(Mainly) Linear Models

EECS 442 – David Fouhey Winter 2023, University of Michigan

http://web.eecs.umich.edu/~fouhey/teaching/EECS442_W23/

Roadmap

- Basics (Done)
- Image Stitching/Warping (Done)
- Learning-based Vision (through end of March)
- 3D (April)
- Applications (Last Week)

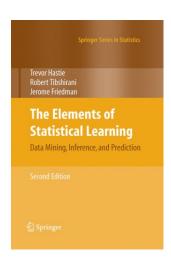
Next Few Classes

- Machine Learning (ML) Crash Course
- I can't cover everything
- If you can, take a ML course or *learn online*
- ML really won't solve all problems and is incredibly dangerous if misused
- But ML is a powerful tool and not going away

Terminology

- ML is incredibly messy terminology-wise.
- Most things have at lots of names.
- I will try to write down multiple of them so if you see it later you'll know what it is.

Pointers



Useful book (Free too!):
The Elements of Statistical Learning
Hastie, Tibshirani, Friedman
https://web.stanford.edu/~hastie/ElemStatLearn/

Useful set of data: UCI ML Repository

https://archive.ics.uci.edu/ml/datasets.html

Machine Learning (ML)

- Goal: make "sense" of data
- Overly simplified version: transform vector x into vector y=T(x) that's somehow better
- Potentially you fit T using pairs of datapoints and desired outputs (x_i,y_i), or just using a set of datapoints (x_i)
- Always are trying to find some transformation that minimizes or maximizes some objective function or goal.

Machine Learning

Input: x

Output: y

Feature vector/Data point:

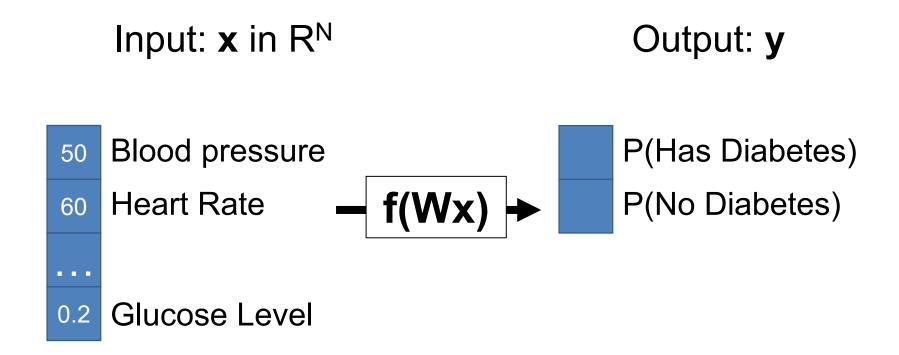
Vector representation of datapoint. Each dimension or "feature" represents some aspect of the data.

Label / target:

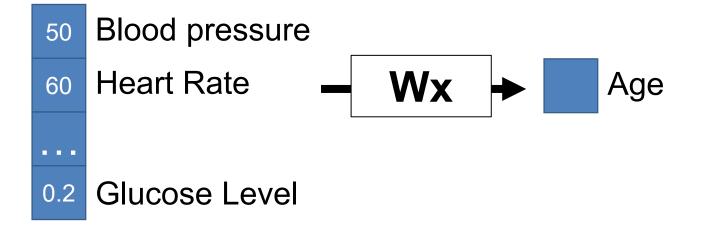
Fixed length vector of desired output. Each dimension represents some aspect of the output data

Supervised: we are given y.

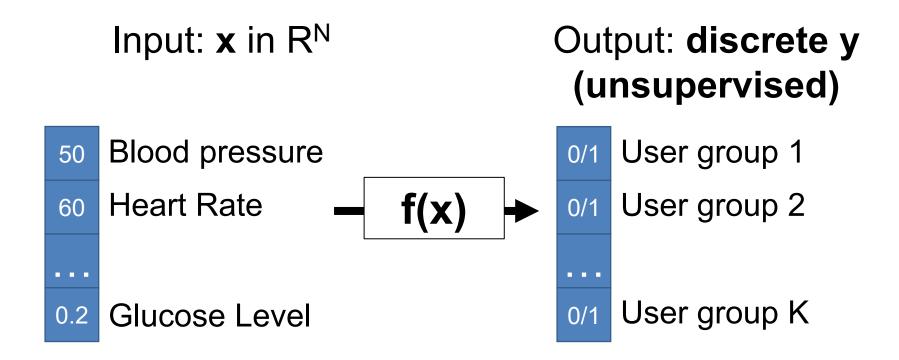
Unsupervised: we are not, and make our own ys.



