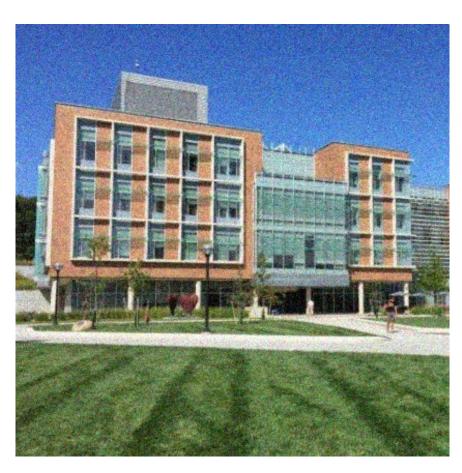
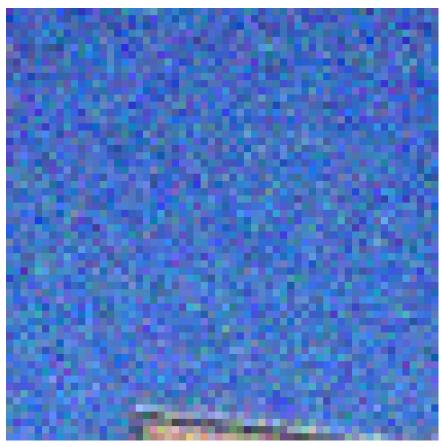
Image Filtering

EECS 442 – David Fouhey Winter 2023, University of Michigan

https://web.eecs.umich.edu/~fouhey/teaching/EECS442_W23/

Let's Take An Image



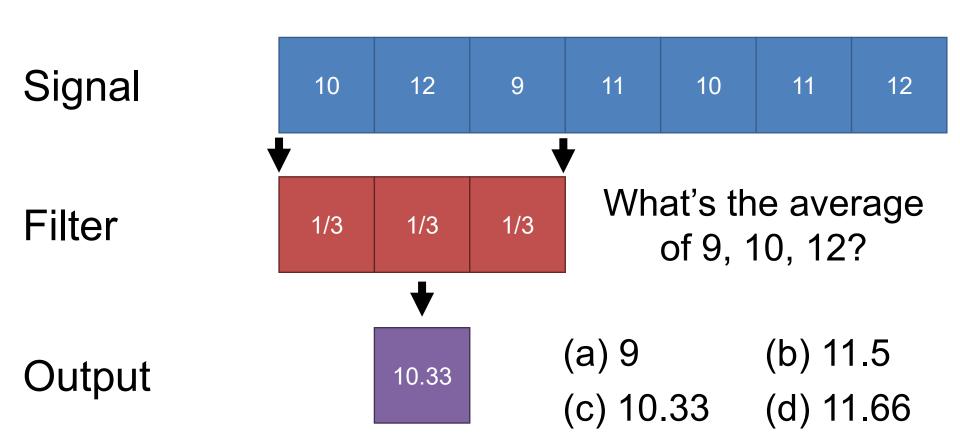


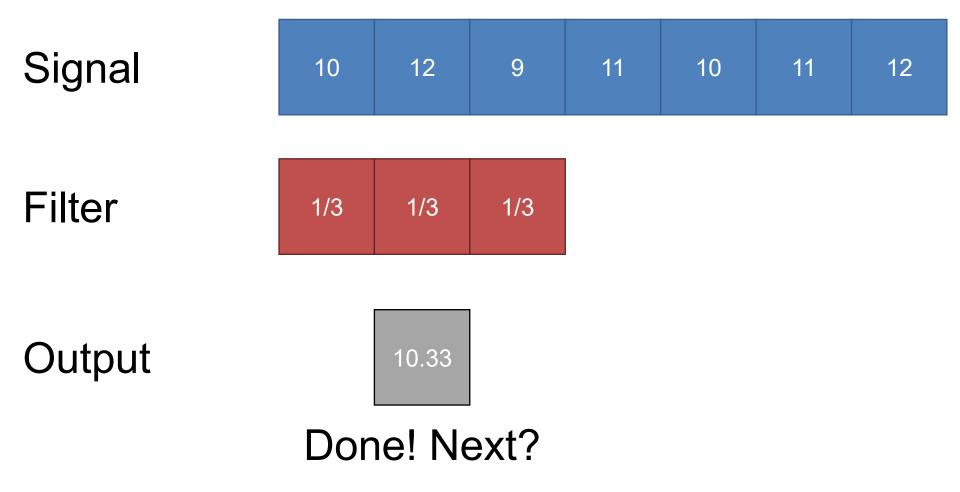
Let's Fix Things

- We have noise in our image
- Let's replace each pixel with a weighted average of its neighborhood
- Weights are filter kernel

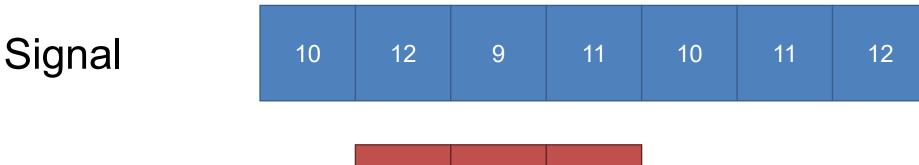
Out	

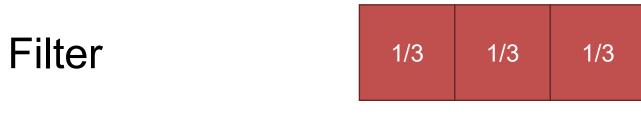
1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

