• Always n mutually orthogonal eigenvectors
with n (not necessarily) distinct eigenvalues

• For symmetric 𝑨, the eigenvector with the

largest eigenvalue maximizes
𝒙𝑻𝑨𝒙

𝒙𝑻𝒙
(smallest/min)

• So for unit vectors (where 𝒙𝑻𝒙 = 1), that
eigenvector maximizes 𝒙𝑻𝑨𝒙

• A surprisingly large number of optimization
problems rely on (max/min)imizing this

The Singular Value Decomposition

UA =

Rotation

Can always write a mxn matrix A as: 𝑨 = 𝑼𝚺𝑽𝑻

Eigenvectors

of AAT

∑

Scale

Sqrt of

Eigenvalues

of ATA

σ1

σ2

σ3

0

0

The Singular Value Decomposition

U ∑A =

Rotation Scale

VT

Rotation

Can always write a mxn matrix A as: 𝑨 = 𝑼𝚺𝑽𝑻

Eigenvectors

of AAT

Sqrt of

Eigenvalues

of ATA

Eigenvectors

of ATA

Singular Value Decomposition

• Every matrix is a rotation, scaling, and rotation

• Number of non-zero singular values = rank /
number of linearly independent vectors

• “Closest” matrix to A with a lower rank

UA =

σ1

σ2

σ3

0

0
VT

Singular Value Decomposition

• Every matrix is a rotation, scaling, and rotation

• Number of non-zero singular values = rank /
number of linearly independent vectors

• “Closest” matrix to A with a lower rank

UÂ =

σ1

σ2

0

0
VT

0

Singular Value Decomposition

• Every matrix is a rotation, scaling, and rotation

• Number of non-zero singular values = rank /
number of linearly independent vectors

• “Closest” matrix to A with a lower rank

• Secretly behind basically many things you do
with matrices

Least-Squares

Start with two points (xi,yi)

𝑦1
𝑦2

=
𝑥1 1
𝑥2 1

𝑚
𝑏

𝒚 = 𝑨𝒗

𝑦1
𝑦2

=
𝑚𝑥1 + 𝑏
𝑚𝑥2 + 𝑏

We know how to solve this –

invert A and find v (i.e., (m,b)

that fits points)

(x1,y1)

(x2,y2)

Least-Squares

Start with two points (xi,yi)

𝑦1
𝑦2

=
𝑥1 1
𝑥2 1

𝑚
𝑏

𝒚 = 𝑨𝒗

𝑦1
𝑦2

−
𝑚𝑥1 + 𝑏
𝑚𝑥2 + 𝑏

2

𝒚 − 𝑨𝒗 2 =

= 𝑦1 − 𝑚𝑥1 + 𝑏
2
+ 𝑦2 − 𝑚𝑥2 + 𝑏

2

(x1,y1)

(x2,y2)

The sum of squared differences between

the actual value of y and

what the model says y should be.

Least-Squares

Suppose there are n > 2 points

𝑦1
⋮
𝑦𝑁

=
𝑥1 1
⋮ ⋮
𝑥𝑁 1

𝑚
𝑏

𝒚 = 𝑨𝒗

Compute 𝒚 − 𝑨𝒗 2 again

𝒚 − 𝑨𝒗 2 =

𝑖=1

𝑛

𝑦𝑖 − (𝑚𝑥𝑖 + 𝑏) 2

Least-Squares

Suppose there are n > 2 points

𝑦1
⋮
𝑦𝑁

=
𝑥1 1
⋮ ⋮
𝑥𝑁 1

𝑚
𝑏

𝒚 = 𝑨𝒗

Want to minimize 𝒚 − 𝑨𝒗 2

We can control the entries of v,

but columns of A can’t possibly

be put together in any way to

produce y

Solving Least-Squares

Given y, A, and v with y = Av overdetermined

(A tall / more equations than unknowns)

We want to minimize 𝒚 − 𝑨𝒗 𝟐, or find:

arg min𝒗 𝒚 − 𝑨𝒗 2

(The value of v that makes

the expression smallest)

Solution satisfies 𝑨𝑻𝑨 𝒗∗ = 𝑨𝑻𝒚

or

𝒗∗ = 𝑨𝑻𝑨
−1
𝑨𝑻𝒚

(Don’t actually compute the inverse!)