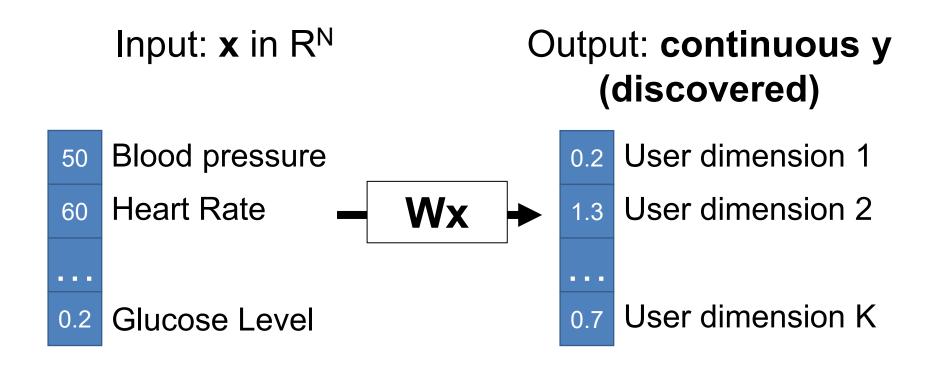
Input: **x** in R^N Output: **y**



Intuitive objective function: Want our prediction of age to be "close" to true age.

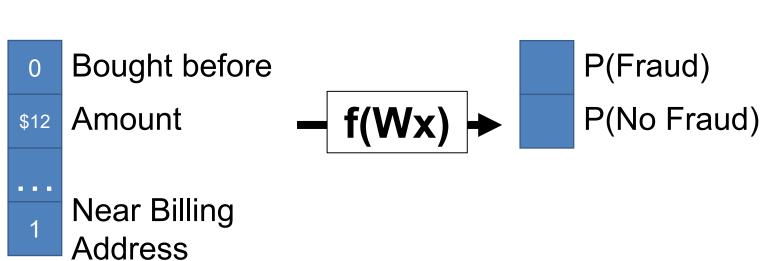


Intuitive objective function: Want to find K groups that explain the data we see.



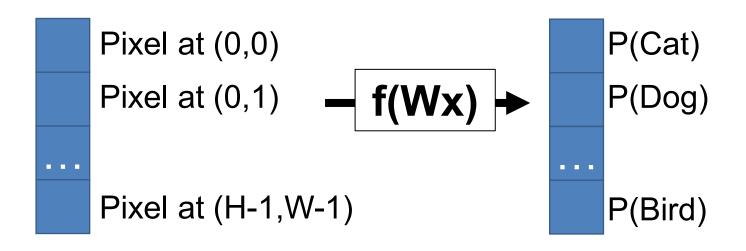
Intuitive objective function: Want to K dimensions (often two) that are easier to understand but capture the variance of the data.

Example – Credit Card Fraud



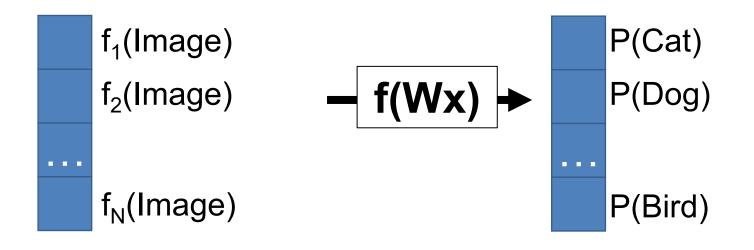
Example – Computer Vision

Input: **x** in R^N Output: **y**



Example – Computer Vision

Input: **x** in R^N Output: **y**



Abstractions

- Throughout, assume we've converted data into a fixed-length feature vector. There are welldesigned ways for doing this.
- But remember it could be big!
 - Image (e.g., 224x224x3): 151K dimensions
 - Patch (e.g., 32x32x3) in image: 3072 dimensions

ML Problems in Vision

Image credit: Wikipedia

Supervised (Data+Labels)

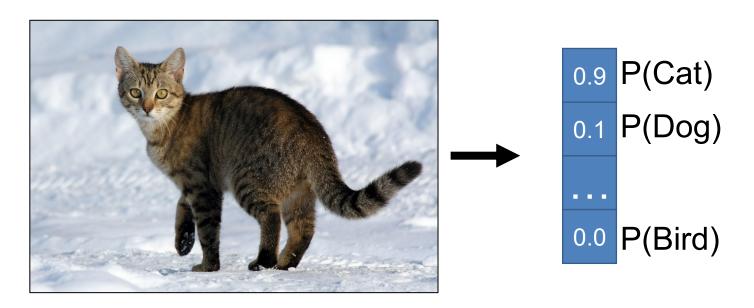
Unsupervised (Just Data)

Discrete Output

Classification/ Categorization

Continuous Output

ML Problem Examples in Vision Categorization/Classification Binning into K mutually-exclusive categories



Supervised (Data+Labels)

Unsupervised (Just Data)