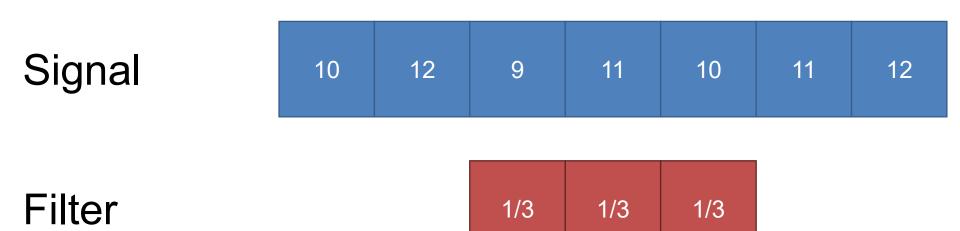


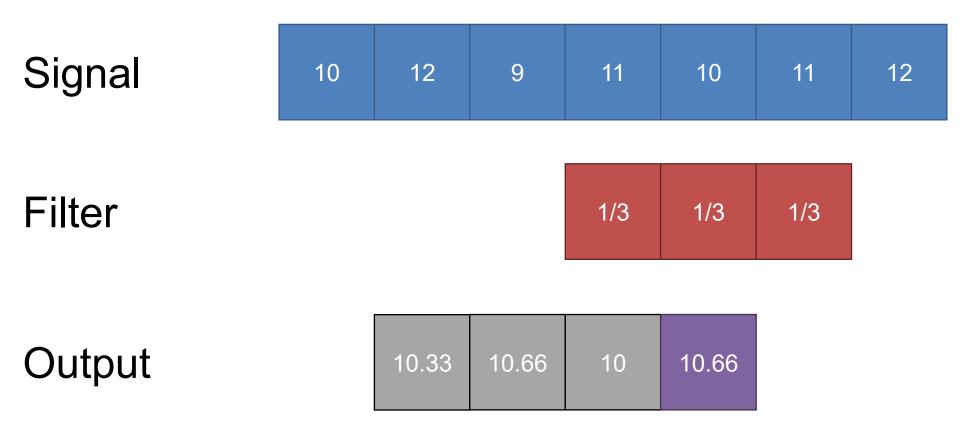


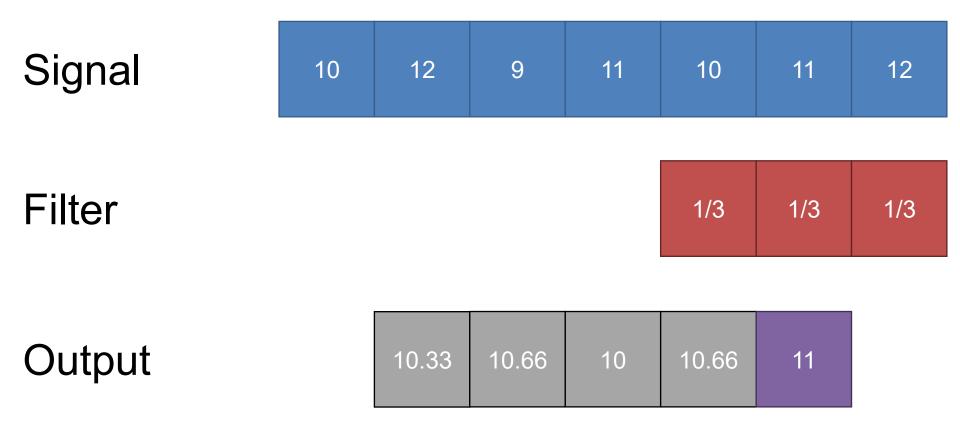
1D Case (1) 10.66 (2) 9.33 (3) 14.2 (4) 11.33

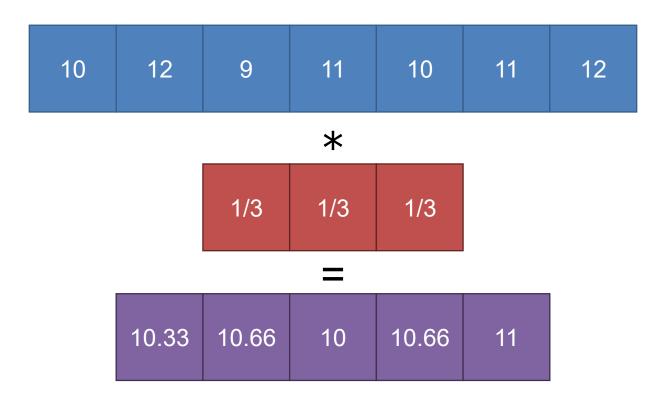










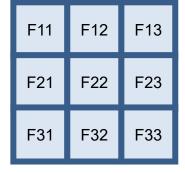


You lose pixels (maybe...)
Filter "sees" only a few pixels at a time

Input

I31 I51

Filter



Output

O11	O12	O13	O14
O21	O22	O23	O24
O31	O32	O33	O34

Input & Filter

Output

F11	F12	F13	114	l15	l16
F21	F22	F23	124	l25	126
F31	F32	F33	134	l35	136
141	142	I43	144	I45	146
I51	152	153	154	l55	156

O11

$$O11 = I11*F11 + I12*F12 + ... + I33*F33$$

Input & Filter

		1	_		1
()		TI	n		T
O	u	LI		u	L
_	•	_	_	•	_

l11	F11	F12	F13	l15	l16
l21	F21	F22	F23	l25	126
I31	F31	F32	F33	l35	136
141	142	I43	144	I45	146
l51	152	153	154	l55	156

$$O12 = I12*F11 + I13*F12 + ... + I34*F33$$

Input

Filter

Output

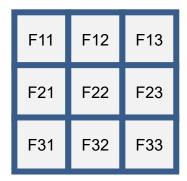
l11	l12	l13	l14	l15	I16
I21	122	I23	124	l25	I26
I31	l32	I33	134	l35	I36
I41	142	143	144	I45	I46
I51	152	153	154	l55	I56

F11	F12	F13
F21	F22	F23
F31	F32	F33

How many times can we apply a 3x3 filter to a 5x6 image?