When is Least-Squares Possible?

Given y, A, and v. Want y = Av

Ay = v
Want n outputs, have n knobs

to fiddle with, every knob is

useful if A is full rank.

Ay

=
v

A: rows (outputs) > columns

(knobs). Thus can’t get precise

output you want (not enough

knobs). So settle for “closest”

knob setting.

When is Least-Squares Possible?

Given y, A, and v. Want y = Av

Ay = v
Want n outputs, have n knobs

to fiddle with, every knob is

useful if A is full rank.

Ay =
v

A: columns (knobs) > rows

(outputs). Thus, any output can

be expressed in infinite ways.

Homogeneous Least-Squares

Given a set of unit vectors (aka directions) 𝒙𝟏, … , 𝒙𝒏
and I want vector 𝒗 that is as orthogonal to all the 𝒙𝒊
as possible (for some definition of orthogonal)

𝑨𝒗 =
− 𝒙𝟏

𝑻 −
⋮

− 𝒙𝒏
𝑻 −

𝒗

Stack 𝒙𝒊 into A, compute Av

=
𝒙𝟏
𝑻𝒗
⋮

𝒙𝒏
𝑻𝒗

𝒙𝟏
𝒙𝟐

𝒙𝒏…

𝒗
𝑨𝒗 𝟐 =

𝒊

𝒏

𝒙𝒊
𝑻𝒗

𝟐
Compute

0 if

orthog

Sum of how orthog. v is to each x

Homogeneous Least-Squares

• A lot of times, given a matrix A we want to find
the v that minimizes 𝑨𝒗 2 .

• I.e., want 𝐯∗ = argmin
𝒗

𝑨𝒗 2
2

• What’s a trivial solution?

• Set v = 0 → Av = 0

• Exclude this by forcing v to have unit norm

Homogeneous Least-Squares

Let’s look at 𝑨𝒗 2
2

𝑨𝒗 2
2 = Rewrite as dot product

𝑨𝒗 2
2 = 𝒗𝑻𝑨𝑻𝐀𝐯 = 𝐯𝐓 𝐀𝐓𝐀 𝐯

𝑨𝒗 2
2 = 𝐀𝐯 T(𝐀𝐯) Distribute transpose

We want the vector minimizing this quadratic form

Where have we seen this?

Homogeneous Least-Squares

arg min
𝒗 2=1

𝑨𝒗 2

*Note: 𝑨𝑻𝑨 is positive semi-definite so it has all non-negative eigenvalues

(1) “Smallest”* eigenvector of 𝑨𝑻𝑨

(2) “Smallest” right singular vector of 𝑨

Ubiquitious tool in vision:

For min → max, switch smallest → largest

Derivatives

Remember derivatives?

Derivative: rate at which a function f(x) changes
at a point as well as the direction that increases
the function

Given quadratic function f(x)

𝑓 𝑥 is function

𝑔 𝑥 = 𝑓′ 𝑥

aka

𝑔 𝑥 =
𝑑

𝑑𝑥
𝑓(𝑥)

𝑓 𝑥, 𝑦 = 𝑥 − 2 2 + 5

Given quadratic function f(x)

What’s special

about x=2?

𝑓 𝑥 minim. at 2

𝑔 𝑥 = 0 at 2

a = minimum of f →

𝑔 𝑎 = 0

Reverse is not true

𝑓 𝑥, 𝑦 = 𝑥 − 2 2 + 5

Rates of change

Suppose I want to

increase f(x) by

changing x:

Blue area: move left

Red area: move right

Derivative tells you

direction of ascent

and rate

𝑓 𝑥, 𝑦 = 𝑥 − 2 2 + 5

What Calculus Should I Know

• Really need intuition

• Need chain rule

• Rest you should look up / use a computer
algebra system / use a cookbook

• Partial derivatives (and that’s it from
multivariable calculus)

Partial Derivatives

• Pretend other variables are constant, take a
derivative. That’s it.