Discrete Output

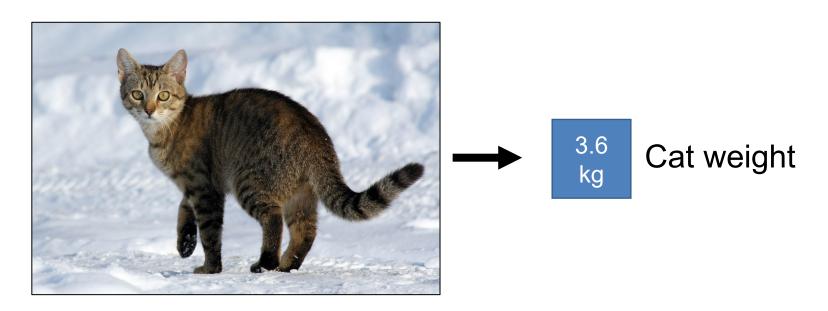
Classification/ Categorization

Continuous Output

Regression

ML Problem Examples in Vision Regression

Estimating continuous variable(s)



Supervised (Data+Labels)

Unsupervised (Just Data)

Discrete Output

Classification/ Categorization

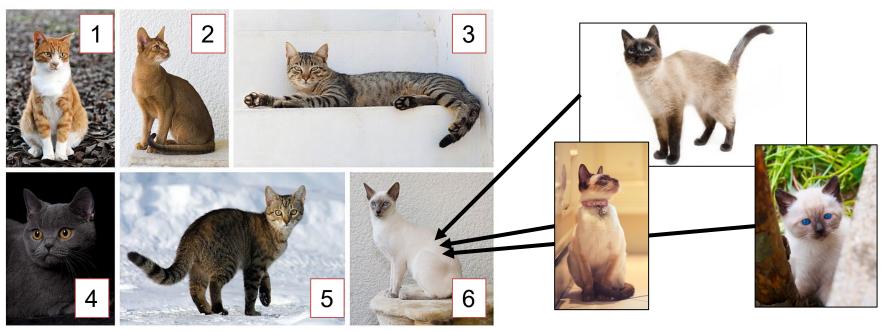
Clustering

Continuous Output

Regression

Clustering

Given a set of cats, automatically discover clusters or *cat*egories.



Supervised (Data+Labels)

Unsupervised (Just Data)

Discrete Output

Classification/ Categorization

Clustering

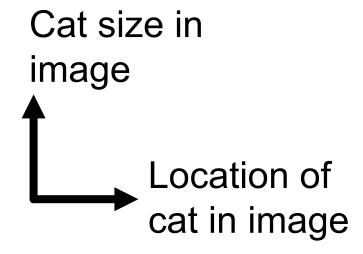
Continuous Output

Regression

Dimensionality Reduction

Dimensionality Reduction

Find dimensions that best explain the whole image/input



For ordinary images, this is currently a totally hopeless task. For certain images (e.g., faces, this works reasonably well)

Practical Example

- ML has a tendency to be mysterious
- Let's start with least-squares
- One thing to remember:
 - N eqns, <N vars = overdetermined (will have errors)
 - N eqns, N vars = exact solution
 - N eqns, >N vars = underdetermined (infinite solns)

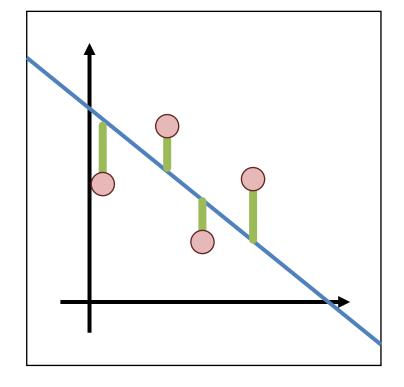
Let's make the world's worst weather model

Data:
$$(x_1,y_1)$$
, (x_2,y_2) , ..., (x_k,y_k)

Model: (m,b)
$$y_i = mx_i + b$$

Or (**w**) $y_i = \mathbf{w}^T \mathbf{x}_i$

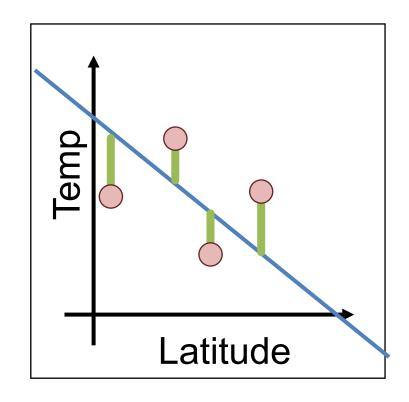
Objective function: $(y_i - \mathbf{w}^T \mathbf{x}_i)^2$



World's Worst Weather Model

Given latitude (distance above equator), predict temperature by fitting a line

<u>City</u>	<u>Latitude (°)</u>	Temp (F)
Ann Arbor	42	33
Washington, DC	39	38
Austin, TX	30	62
Mexico City	19	67
Panama City	9	83



$$\sum_{i=1}^{K} (y_i - \mathbf{w}^T \mathbf{x}_i)^2 \longrightarrow \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2$$