Input

Filter



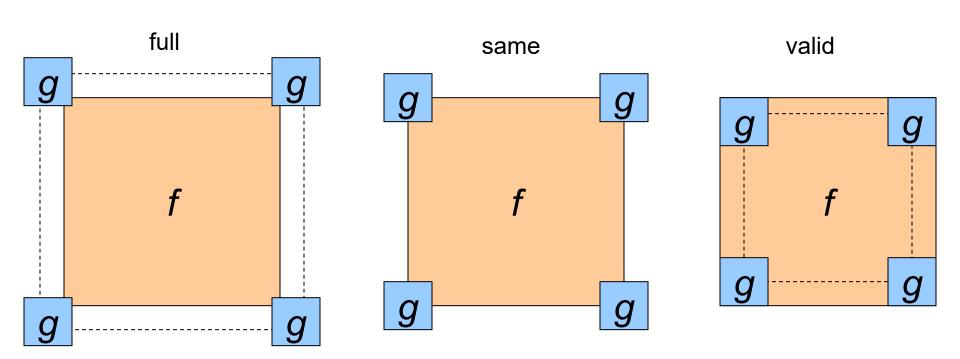
Output

Oij = Iij*F11 + Ii(j+1)*F12 + ... + I(i+2)(j+2)*F33

Painful Details – Edge Cases

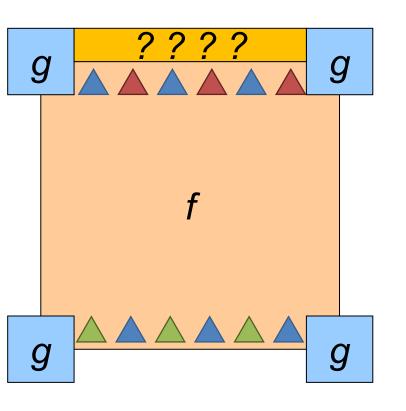
Filtering doesn't keep the whole image. Suppose **f** is the image and **g** the filter.

Full – any part of g touches f. Same – same size as f;Valid – only when filter doesn't fall off edge.



Painful Details – Edge Cases

What to about the "?" region?



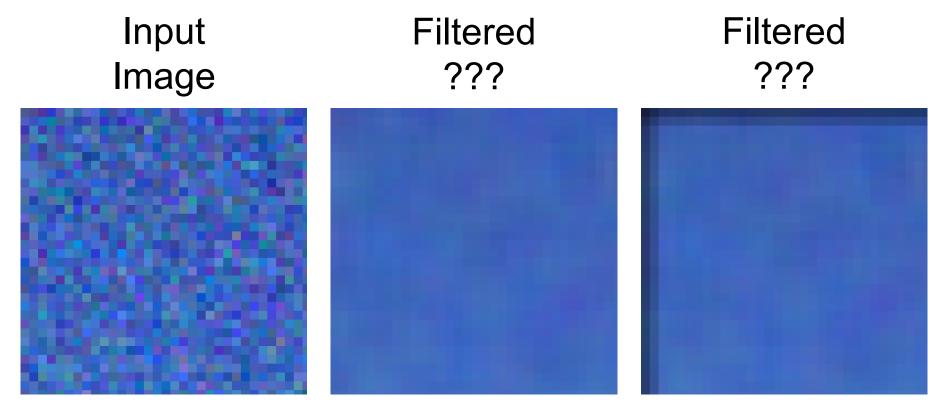
Symm: fold sides over

Circular/Wrap: wrap around

pad/fill: add value, often 0

Painful Details – Does it Matter?

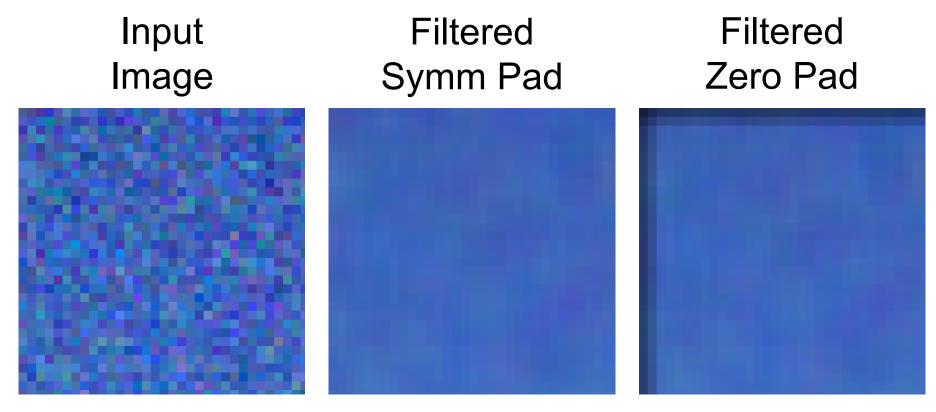
(I've applied the filter per-color channel) Which padding did I use and why?



Note – this is a zoom of the filtered, not a filter of the zoomed

Painful Details – Does it Matter?

(I've applied the filter per-color channel)



Note – this is a zoom of the filtered, not a filter of the zoomed

Original

0	0	0
0	1	0
0	0	0

Original

0	0	0
0	1	0
0	0	0

The Same!

Original

0	0	0
0	0	1
0	0	0

?

Original

0	0	0
0	0	1
0	0	0

Shifted *LEFT*1 pixel

Original

0	1	0
0	0	0
0	0	0

?

Original

0	1	0
0	0	0
0	0	0

Shifted **DOWN** 1 pixel

Original

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

Original

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

Blur (Box Filter)

Original

0	0	0
0	2	0
0	0	0

_

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

?

