Detectors and Descriptors

 EECS 442 - David FouheyWinter 2023, University of Michigan
https://web.eecs.umich.edu/~fouhey/teaching/EECS442_W23/

Goal

How big is this image as a vector? $389 \times 600=233,400$ dimensions (big)

Applications To Have In Mind

Part of the same photo?

Same computer from another angle?

Applications To Have In Mind

Building a 3D Reconstruction Out Of Images

Slide Credit: N. Seitz

Applications To Have In Mind

Stitching photos taken at different angles

One Example

Given two images: how do you align them?

One Solution

for y in range(-ySearch,ySearch+1): for x in range(-xSearch, x Search+1): \#Touches all HxW pixels! check_alignment_with_images()

One Motivating Example

Given these images: how do you align them?

These aren't off by a small 2D translation but instead by a 3D rotation + translation of the camera.

One Solution

for y in y Range:
for x in x Range:
for z in z Range:
for x Rot in x RotVals:
for yRot in yRotVals:
for zRot in zRotVals:
\#touches all HxW pixels!
check_alignment_with_images()
This code should make you really unhappy
Note: this actually isn't even the full number of parameters; it's actually 8 for loops.

An Alternate Approach

Given these images: how would you align them?

An Alternate Approach

Finding and Matching

1: find corners+features
 2: match based on local image data

What Now?

Given pairs p1,p2 of correspondence, how do I align?

Consider translationonly case from HW1.

An Alternate Approach

Solving for a Transformation

3: Solve for transformation T (e.g. such that p1 $\equiv \mathbf{T} \mathbf{p 2}$) that fits the matches well

Note the homogeneous coordinates, you'll see them again.

An Alternate Approach

Blend Them Together

Key insight: we don't work with full image. We work with only parts of the image.

Today

Finding edges (part 1) and corners (part 2) in images.

Where do Edges Come From?

Where do Edges Come From?

Depth / Distance Discontinuity

Why?

Where do Edges Come From?

Surface Normal / Orientation Discontinuity

Why?

Where do Edges Come From?

Surface Color / Reflectance Properties Discontinuity

Where do Edges Come From?

Illumination Discontinuity

Last Time

ly

Derivatives

Remember derivatives?

Derivative: rate at which a function $f(x)$ changes at a point as well as the direction that increases the function

Gradient: all of the partial derivatives (derivatives in only one direction) stacked together.

What Should I Know?

- Gradients are simply partial derivatives perdimension: if \boldsymbol{x} in $f(\boldsymbol{x})$ has n dimensions, $\nabla_{f}(x)$ has n dimensions
- Gradients point in direction of ascent and tell the rate of ascent
- If a is minimum of $f(\boldsymbol{x}) \rightarrow \nabla_{\mathrm{f}}(\mathrm{a})=\mathbf{0}$
- Reverse is not true, especially in highdimensional spaces

Last Time

ly

Why Does This Work?

Image is function $f(x, y)$

Remember:

$$
\frac{\partial f(x, y)}{\partial x}=\lim _{\epsilon \rightarrow 0} \frac{f(x+\epsilon, y)-f(x, y)}{\epsilon}
$$

$$
\frac{\partial f(x, y)}{\partial x} \approx \frac{f(x+1, y)-f(x, y)}{1}
$$

Another one:

$$
\frac{\partial f(x, y)}{\partial x} \approx \frac{f(x+1, y)-f(x-1, y)}{2}
$$

Other Differentiation Operations

$$
\begin{array}{ll}
\text { Horizontal } \\
{\left[\begin{array}{lll}
-1 & 0 & 1 \\
-1 & 0 & 1 \\
-1 & 0 & 1
\end{array}\right]}
\end{array} \begin{aligned}
& {\left[\begin{array}{lll}
-1 & 0 & 1 \\
-2 & 0 & 2 \\
-1 & 0 & 1
\end{array}\right]}
\end{aligned} \begin{array}{ccc}
& \text { Vertical } \\
{\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 0 & 0 \\
-1 & -1 & -1
\end{array}\right]} \\
{\left[\begin{array}{ccc}
1 & 2 & 1 \\
0 & 0 & 0 \\
-1 & -2 & -1
\end{array}\right]}
\end{array}
$$

Prewitt

Sobel

Why might people use these compared to $[-1,0,1]$?