Output:

Temperature

$$\boldsymbol{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_k \end{bmatrix}$$

Inputs:

Latitude, 1

$$\mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_k \end{bmatrix} \qquad \mathbf{X} = \begin{bmatrix} x_1 & 1 \\ \vdots & \vdots \\ x_k & 1 \end{bmatrix} \qquad \mathbf{w} = \begin{bmatrix} m \\ b \end{bmatrix}$$

Model/Weights:

Latitude, "Bias"

$$\mathbf{w} = \begin{bmatrix} m \\ b \end{bmatrix}$$

$$\sum_{i=1}^{\kappa} (y_i - \mathbf{w}^T \mathbf{x}_i)^2 \longrightarrow \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2$$

Output:

Temperature

$$y = \begin{bmatrix} 33 \\ \vdots \\ 83 \end{bmatrix}$$

Inputs:

Latitude, 1

$$\mathbf{y} = \begin{bmatrix} 33 \\ \vdots \\ 83 \end{bmatrix} \qquad \mathbf{X} = \begin{bmatrix} 42 & 1 \\ \vdots & \vdots \\ 9 & 1 \end{bmatrix} \qquad \mathbf{w} = \begin{bmatrix} m \\ b \end{bmatrix}$$

Model/Weights:

Latitude, "Bias"

$$\mathbf{w} = \begin{bmatrix} m \\ b \end{bmatrix}$$

Intuitively why do we add a one to the inputs?

Training (\mathbf{x}_i, y_i) :

$$\arg\min_{\mathbf{w}} \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_{2}^{2} \quad \text{or}$$

$$\arg\min_{\mathbf{w}} \sum_{i=1}^{n} \|\mathbf{w}^{T}\mathbf{x}_{i} - \mathbf{y}_{i}\|^{2}$$

Loss function/objective: evaluates correctness. Here: Squared L2 norm / Sum of Squared Errors

Training/Learning/Fitting: try to find model that optimizes/minimizes an objective / loss function

$$\boldsymbol{w}^* = \left(\boldsymbol{X}^T \boldsymbol{X}\right)^{-1} \boldsymbol{X}^T \boldsymbol{y}$$

Training $(\mathbf{x}_i, \mathbf{y}_i)$:

$$\arg\min_{\mathbf{w}} \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_{2}^{2} \quad \text{or}$$

$$\arg\min_{\mathbf{w}} \sum_{i=1}^{n} \|\mathbf{w}^{T}\mathbf{x}_{i} - y_{i}\|^{2}$$

Inference (x):

$$\boldsymbol{w}^T\boldsymbol{x} = w_1x_1 + \dots + w_Fx_F$$

Testing/Inference: Given a new output, what's the prediction?

Least Squares: Learning

Data Model

<u>City</u>	<u>Latitude</u>	<u>Temp</u>	
Ann Arbor	42	33	
Washington, DC	39	38	Temp =
Austin, TX	30	62	-1.47*Lat + 97
Mexico City	19	67	-1.47 Lat + 97
Panama City	9	83	

$$\boldsymbol{X}_{5x2} = \begin{bmatrix} 42 & 1 \\ 39 & 1 \\ 30 & 1 \\ 19 & 1 \end{bmatrix} \quad \boldsymbol{y}_{5x1} = \begin{bmatrix} 33 \\ 38 \\ 62 \\ 67 \\ 83 \end{bmatrix} \quad (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y} \\ w_{2x1} = \begin{bmatrix} -1.47 \\ 97 \end{bmatrix}$$

Let's Predict The Weather

The EECS 442
Weather
Channel

<u>City</u>	<u>Latitude</u>	<u>Temp</u>	<u>Temp</u>	<u>Error</u>
Ann Arbor	42	33	35.3	2.3
Washington, DC	39	38	39.7	1.7
Austin, TX	30	62	52.9	10.9
Mexico City	19	67	69.1	2.1
Panama City	9	83	83.8	0.8

Is This a Minimum Viable Product?

The EECS 442
Weather
Channel

The Weather Channel

Pittsburgh: Temp = -1.47*40 + 97 = 38

Actual Pittsburgh: 45

Berkeley: E = -1.47*38 + 97 = 41

Actual Berkeley: 53

Sydney: Temp = -1.47*-33 + 97 = **146** Actual Sydney: 74

Won't do so well in the Australian market...

Where Can This Go Wrong?

Where Can This Go Wrong?

How well can we predict Ann Arbor and DC and why?

Always Need Separated Testing

Model might be fit data too precisely "overfitting" Remember: #datapoints = #params = perfect fit

Model may only work under some conditions (e.g., trained on northern hemisphere).

Sydney:
$$Sydney$$
: $Sydney$

Training and Testing

Fit model parameters on **training** set; evaluate on *entirely unseen* **test** set.