Original

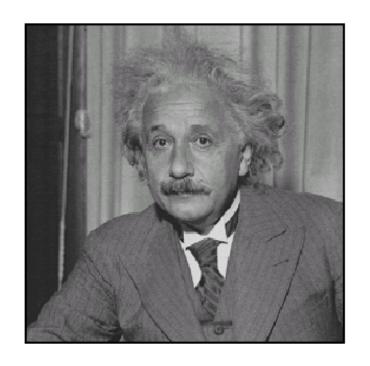
0	0	0
0	2	0
0	0	0

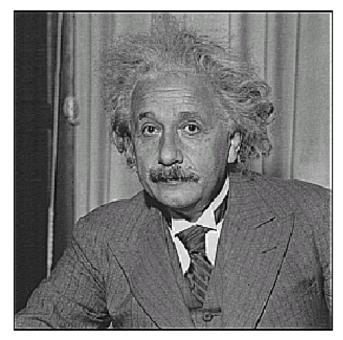
_

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

Sharpened (Acccentuates difference from local average)

Sharpening





before

after

Properties – Linear

Assume: I image f1, f2 filters

Linear: apply(I,f1+f2) = apply(I,f1) + apply(I,f2)

I is a white box on black, and f1, f2 are rectangles

Note: I am showing filters un-normalized and blown up. They're a smaller box filter (i.e., each entry is 1/(size^2))

Properties – Shift-Invariant

Assume: I image, f filter

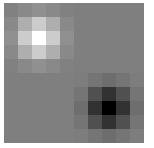
Shift-invariant: shift(apply(I,f)) = apply(shift(I,f))

Intuitively: only depends on filter neighborhood

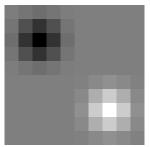
Painful Details - Signal Processing

What I just showed is often called "convolution". *Actually* cross-correlation. Source of *terrible* confusion.

Cross-Correlation (Original Orientation)



Convolution (Flip filter in x,y first)



Convolution

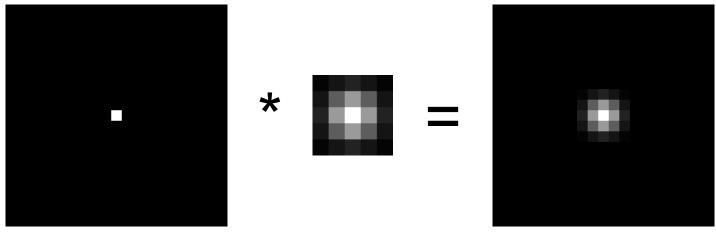
To be more clear:

```
def imageFilter(image, filter):
   for y in range(...): for x in range(...)
   # you'll fill this in
   return filtered
```

```
def imageConvolve2D(image, filter):
    # flip the filter left/right and up/down
    filterUse = np.fliplr(np.flipud(filter))
    return imageFilter2D(image, filterUse)
```

Properties of Convolution

- Any shift-invariant, linear operation is a convolution (*)
- Commutative: f * g = g * f
- Associative: (f * g) * h = f * (g * h)
- Distributes over +: f * (g + h) = f * g + f * h
- Scalars factor out: kf * g = f * kg = k (f * g)
- Identity (a single one with all zeros):



Property List: K. Grauman

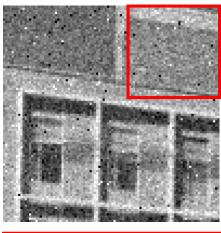
Questions?

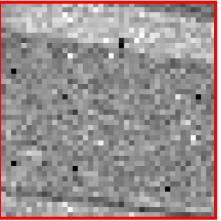
- Nearly everything onwards is a convolution.
- This is important to get right.

Smoothing With A Box

Intuition: if filter touches it, it gets a contribution.

Input

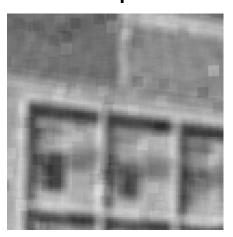


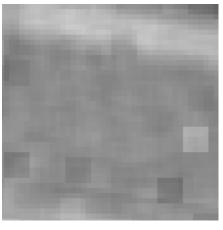


Filter

1/9	1/9	1/9	
1/9	1/9	1/9	
1/9	1/9	1/9	

Output





Solution - Weighted Combination

Intuition: weight according to closeness to center. Define 0,0 to be center pixel, then:

Filter_{ij}
$$\propto 1$$
What's this?

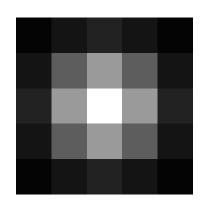
Filter_{ij} $\propto \exp\left(-\frac{x^2+y^2}{2\sigma^2}\right)$

Recognize the Filter?

It's a Gaussian!

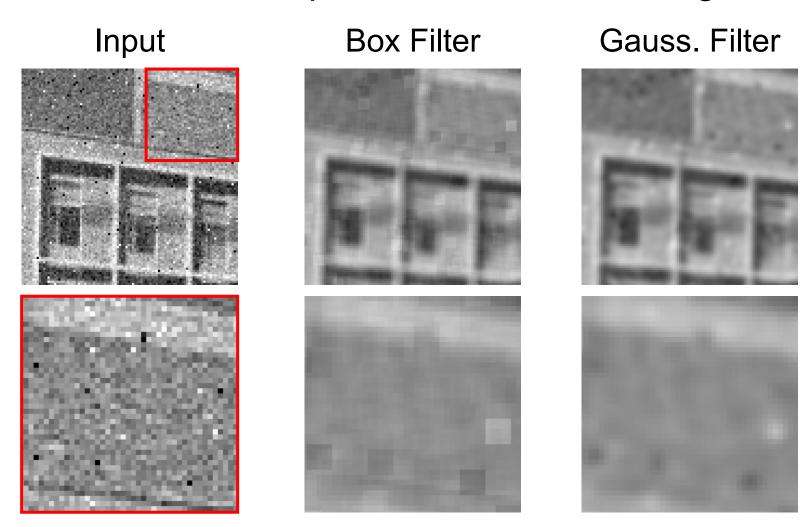
$$Filter_{ij} \propto \frac{1}{2\pi\sigma^2} \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right)$$