• Make our function a function of two variables

𝑓2 𝑥, 𝑦 = 𝑥 − 2 2 + 5 + 𝑦 + 1 2

𝑓 𝑥 = 𝑥 − 2 2 + 5
𝜕

𝜕𝑥
𝑓 𝑥 = 2 𝑥 − 2 ∗ 1 = 2(𝑥 − 2)

𝜕

𝜕𝑥
𝑓2 𝑥 = 2(𝑥 − 2)

Pretend it’s

constant →

derivative = 0

Zooming Out

𝑓2 𝑥, 𝑦 = 𝑥 − 2 2 + 5 + 𝑦 + 1 2

Dark = f(x,y) low

Bright = f(x,y) high

Taking a slice of

𝑓2 𝑥, 𝑦 = 𝑥 − 2 2 + 5 + 𝑦 + 1 2

Slice of y=0 is the

function from before:

𝑓 𝑥 = 𝑥 − 2 2 + 5
𝑓′ 𝑥 = 2(𝑥 − 2)

Taking a slice of

𝑓2 𝑥, 𝑦 = 𝑥 − 2 2 + 5 + 𝑦 + 1 2

𝜕

𝜕𝑥
𝑓2 𝑥, 𝑦 is rate of

change & direction in

x dimension

Zooming Out

𝑓2 𝑥, 𝑦 = 𝑥 − 2 2 + 5 + 𝑦 + 1 2

𝜕

𝜕𝑦
𝑓2 𝑥, 𝑦 is

2(𝑦 + 1)
and is the rate of

change & direction in

y dimension

Zooming Out

𝑓2 𝑥, 𝑦 = 𝑥 − 2 2 + 5 + 𝑦 + 1 2

Gradient/Jacobian:

Making a vector of

∇𝑓=
𝜕𝑓

𝜕𝑥
,
𝜕𝑓

𝜕𝑦

gives rate and

direction of change.

Arrows point OUT of

minimum / basin.

What Should I Know?

• Gradients are simply partial derivatives per-
dimension: if 𝒙 in 𝑓(𝒙) has n dimensions, ∇𝑓(𝑥)
has n dimensions

• Gradients point in direction of ascent and tell
the rate of ascent

• If a is minimum of 𝑓(𝒙) → ∇f a = 𝟎

• Reverse is not true, especially in high-
dimensional spaces

For the Curious

• I used to teach floating point stuff. Here’s a
condensed explanation

• The tl;dr is that floating points are not real
numbers.

What’s a Number?

1 0 1 1 1 0 0

27 26 25 24 23 22 21 20

1 185
185128 + 32 + 16 + 8 + 1 =

Adding Two Numbers

“Integers” on a computer are integers modulo 2k

Carry

Flag
Result

28 27

1

26

0

25

1

24

1

23

1

22

0

21

0

20

1 185
0 1 1 0 1 0 0 1 105

1 340 0 1 0 0 0 1 0

Some Gotchas

Why?
32 + (3 / 4) x 40 = 32

32 + (3 x 40) / 4 = 62

32 + 3 / 4 x 40 =

32 + 0 x 40 =

32 + 0 =

32

Underflow

32 + 3 x 40 / 4 =

32 + 120 / 4 =

32 + 30 =

62

No Underflow

Ok – you have to multiply before dividing

Some Gotchas

42

32 + 9 x 40 / 10 =

32 + 104 / 10 =

Overflow

32 + (9 x 40) / 10 = uint8

32 + (9 x 40) / 10 = 68math

Why 104?

9 x 40 = 360

360 % 256 = 104

Should be:

9x4=36

32 + 10 =

42

What’s a Number?