Training

Test

"It's tough to make predictions, especially about the future"
-Yogi Berra

Nearly any model can predict data it's seen. If your model can't accurately interpret "unseen" data, it's probably useless. We have no clue whether it has just memorized.

Let's Improve Things

If one feature does ok, what about more features!?

<u>City</u> <u>Name</u>	<u>Latitude</u> (<u>deg)</u>	<u>Avg July</u> <u>High (F)</u>	<u>Avg</u> <u>Snowfall</u>	<u>Temp</u> <u>(F)</u>
Ann Arbor	42	83	58	33
Washington, DC	39	88	15	38
Austin, TX	30	95	0.6	62
Mexico City	19	74	0	67
Panama City	9	93	0	83

4 features + a feature of 1s for intercept/bias

 y_{5x1}

Let's Improve Things

All the math works out!

Data
$$w^* = (X^T X)^{-1} X^T y$$
 Model X_{5x4} y_{5x1} w_{4x1}

New EECS 442 Weather Rule:

$$w_1$$
*latitude + w_2 *(avg July high) + w_3 *(avg snowfall) + w_4 *1

In general called linear regression

Let's Improve Things More

If one feature does ok, what about **LOTS** of features!?

<u>City</u> <u>Name</u>	<u>Latitude</u> (deg)	<u>Avg July</u> <u>High (F)</u>	<u>Avg</u> Snowfall	<u>Day of</u> <u>Year</u>	Elevation (ft)	<u>% Letter</u> <u>M</u>	<u>Temp</u> <u>(F)</u>
Ann Arbor	42	83	58	45	840	100	33
Washington, DC	39	88	15	45	409	3	38
Austin, TX	30	95	0.6	45	489	2	62
Mexico City	19	74	0	45	7200	4	67
Panama City	9	93	0	45	7	1	83

 X_{5x7} 6 features + a feature

of 1s for intercept/bias

 y_{5x1}

Let's Improve Things More

Data
$$w^* = (X^T X)^{-1} X^T y$$
 Model X_{5x7} y_{5x1} $w^* = (X^T X)^{-1} X^T y$

X^TX is a 7x7 matrix but is **rank deficient** (rank 5) and has no inverse. There are an infinite number of solutions.

Have to express some preference for which of the infinite solutions we want.

The Fix – Regularized Least Squares

Add **regularization** to objective that prefers some solutions:

Before:
$$\arg \min_{\mathbf{w}} ||\mathbf{y} - \mathbf{X}\mathbf{w}||_2^2 \longrightarrow \text{Loss}$$

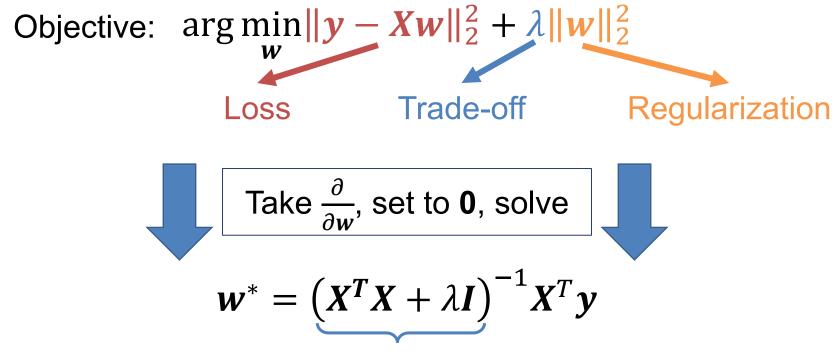
After: $\underset{w}{\operatorname{arg min}} \| \mathbf{y} - \mathbf{X} \mathbf{w} \|_{2}^{2} + \lambda \| \mathbf{w} \|_{2}^{2}$

Loss Trade-off Regularization

Want model "smaller": pay a penalty for w with big norm

Intuitive Objective: accurate model (low loss) but not too complex (low regularization). λ controls how much of each.

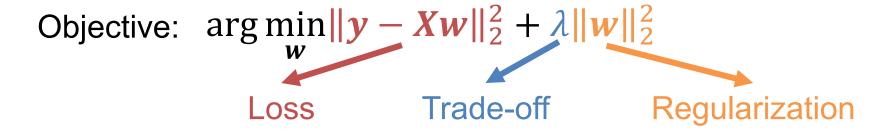
The Fix – Regularized Least Squares



 $X^TX+\lambda I$ is full-rank (and thus invertible) for $\lambda>0$

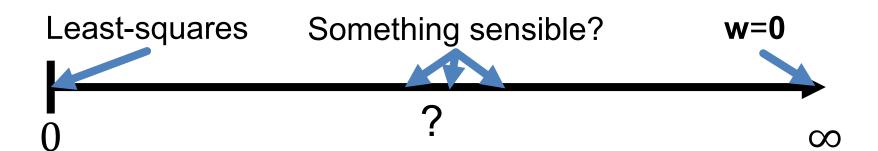
Called *lots of things:* regularized least-squares, Tikhonov regularization (after Andrey Tikhonov), ridge regression, Bayesian linear regression with a multivariate normal prior.