0.003	0.013	0.022	0.013	0.003
0.013	0.060	0.098	0.060	0.013
0.022	0.098	0.162	0.098	0.022
0.013	0.060	0.098	0.060	0.013
0.003	0.013	0.022	0.013	0.003

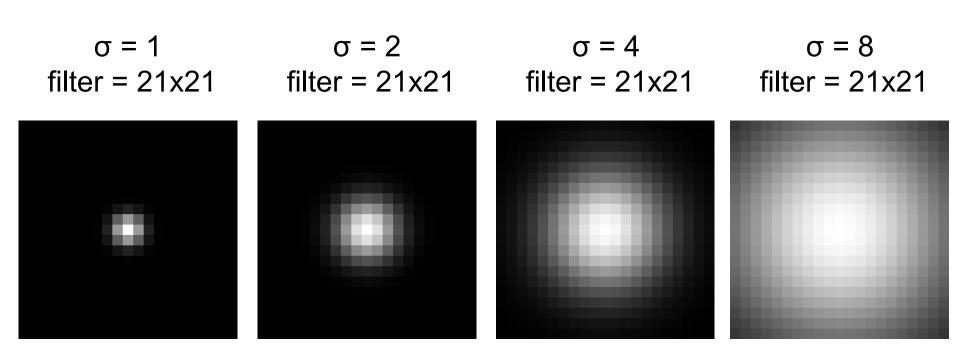


Smoothing With A Box & Gauss

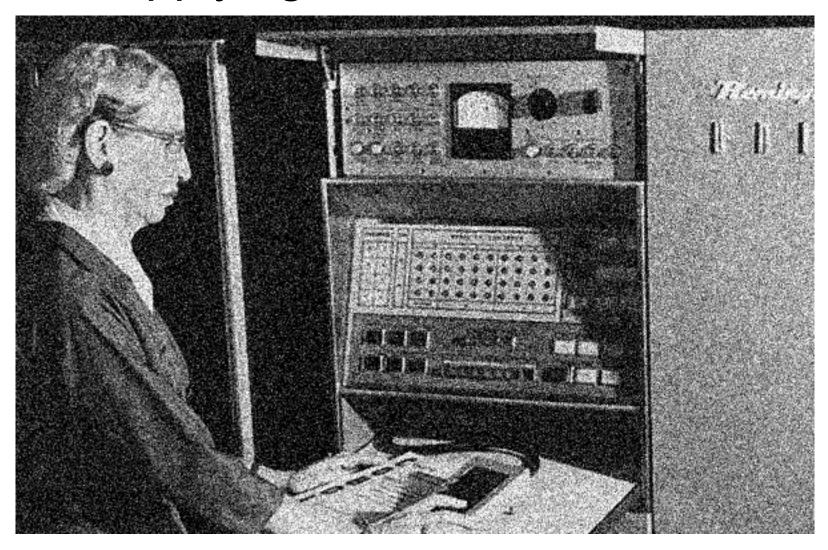
Still have some speckles, but it's not a big box



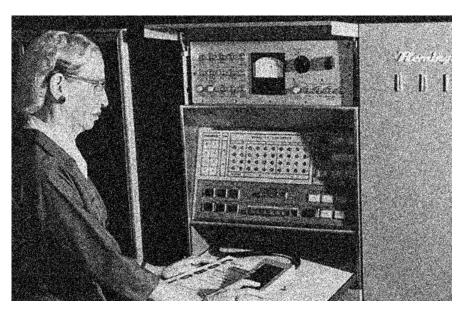
Gaussian Filters

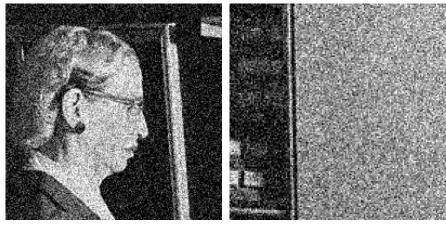


Note: filter visualizations are independently normalized throughout the slides so you can see them better

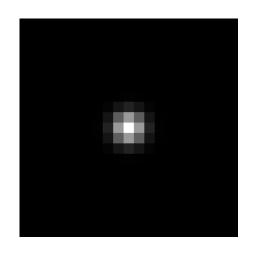


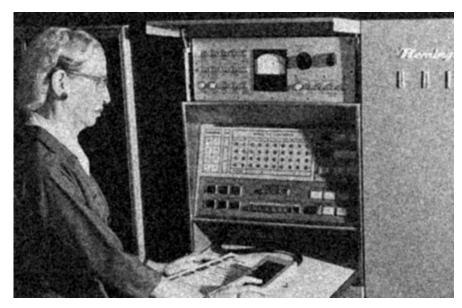
Input Image (no filter)