27

1

26

0

25

1

24

1

23

1

22

0

21

0

20

1 185

How can we do fractions?

25 24 23 22 21 20 2-1 2-2

1 0 1 1 1 0 0 1 45.25

45 0.25

Fixed-Point Arithmetic

25

1

24

0

23

1

22

1

21

1

20

0

2-1

0

2-2

1 45.25
What’s the largest number we can represent?

63.75 – Why?

How precisely can we measure at 63?

How precisely can we measure at 0?

0.25

0.25

Fine for many purposes but for science, seems silly

Floating Point

0 1 1 11 0 0 1

Sign (S) Exponent (E) Fraction (F)

−𝟏𝑺 𝟐𝑬+𝒃𝒊𝒂𝒔 𝟏 +
𝑭

𝟐𝟑

1 7 1

-1 27-7 = 20 =1 1+1/8 = 1.125

Bias: allows exponent to be negative; Note: fraction = significant = mantissa;

exponents of all ones or all zeros are special numbers

Floating Point

Sign Exponent

Fraction

0 0 0 -20 x 1.00 = -1 0/8

0 0 1 -20 x 1.125 = -1.125 1/8

-20 x 1.25 = -1.25 0 1 02/8

1 1 0

1 1 1

-20 x 1.75 = -1.75

-20 x 1.875 = -1.875

…

6/8

7/8

1 0 1 1 1

7-7=0

(-bias)

-1

Floating Point
Fraction

0 0 0 -22 x 1.00 = -4 0/8

0 0 1 -22 x 1.125 = -4.51/8

0 1 0

1 1 0

1 1 1

-22 x 1.25 = -5

-22 x 1.75 = -7

-22 x 1.875 = -7.5

…

2/8

6/8

7/8

Sign Exponent

1 1 0 0 1

9-7=2

(-bias)

-1

Floating Point

0 0 0
1 0 1 1 1

Sign Exponent
Fraction

0 0 1

-20 x 1.00 = -1

-20 x 1.125 = -1.125

0 0 0
1 1 0 0 1

0 0 1

-22 x 1.00 = -4

-22 x 1.125 = -4.5

Gap between numbers is relative, not absolute

Revisiting Adding Numbers

Sign Exponent Fraction

1 1 0 0 1 0 0 0 -22 x 1.00 = -4

1 0 1 1 0 0 0 0 -2-1 x 1.00 = -0.5

1 1 0 0 1 0 0 1 -22 x 1.125 = -4.5

Actual implementation is complex

Revisiting Adding Numbers

Sign Exponent Fraction

1 1 0 0 1 0 0 0 -22 x 1.00 = -4

1 0 1 0 0 0 0 0 -2-3 x 1.00 = -0.125

-22 x 1.00 = -4 1 1 0 0 1 0 0 0

1 1 0 0 1 0 0 1 -22 x 1.125 = -4.5

?

-22 x 1.03125 = -4.125

Revisiting Adding Numbers

Sign Exponent Fraction

1 1 0 0 1 0 0 0 -22 x 1.00 = -4

1 0 1 0 0 0 0 0 -2-3 x 1.00 = -0.125

-22 x 1.03125 = -4.125

-22 x 1.00 = -4 1 1 0 0 1 0 0 0

For a and b, these can happen

a + b = a a+b-a ≠ b

Revisiting Adding Numbers

S Exponent Fraction

8 bits

2127 ≈ 1038

23 bits

≈ 7 decimal digits

S Exponent Fraction

11 bits

21023 ≈ 10308

52 bits

≈ 15 decimal digits

IEEE 754 Single Precision / Single

IEEE 754 Double Precision / Double

Revisiting Adding Numbers

S Exponent Fraction

5 bits

216 ≈ 105

10 bits

≈ 3 decimal digits

IEEE 754 Half Precision

BFloat16 From Google

S Exponent

8 bits

2127 ≈ 1038

7 bits

≈ 2 decimal digits

Fraction

Past Stuff

Cross Product

• Set {𝒛: 𝒛 ⋅ 𝒙 = 0, 𝒛 ⋅ 𝒚 = 0} has an

ambiguity in sign and magnitude

• Cross product 𝒙 × 𝒚 is: (1)

orthogonal to x, y (2) has sign

given by right hand rule and (3)

has magnitude given by area of

parallelogram of x and y

• Important: if x and y are the same

direction or either is 0, then 𝒙 ×
𝒚 = 𝟎 .