The Fix – Regularized Least Squares



What happens (and why) if:

- $\lambda = 0$
- λ=∞



Training and Testing

Fit model parameters on training set; evaluate on *entirely unseen* test set.

Training Test

How do we pick λ?

Training and Testing

Fit model parameters on training set; find *hyperparameters* by testing on validation set; evaluate on *entirely unseen* test set.

Training

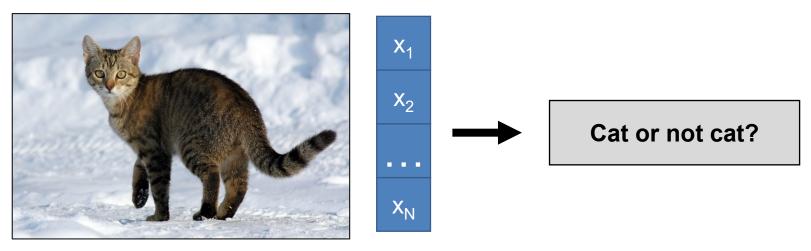
Validation

Test

Use these data points to fit w*=(X^TX+ λI)-1X^Ty Evaluate on these points for different λ, pick the best

Classification

Start with simplest example: binary classification



Actually: a feature vector representing the image

Classification by Least-Squares

Treat as regression: x_i is image feature; y_i is 1 if it's a cat, 0 if it's not a cat. Minimize least-squares loss.

Training
$$(\mathbf{x}_i, \mathbf{y}_i)$$
: $\arg\min_{\mathbf{w}} \sum_{i=1}^n ||\mathbf{w}^T \mathbf{x}_i - \mathbf{y}_i||^2$

Inference (x): $w^T x > t$

Unprincipled in theory, but often effective in practice The reverse (regression via discrete bins) is also common

Rifkin, Yeo, Poggio. Regularized Least Squares Classification (http://cbcl.mit.edu/publications/ps/rlsc.pdf). 2003
Redmon, Divvala, Girshick, Farhadi. You Only Look Once: Unified, Real-Time Object Detection. CVPR 2016

Easiest Form of Classification

Just **memorize** (as in a Python dictionary) Consider cat/dog/hippo classification.

If this: cat.

If this: dog.

If this: hippo.

Easiest Form of Classification

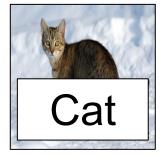
Where does this go wrong?

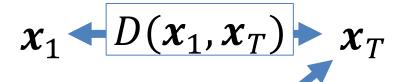
Rule: if this, then cat

Hmmm. Not quite the same.

Easiest Form of Classification

Known Images Labels





Test Image

 $D(x_N, x_T)$

 \boldsymbol{x}_N

(1) Compute distance between feature vectors (2) find nearest(3) use label.

Nearest Neighbor

"Algorithm"

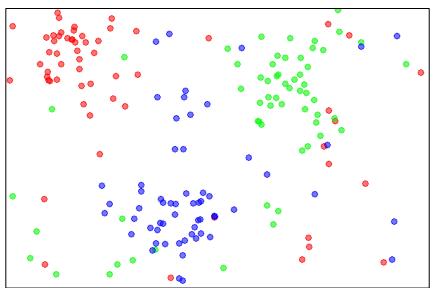
```
Training (\mathbf{x}_i, \mathbf{y}_i): Memorize training set
```

```
Inference (x):
```

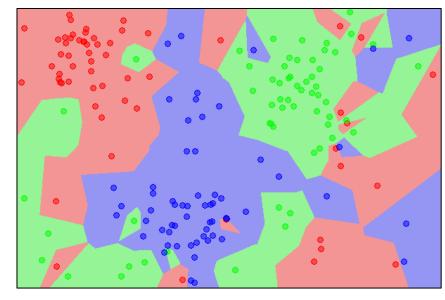
```
bestDist, prediction = Inf, None
for i in range(N):
   if dist(x<sub>i</sub>,x) < bestDist:
      bestDist = dist(x<sub>i</sub>,x)
      prediction = y<sub>i</sub>
```

Nearest Neighbor

2D Datapoints (colors = labels)



2D Predictions (colors = labels)

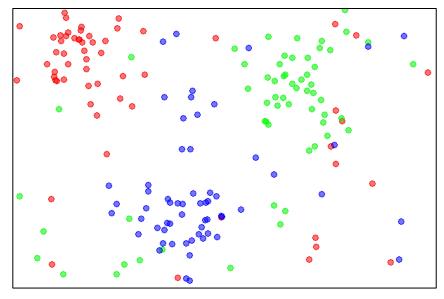


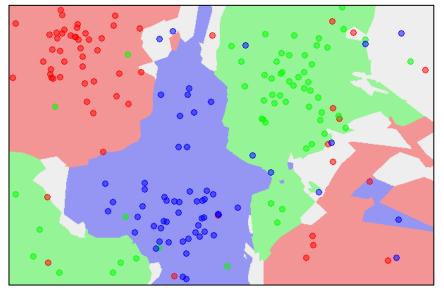
K-Nearest Neighbors

Take top K-closest points, vote

2D Datapoints (colors = labels)

2D Predictions (colors = labels)





K-Nearest Neighbors

What distance? What value for K?