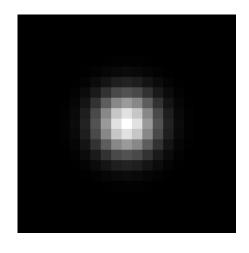


$$\sigma = 1$$

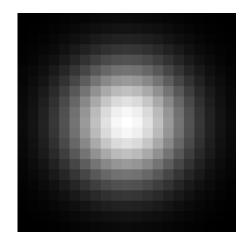


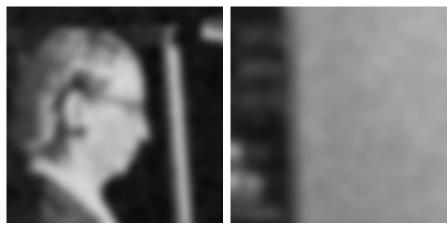


$$\sigma = 2$$

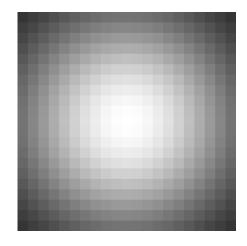


$$\sigma = 4$$





$$\sigma = 8$$



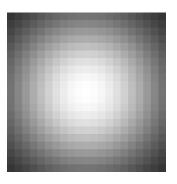


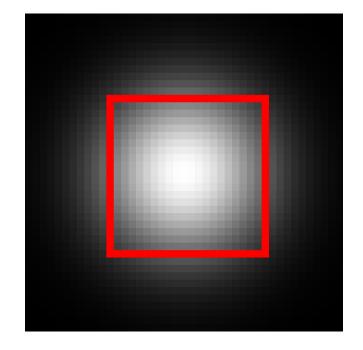
Picking a Filter Size

Too small filter → bad approximation
Want size ≈ 6σ (99.7% of energy)
Left far too small; right slightly too small!

$$\sigma$$
 = 8, size = 21

$$\sigma$$
 = 8, size = 43





Runtime Complexity

Image size = NxN = 6x6Filter size = MxM = 3x3

l11	l12	l13	l14	l15	I16
I21	F11	F12	F13	l25	126
I31	F21	F22	F23	l35	I36
I41	F31	F32	F33	145	I46
I51	152	153	154	155	I56
l61	162	163	164	165	166

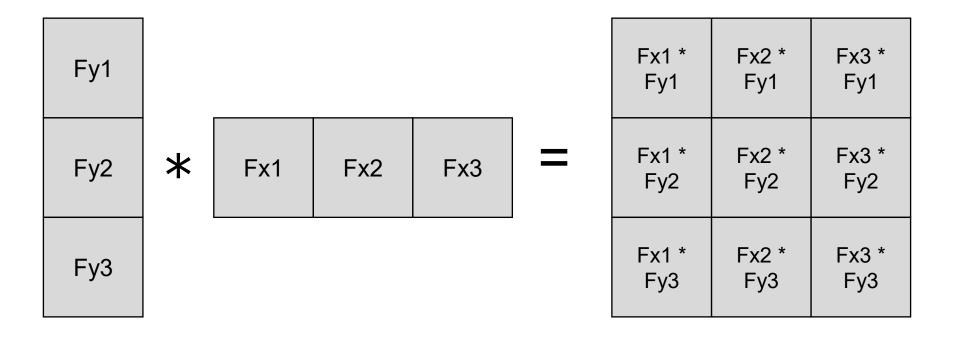
for ImageY in range(N):
 for ImageX in range(N):
 for FilterY in range(M):
 for FilterX in range(M):

. . .

Time: $O(N^2M^2)$

Separability

Conv(vector, transposed vector) → outer product



Separability

$$Filter_{ij} \propto \frac{1}{2\pi\sigma^2} \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right)$$

$$\longrightarrow$$

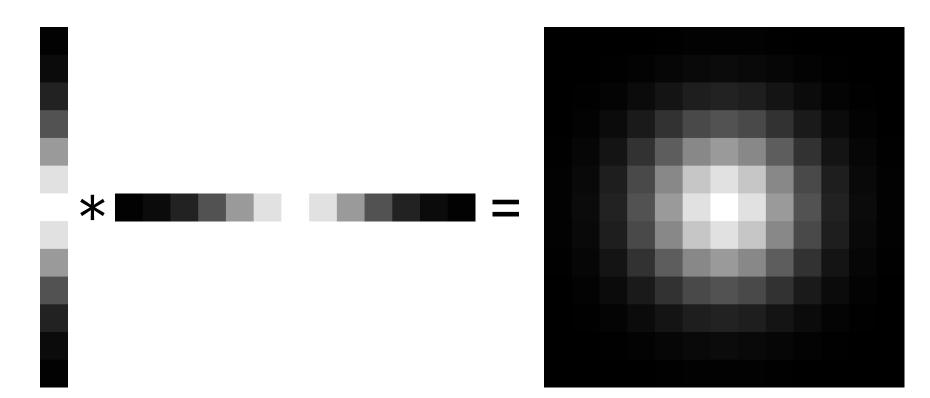
$$Filter_{ij} \propto \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{x^2}{2\sigma^2}\right) \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{y^2}{2\sigma^2}\right)$$

Separability

1D Gaussian * 1D Gaussian = 2D Gaussian

Image * 2D Gauss = Image * (1D Gauss * 1D Gauss)

= (Image * 1D Gauss) * 1D Gauss



Runtime Complexity

Image size = NxN = 6x6Filter size = Mx1 = 3x1

l11	l12	l13	l14	l15	l16
I21	F1	123	124	l25	126
I31	F2	133	134	l35	136
141	F3	143	144	I45	I46
151	152	153	154	155	156
l61	162	l63	I64	165	166

What are my compute savings for a 13x13 filter?

for ImageY in range(N):
 for ImageX in range(N):
 for FilterY in range(M):

. . .

for ImageY in range(N):
 for ImageX in range(N):
 for FilterX in range(M):

. . .

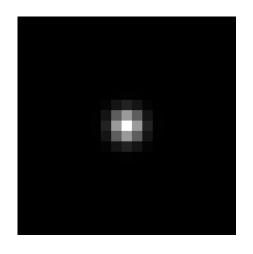
Time: $O(N^2M)$

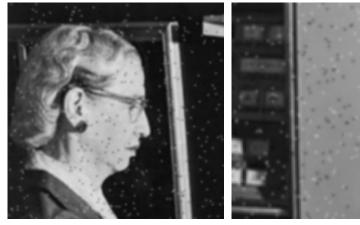
Why Gaussian?

Gaussian filtering removes parts of the signal above a certain frequency. Often noise is high frequency and signal is low frequency.