Images as Functions or Points

Key idea: can treat image as a point in $R^{(H \times W)}$ or as a function of x, y.
$\nabla I(x, y)=\left[\begin{array}{l}\frac{\partial I}{\partial x}(x, y) \\ \frac{\partial I}{\partial y}(x, y)\end{array}\right] \begin{aligned} & \text { How much the intensity } \\ & \text { of the image changes } \\ & \text { as you go horizontally } \\ & \text { at (x,y) } \\ & \text { (Often called Ix) }\end{aligned}$

Image Gradient Direction

Some gradients

Figure Credit: S. Seitz

Image Gradient

Gradient: direction of maximum change. What's the relationship to edge direction?

Ix

ly

Image Gradient

$\left(l x^{2}+l y^{2}\right)^{1 / 2}:$ magnitude

Image Gradient

atan2(ly, lx): orientation

I'm making the lightness equal to gradient magnitude

Image Gradient

atan2(ly,lx): orientation

Now I'm showing all the gradients

Image Gradient

atan2(ly, Ix): orientation

Why is there structure at 1 and not at 2?

Noise

Consider a row of $f(x, y)$ (i.e., fix y)

Noise

Conv. image + per-pixel noise with | -1 | 0 | 1 |
| :--- | :--- | :--- |

$$
\begin{aligned}
I_{i, j} & =\text { True image } \epsilon_{i, j} \sim N\left(0, \sigma^{2}\right) \\
D_{i, j} & =\left(I_{i, j+1}+\epsilon_{i, j+1}\right)-\left(I_{i, j-1}+\epsilon_{i, j-1}\right) \\
D_{i, j} & =\underbrace{\left(I_{i, j+1}-I_{i, j-1}\right)}_{\begin{array}{c}
\text { True } \\
\text { difference }
\end{array}}+\underbrace{\epsilon_{i, j+1}-\epsilon_{i, j-1}}_{\begin{array}{c}
\text { Sum of } 2 \\
\text { Gaussians }
\end{array}}
\end{aligned}
$$

$\epsilon_{i, j}-\epsilon_{k, l} \sim N\left(0,2 \sigma^{2}\right) \rightarrow$ Variance doubles!

Noise

Consider a row of $f(x, y)$ (i.e., make y constant)

How can we use the last class to fix this?

Handling Noise

Noise in 2D

Noisy Input

Noise + Smoothing

Smoothed Input

Let's Make It One Pass (1D)

Let's Make It One Pass (2D) Gaussian Derivative Filter

Which one finds the X direction?

Applying the Gaussian Derivative

1 pixel 3 pixels
 7 pixels

Removes noise, but blurs edge

Compared with the Past

Gaussian
Derivative

Sobel
Filter

$$
\left[\begin{array}{lll}
1 & 0 & -1 \\
2 & 0 & -2 \\
1 & 0 & -1
\end{array}\right] \quad\left[\begin{array}{ccc}
1 & 2 & 1 \\
0 & 0 & 0 \\
-1 & -2 & -1
\end{array}\right]
$$

Why would anybody use the bottom filter?

Filters We've Seen

Example
Goal
Only +?
Sums to

Smoothing

Gaussian
Remove noise
Yes
1

Derivative

Deriv. of gauss
Find edges
No
0

Why sum to $\mathbf{1}$ or $\mathbf{0}$, intuitively?

Problems

human segmentation

Still an unsolved problem

Localizing Reliably

- Suppose you need to meet someone but you can't use your cell phone to coordinate
-Where do you agree to meet?
A: Along the Huron river
B: Along State Street
C: At Liberty and State Street
D: On North Campus

Desirables

- Repeatable: should find same things even with distortion
- Saliency: each feature should be distinctive
- Compactness: shouldn't just be all the pixels
- Locality: should only depend on local image data

Example

Can you find the correspondences?