Training Validation Test

Use these data points for lookup

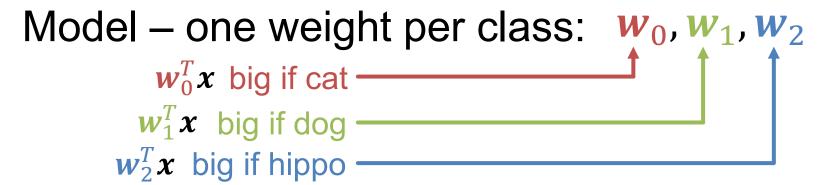
Evaluate on these points for different k, distances

K-Nearest Neighbors

- No learning going on but usually effective
- Same algorithm for every task
- As number of datapoints → ∞, error rate is guaranteed to be at most 2x worse than optimal you could do on data

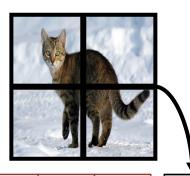
Linear Models

Example Setup: 3 classes



Stack together: W_{3xF} where **x** is in R^F

Linear Models



Cat weight vector

Dog weight vector

Hippo weight vector

0.2	-0.5	0.1	2.0	1.1
1.5	1.3	2.1	0.0	3.2
0.0	0.3	0.2	-0.3	-1.2

231

-96.8 Cat score
437.9 Dog score

61.95 Hippo score

W

Weight matrix a collection of scoring functions, one per class

1

56

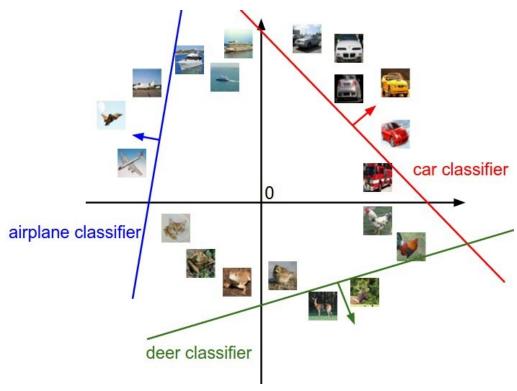
 x_i

 Wx_i

Prediction is vector where jth component is "score" for jth class.

Geometric Intuition*

What does a linear classifier look like* in 2D?

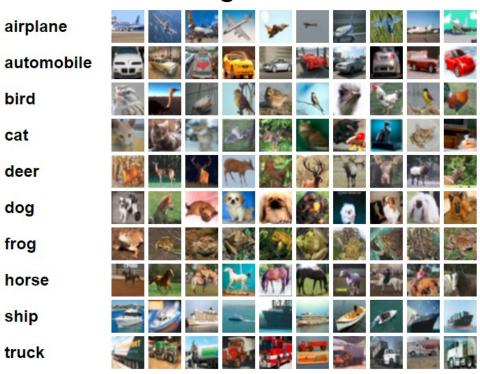


^{*2}D is good for vague intuitions, but ML typically deals with at least dozens if not *thousands* of dimensions. Your intuitions about space and geometry from living in 3D are **completely wrong** in high dimensions. Never trust people who show you 2D diagrams and write "Intuition" in the slide title. See: On the Surprising Behavior of Distance Metrics in High Dimensional Space. Charu, Hinneburg, Keim. ICDT 2001

Diagram credit: Karpathy & Fei-Fei. 12-point font mini-rant: me

Visual Intuition

CIFAR 10: 32x32x3 Images, 10 Classes



- Turn each image into feature by unrolling all pixels
- Fit 10 linear models

Guess The Classifier

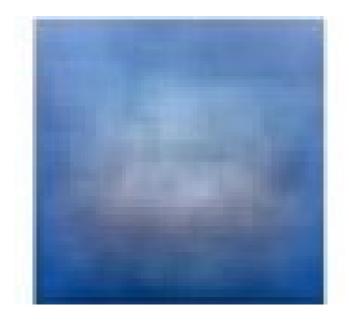
Decision rule is $\mathbf{w}^T \mathbf{x}$. If \mathbf{w}_i is big, then big values of \mathbf{x}_i are indicative of the class.

Deer or Plane?

Guess The Classifier

Decision rule is $\mathbf{w}^T \mathbf{x}$. If \mathbf{w}_i is big, then big values of \mathbf{x}_i are indicative of the class.

Ship or Dog?