• Only in 3D!

𝒙
𝒚

𝒙 × 𝒚

Image credit: Wikipedia.org

Span

Span: all linear

combinations of a

set of vectors

Span({ }) =

Span({[0,2]}) = ?

All vertical lines

through origin =

𝜆 0,1 : 𝜆 ∈ 𝑅

Is blue in {red}’s

span?

Span

Span: all linear

combinations of a

set of vectors

Span({ , }) = ?

Span

Span: all linear

combinations of a

set of vectors

Span({ , }) = ?

Linear Independence

𝑨𝒙 = 𝑥1 + 𝛼𝑥2 𝒄𝟏 + 𝑥3𝒄𝟐

• Or, given a vector y there’s not a unique

vector x s.t. y =Ax

• Not all y have a corresponding x s.t. y=Ax

𝒚 = 𝑨
𝑥1 + 𝛽
𝑥2 − 𝛽/𝛼

𝑥3

• Can write y an infinite number of ways by

adding 𝛽 to x1 and subtracting
𝛽

𝛼
from x2

Recall:

= 𝑥1 + 𝛽 + 𝛼𝑥2 − 𝛼
𝛽

𝛼
𝑐1 + 𝑥3𝑐2

Linear Independence

𝑨𝒙 = 𝑥1 + 𝛼𝑥2 𝒄𝟏 + 𝑥3𝒄𝟐

• An infinite number of non-zero vectors x can

map to a zero-vector y

• Called the right null-space of A.

𝒚 = 𝑨
𝛽

−𝛽/𝛼
0

= 𝛽 − 𝛼
𝛽

𝛼
𝒄𝟏 + 0𝒄𝟐

• What else can we cancel out?

Linear Independence

𝒚 =
0
−2
1

=
1

2
𝒂 −

1

3
𝒃𝒙 =

0
0
4

= 2𝒂

• Is the set {a,b,c} linearly independent?

• Is the set {a,b,x} linearly independent?

• Max # of independent 3D vectors?

𝒂 =
0
0
2

𝒃 =
0
6
0

𝒄 =
5
0
0

Suppose:

A set of vectors is linearly independent if you can’t

write one as a linear combination of the others.

Matrix-Vector Product

𝑨𝒙 =
| |
𝒄𝟏 ⋯ 𝒄𝒏
| |

𝒙
Right-multiplying A by x

mixes columns of A

according to entries of x

• The output space of f(x) = Ax is constrained to

be the span of the columns of A.

• Can’t output things you can’t construct out of

your columns

An Intuition

x
Ax

y1

y2

y3

x1 x2 x3

y

𝒚 = 𝑨𝒙 =
| | |
𝒄𝟏 𝒄𝟐 𝒄𝒏
| | |

𝑥1
𝑥2
𝑥3

x – knobs on machine (e.g., fuel, brakes)

y – state of the world (e.g., where you are)

A – machine (e.g., your car)

Linear Independence

𝒚 = 𝑨𝒙 =
| | |
𝒄𝟏 𝛼𝒄𝟏 𝒄𝟐
| | |

𝑥1
𝑥2
𝑥3

Suppose the columns of 3x3 matrix A are not

linearly independent (c1, αc1, c2 for instance)

𝒚 = 𝑥1𝒄𝟏 + 𝛼𝑥2𝒄𝟏 + 𝑥3𝒄𝟐
𝒚 = 𝑥1 + 𝛼𝑥2 𝒄𝟏 + 𝑥3𝒄𝟐

Linear Independence Intuition

Knobs of x are redundant. Even if y has 3

outputs, you can only control it in two directions

𝒚 = 𝑥1 + 𝛼𝑥2 𝒄𝟏 + 𝑥3𝒄𝟐

x
Ax

y1

y2

y3

x1 x2 x3

y

Inverses

• Given 𝒚 = 𝑨𝒙, y is a linear combination of
columns of A proportional to x. If A is full-rank,
we should be able to invert this mapping.