Example Matches

Look for the colored squares

Basic Idea

Should see where we are based on small window, or any shift \rightarrow big intensity change.

"flat" region:
no change in all directions

"edge":
no change along the edge direction

"corner": significant change in all directions

Formalizing Corner Detection

Formalizing Corner Detection

Zoom-In at x, y

Original Image

Formalizing Corner Detection

Zoom-In at x, y
Window without and with Offset

"Window"
At $x+u, y+v$ Here: $u=-2, v=-3$

"Window" At x, y

How might we measure similarity?

Formalizing Corner Detection

Zoom-In at x, y Error (Sum Sqs) for u,v offset

$$
E(u, v)=
$$

$\sum_{(x, y) \in W}(I[x+u, y+v]-I[x, y])^{2}$

Formalizing Corner Detection

Zoom-In at x, y

 Error (Sum Sqs) for u,v offset

Formalizing Corner Detection

Zoom-In at x, y Error (Sum Sqs) for u,v offset

Error at $u=0, v=0$ is always 0 . Why?

Match The Location and Plot

Original Image and Zoom-In
Error Options

Match The Location and Plot

Original Image and Zoom-In
Error Options

Match The Location and Plot

Original Image and Zoom-In
Error Options

Match The Location and Plot

Original Image and Zoom-In
Error Options

Ok But Back To Math

$$
E(u, v)=\sum_{(x, y) \in W}(I[x+u, y+v]-I[x, y])^{2}
$$

Shifting windows around is expensive! We'll find a trick to approximate this.

Note: only need to get the gist

Aside: Taylor Series for Images

Recall Taylor Series - way of linearizing a function:

$$
f(x+d) \approx f(x)+\frac{\partial f}{\partial x} d
$$

Do the same with images, treating them as function of x, y

$$
I(x+u, y+v) \approx I(x, y)+I_{x} u+I_{y} v
$$

For brevity: $\mathrm{Ix}=\mathrm{Ix}$ at point (x, y), $\mathrm{ly}=\mathrm{ly}$ at point (x, y)

Formalizing Corner Detection

Taylor series expansion for I at every single point in window

Cancel

Expand

$$
\begin{aligned}
& E(u, v)=\sum_{(x, y) \in W}(I[x+u, y+v]-I[x, y])^{2} \\
& \approx \sum_{(x, y) \in W} \frac{\left(I[x, y]+I_{x} u+I_{y} v-I[x, y]\right)^{2}}{2}
\end{aligned}
$$

$$
=\sum_{(x, y) \in W}\left(I_{x} u+I_{y} v\right)^{2}
$$

$$
=\sum_{(x, y) \in W} I_{x}^{2} u^{2}+2 I_{x} I_{y} u v+I_{y}^{2} v^{2}
$$

For brevity: $\mathrm{Ix}=\mathrm{Ix}$ at point $(\mathrm{x}, \mathrm{y}), \mathrm{Iy}=\mathrm{ly}$ at point (x, y)

Formalizing Corner Detection

By linearizing image, we can approximate $E(u, v)$ with quadratic function of u and v

$$
\begin{gathered}
E(u, v) \approx \sum_{(x, y) \in W}\left(I_{x}^{2} u^{2}+2 I_{x} I_{y} u v+I_{y}^{2} v^{2}\right) \\
=[u, v] \boldsymbol{M}[u, v]^{T} \\
\boldsymbol{M}=\left[\begin{array}{cc}
\sum_{x, y \in W} I_{x}^{2} & \sum_{x, y \in W} I_{x} I_{y} \\
\sum_{x, y \in W} I_{x} I_{y} & \sum_{x, y \in W} I_{y}^{2}
\end{array}\right]
\end{gathered}
$$

\mathbf{M} is called the second moment matrix

Intuitively what is M?