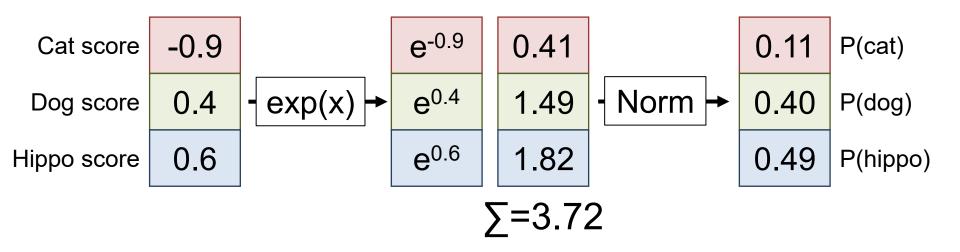
Interpreting a Linear Classifier

Decision rule is $\mathbf{w}^T \mathbf{x}$. If \mathbf{w}_i is big, then big values of \mathbf{x}_i are indicative of the class.



Preliminaries

Converting Scores to "Probability Distribution"



Generally P(class j):
$$\frac{\exp((Wx)_j)}{\sum_k \exp((Wx)_k)}$$

Softmax

Inference (x):
$$\underset{k}{\text{arg max}} (Wx)_k$$

(Take the class whose weight vector gives the highest score)

P(class j):
$$\frac{\exp((Wx)_j)}{\sum_k \exp((Wx)_k)}$$

Why can we skip the exp/sum exp thing to make a decision?

Softmax

Inference (x): $\underset{k}{\text{arg max}} (Wx)_k$

(Take the class whose weight vector gives the highest score)

P(correct class)

Training
$$(\mathbf{x}_i, \mathbf{y}_i)$$
:

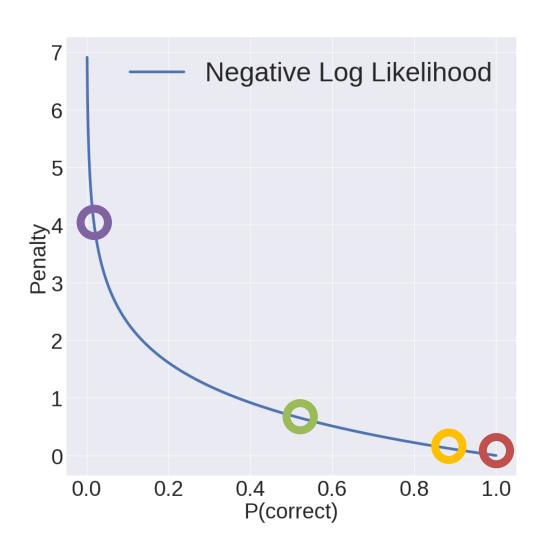
$$\arg\min_{\boldsymbol{W}} \lambda \|\boldsymbol{W}\|_{2}^{2} + \sum_{i}^{n} -\log\left(\frac{\exp((\boldsymbol{W}\boldsymbol{x})_{y_{i}})}{\sum_{k} \exp((\boldsymbol{W}\boldsymbol{x})_{k}))}\right)$$

Regularization

Over all data points

Pay penalty for negative loglikelihood of correct class

Softmax



```
P(correct) = 0.05: 3.0 penalty
```

P(correct) = 0.5: 0.11 penalty

P(correct) = 0.9: 0.11 penalty

P(correct) = 1: No penalty!

Next Class

- How do we optimize more complex stuff?
- A bit more ML

Other Stuff

- I used to include this objective (multiclass SVM)
- It's worth seeing if you're curious, but class is a zero-sum game, and I think other things are a better use of your time

Objective 1: Multiclass SVM

Inference (x): $\underset{k}{\text{arg max}} (Wx)_k$

(Take the class whose weight vector gives the highest score)

Objective 1: Multiclass SVM

Inference (x): $\underset{k}{\text{arg max}} (Wx)_k$

(Take the class whose weight vector gives the highest score)

Training $(\mathbf{x}_i, \mathbf{y}_i)$:

$$\arg\min_{\mathbf{W}} \lambda ||\mathbf{W}||_{2}^{2} + \sum_{i} \sum_{j \neq y_{i}}$$

 $\max(0, (\boldsymbol{W}\boldsymbol{x}_i)_j - (\boldsymbol{W}\boldsymbol{x}_i)_{y_i} + m)$

Regularization

Over all data points

For every class j that's NOT the correct one (y_i)

Pay no penalty if prediction for class yi is bigger than j by m ("margin"). Otherwise, pay proportional to the score of the wrong class.

Objective: Multiclass SVM

How on earth do we optimize:

$$\arg\min_{\mathbf{W}} \lambda \|\mathbf{W}\|_{2}^{2} + \sum_{i}^{n} \sum_{j \neq y_{i}} \max(0, (\mathbf{W}\mathbf{x}_{i})_{j} - (\mathbf{W}\mathbf{x}_{i})_{y_{i}} + m)$$

Hold that thought!