• Given some y (output) and A, what x (inputs)
produced it?

• x = A-1y

• Note: if you don’t need to compute it, don’t
compute it. Solving for x is much faster and
stable than obtaining A-1.

	Default Section
	Slide 1: Numerical Linear Algebra
	Slide 2: Today – Math
	Slide 3: Adding Numbers
	Slide 4: Adding Numbers
	Slide 5: Free Drinks in Vegas
	Slide 6: Let’s Make It Big
	Slide 7: Let’s Make It Big
	Slide 8: Trying it Out
	Slide 9: Trying it Out
	Slide 10: Take-homes
	Slide 11: Operations They Don’t Teach
	Slide 12: Broadcasting
	Slide 13: Broadcasting Example
	Slide 14: Two Uses for Matrices
	Slide 15: Images as Matrices
	Slide 16: Contrast – Gamma curve
	Slide 17: Contrast – Gamma curve
	Slide 18: Images as Matrices
	Slide 19: Results
	Slide 20: Implementation
	Slide 21: Element-wise Operations
	Slide 22: Story time: I swear this is relevant
	Slide 23: Sums Across Axes
	Slide 24: Vectorizing Example
	Slide 25: Vectorizing Example
	Slide 26: Vectorizing Example
	Slide 27: Vectorizing Example
	Slide 28: Does it Make a Difference?
	Slide 29: Rank
	Slide 30: Symmetric Matrices
	Slide 31: Special Matrices – Rotations
	Slide 32: Eigensystems
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39: Eigenvectors of Symmetric Matrices
	Slide 40: The Singular Value Decomposition
	Slide 41: The Singular Value Decomposition
	Slide 42: Singular Value Decomposition
	Slide 43: Singular Value Decomposition
	Slide 44: Singular Value Decomposition
	Slide 45: Least-Squares
	Slide 46: Least-Squares
	Slide 47: Least-Squares
	Slide 48: Least-Squares
	Slide 49: Solving Least-Squares
	Slide 50: When is Least-Squares Possible?
	Slide 51: When is Least-Squares Possible?
	Slide 52: Homogeneous Least-Squares
	Slide 53: Homogeneous Least-Squares
	Slide 54: Homogeneous Least-Squares
	Slide 55: Homogeneous Least-Squares
	Slide 56: Derivatives
	Slide 57
	Slide 58
	Slide 59
	Slide 60: What Calculus Should I Know
	Slide 61: Partial Derivatives
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67: What Should I Know?
	Slide 68
	Slide 69: For the Curious
	Slide 70: What’s a Number?
	Slide 71: Adding Two Numbers
	Slide 72: Some Gotchas
	Slide 73: Some Gotchas
	Slide 74: What’s a Number?
	Slide 75: Fixed-Point Arithmetic
	Slide 76: Floating Point
	Slide 78: Floating Point
	Slide 79: Floating Point
	Slide 80: Floating Point
	Slide 81: Revisiting Adding Numbers
	Slide 82: Revisiting Adding Numbers
	Slide 83: Revisiting Adding Numbers
	Slide 84: Revisiting Adding Numbers
	Slide 85: Revisiting Adding Numbers
	Slide 86: Past Stuff
	Slide 87: Cross Product
	Slide 88: Span
	Slide 89: Span
	Slide 90: Span
	Slide 91: Linear Independence
	Slide 92: Linear Independence
	Slide 93: Linear Independence
	Slide 94: Matrix-Vector Product
	Slide 95: An Intuition
	Slide 96: Linear Independence
	Slide 97: Linear Independence Intuition
	Slide 98: Inverses