Pretend gradients are either vertical or horizontal Obviously at a pixel (solx ly = 0) Wrong!

$$
\boldsymbol{M}=\left[\begin{array}{ll}
\sum_{x, y \in W} I_{x}^{2} & \sum_{x, y \in W} I_{x} I_{y} \\
\sum_{x, y \in W} I_{x} I_{y} & \sum_{x, y \in W} I_{y}^{2}
\end{array}\right] \approx\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right]
$$

a, b both small: flat

$$
\left[\begin{array}{cc}
0.1 & 0 \\
0 & 0.1
\end{array}\right]
$$

One big, other small:
edge $\square\left[\begin{array}{cc}50 & 0 \\ 0 & 0.1\end{array}\right]$ or $\left[\begin{array}{cc}0.1 & 0 \\ 0 & 50\end{array}\right]$
a, b both big:
corner

$\left[\begin{array}{cc}50 & 0 \\ 0 & 50\end{array}\right]$

Intuitively what is M?

Pretend gradients are either vertical or horizontal at a pixel (solx ly = 0)

$$
\boldsymbol{M}=\left[\begin{array}{lc}
\sum_{x, y \in W} I_{x}^{2} & \sum_{x, y \in W} I_{x} I_{y} \\
\sum_{x, y \in W} I_{x} I_{y} & \sum_{x, y \in W} I_{y}^{2}
\end{array}\right] \approx ?\left[\begin{array}{cc}
a & 0 \\
0 & b
\end{array}\right]
$$

a, b both small: flat
Image might be rotated by rotation θ !

One big, other small:
edge
a, b both big:
corner

Intuitively what is M?

Pretend gradients are either vertical or horizontal at a pixel (so lx ly = 0)

$$
\boldsymbol{M}=\left[\begin{array}{lc}
\sum_{x, y \in W} I_{x}^{2} & \sum_{x, y \in W} I_{x} I_{y} \\
\sum_{x, y \in W} I_{x} I_{y} & \sum_{x, y \in W} I_{y}^{2}
\end{array}\right]=\boldsymbol{V}^{\mathbf{- 1}}\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right] \boldsymbol{V}
$$

a, b both small: flat

One big, other small:
edge
a,b both big:

If image rotated by rotation θ / matrix \mathbf{V}

M will look like

$$
\boldsymbol{V}^{-1}\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right] \boldsymbol{V}
$$

So What Now?

Can calculate M at pixel, by summing nearby gradients, but need access to a and b .

$$
\boldsymbol{M}=\left[\begin{array}{ll}
\sum_{x, y \in W} I_{x}^{2} & \sum_{x, y \in W} I_{x} I_{y} \\
\sum_{x, y \in W} I_{x} I_{y} & \sum_{x, y \in W} I_{y}^{2}
\end{array}\right]=V^{-1}\left[\begin{array}{cc}
a & 0 \\
0 & b
\end{array}\right] \boldsymbol{V}
$$

Given \mathbf{M}, can decompose it into eigenvectors \mathbf{V} and eigenvalues λ_{1}, λ_{2} with $\mathbf{M}=\boldsymbol{V}^{-1}\left[\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right] \boldsymbol{V}$.

Really slow. Why?

So What Now?

Can calculate M at pixel, by summing nearby gradients, but need access to a and b.

$$
\boldsymbol{M}=\left[\begin{array}{cc}
\sum_{x, y \in W} I_{x}^{2} & \sum_{x, y \in W} I_{x} I_{y} \\
\sum_{x, y \in W} I_{x} I_{y} & \sum_{x, y \in W} I_{y}^{2}
\end{array}\right]=\boldsymbol{V}^{\boldsymbol{- 1}}\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right] \boldsymbol{V}
$$

Instead: compute quantity R from \mathbf{M}

$$
R=\operatorname{det}(\boldsymbol{M})-\alpha \operatorname{trace}(\boldsymbol{M})^{2}=\lambda_{1} \lambda_{2}-\alpha\left(\lambda_{1}+\lambda_{2}\right)^{2}
$$

Easy fast formula

Fast - sum the diagonal for 2×2

Empirical value, usually 0.04-0.06

So What Now?