Where Gaussian Fails

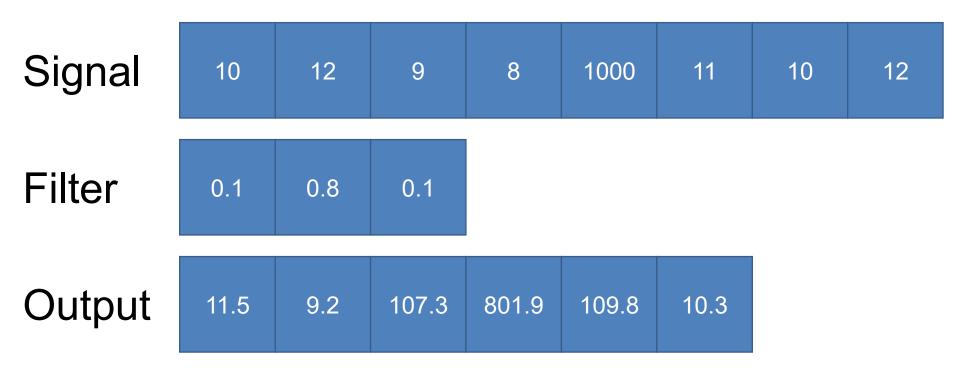
$$\sigma = 1$$





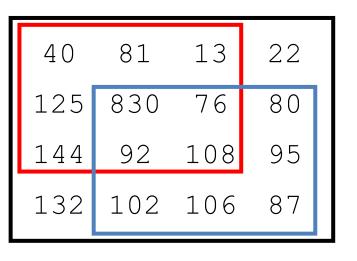
Why Does This Fail?

Means can be arbitrarily distorted by outliers



What else is an "average" other than a mean?

Non-linear Filters (2D)



[040, 081, 013, 125, 830, 076, 144, 092, 108] Sort [013, 040, 076, 081, 092, 108, 125, 144, 830] [830, 076, 080, 092, 108, 095, 102, 106, 087] Sort [076, 080, 087, 092, 095, 102, 106, 108, 830]

Applying Median Filter

Median Filter (size=3)



Applying Median Filter

Median
Filter
(size = 7)



Is Median Filtering Linear?

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 2 \\ 2 & 2 & 2 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix}$$

$$\frac{1}{2} + \frac{1}{2} + \frac{1}$$

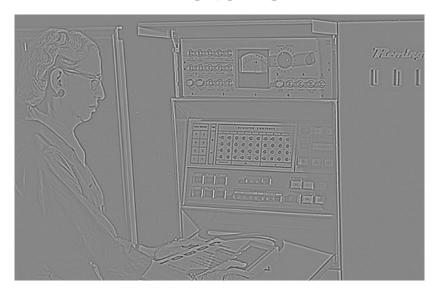
Some Examples of Filtering

Filtering – Sharpening

Image

Smoothed

Details

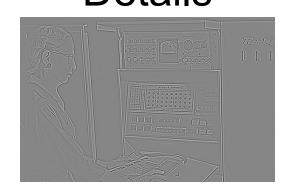


 $+\alpha$

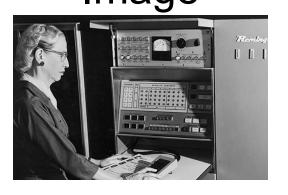
"Sharpened" $\alpha=1$



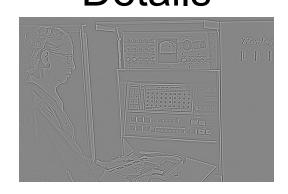
 $+\alpha$



"Sharpened" α =0



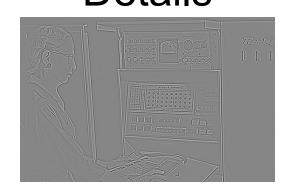
 $+\alpha$



"Sharpened" α =2

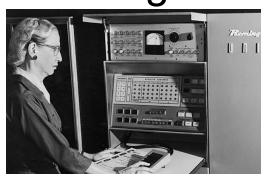


 $+\alpha$

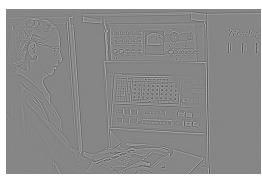


"Sharpened" α =0

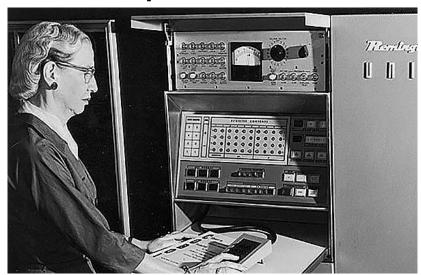
Filtering – Extreme Sharpening Image Details



 $+\alpha$



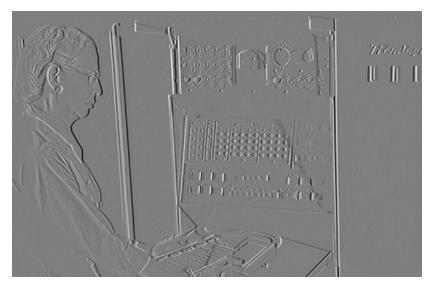
"Sharpened" α =10

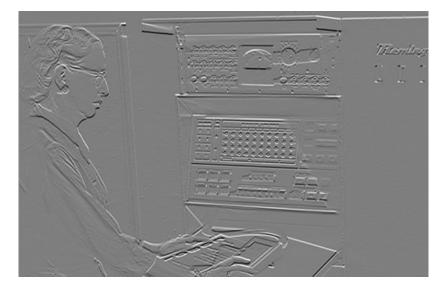


Filtering

What's this Filter?

Dx Dy





Filtering – Derivatives

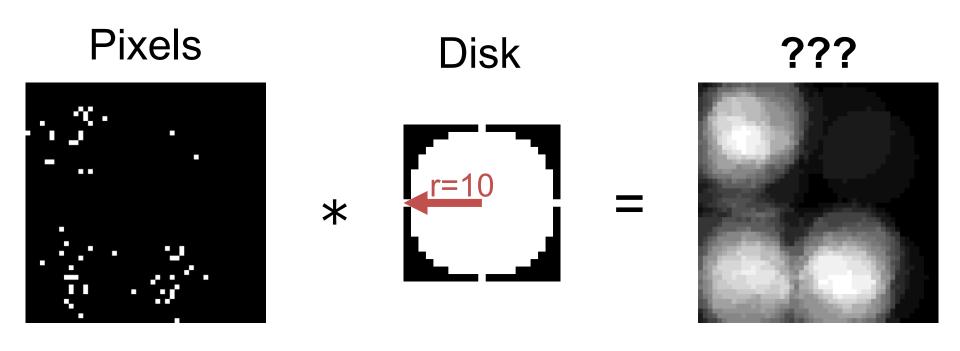
 $(Dx^2 + Dy^2)^{1/2}$

Filtering – Bonus

 If you're curious, you can use filters to accomplish a surprisingly large number of things.

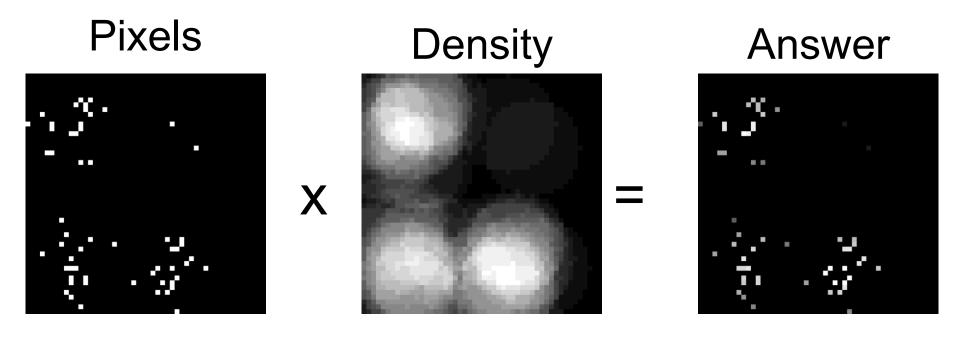
Filtering – Counting

How many "on" pixels have 10+ neighbors within 10 pixels?

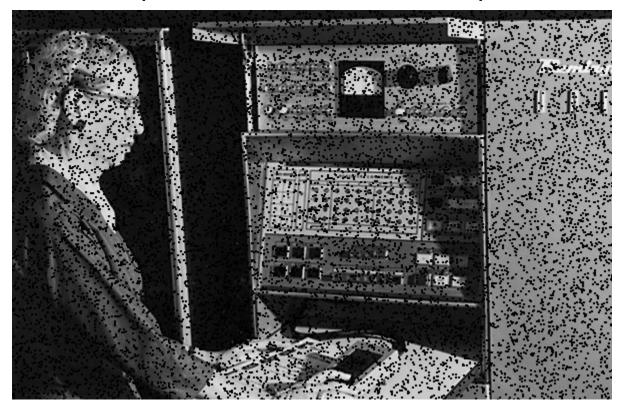


Filtering – Counting

How many "on" pixels have 10+ neighbors within 10 pixels?

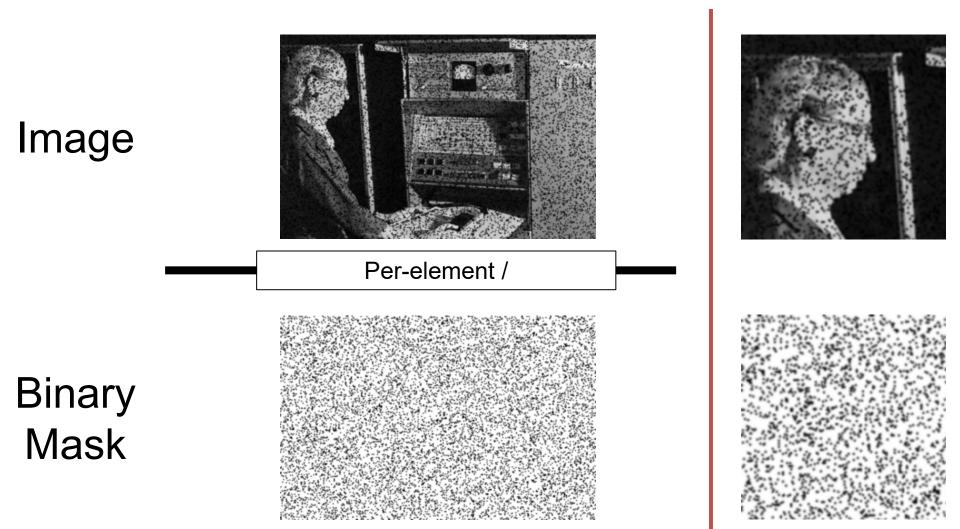


Oh no! Missing data! (and we know where)

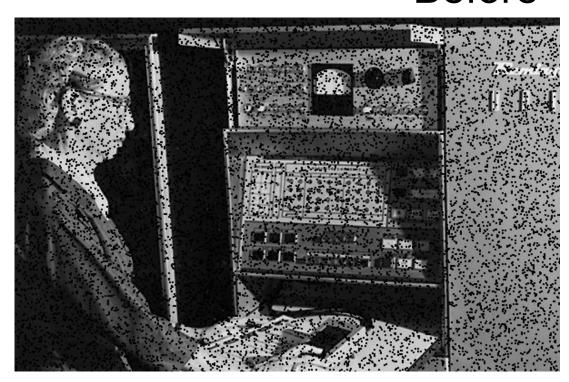


Common with many non-normal cameras (e.g., depth cameras)

Image Per-element / Binary Mask



Before



After

After (without missing data)