R tells us whether we're at a corner, edge, or flat

$$
R=\operatorname{det}(\boldsymbol{M})-\alpha \operatorname{trace}(\boldsymbol{M})^{2}=\lambda_{1} \lambda_{2}-\alpha\left(\lambda_{1}+\lambda_{2}\right)^{2}
$$

$$
\begin{aligned}
& \text { flat } \square \lambda_{1}, \lambda_{2} \approx 0 \\
& \text { edge } \square \lambda_{1} \gg \lambda_{2} \gg 0 \\
& \lambda_{2} \gg \lambda_{1} \gg 0 \\
& \text { corner } \square \lambda_{1} \approx \lambda_{2} \gg 0
\end{aligned}
$$

What Do I Need To Know?

- Need to be able to take derivatives of image
- Need to be able to compute the entries of \mathbf{M} at every pixel.
- Should know that some properties of \mathbf{M} indicate whether a pixel is a corner or not.

$$
\boldsymbol{M}=\left[\begin{array}{cc}
\sum_{x, y \in W} I_{x}^{2} & \sum_{x, y \in W} I_{x} I_{y} \\
\sum_{x, y \in W} I_{x} I_{y} & \sum_{x, y \in W} I_{y}^{2}
\end{array}\right]
$$

In Practice

1. Compute partial derivatives Ix , ly per pixel
2. Compute \mathbf{M} at each pixel, using Gaussian weighting w

$$
\boldsymbol{M}=\left[\begin{array}{cc}
\sum_{x, y \in W} w(x, y) I_{x}^{2} & \sum_{x, y \in W} w(x, y) I_{x} I_{y} \\
\sum_{x, y \in W} w(x, y) I_{x} I_{y} & \sum_{x, y \in W} w(x, y) I_{y}^{2}
\end{array}\right]
$$

C.Harris and M.Stephens. "A Combined Corner and Edge Detector." Proceedings of the 4th Alvey Vision Conference: pages 147-151, 1988.

In Practice

1. Compute partial derivatives Ix , ly per pixel
2. Compute \mathbf{M} at each pixel, using Gaussian weighting w
3. Compute response function R

$$
\begin{aligned}
R & =\operatorname{det}(\boldsymbol{M})-\alpha \operatorname{trace}(\boldsymbol{M})^{2} \\
& =\lambda_{1} \lambda_{2}-\alpha\left(\lambda_{1}+\lambda_{2}\right)^{2}
\end{aligned}
$$

C.Harris and M.Stephens. "A Combined Corner and Edge Detector." Proceedings of the 4th Alvey Vision Conference: pages 147-151, 1988.

Computing R

Computing R

In Practice

1. Compute partial derivatives Ix, ly per pixel
2. Compute \mathbf{M} at each pixel, using Gaussian weighting w
3. Compute response function R
4. Threshold R
C.Harris and M.Stephens. "A Combined Corner and Edge Detector." Proceedings of the 4th Alvey Vision Conference: pages 147-151, 1988.

Thresholded R

In Practice

1. Compute partial derivatives Ix , ly per pixel
2. Compute \mathbf{M} at each pixel, using Gaussian weighting w
3. Compute response function R
4. Threshold R
5. Take only local maxima (called non-maxima suppression)
C.Harris and M.Stephens. "A Combined Corner and Edge Detector." Proceedings of the 4th Alvey Vision Conference: pages 147-151, 1988.

Thresholded, NMS R

Final Results

Desirable Properties

If our detectors are repeatable, they should be:

- Invariant to some things: image is transformed and corners remain the same
- Covariant/equivariant with some things: image is transformed and corners transform with it.

Recall Motivating Problem

Images may be different in lighting and geometry

Affine Intensity Change

$$
I_{\text {new }}=a I_{o l d}+b
$$

M only depends on derivatives, so b is irrelevant
But a scales derivatives and there's a threshold

Partially invariant to affine intensity changes

Image Translation

All done with convolution. Convolution is translation invariant.

Equivariant with translation

Image Rotation

Rotations just cause the corner rotation to change. Eigenvalues remain the same.

Equivariant with rotation

Image Scaling

One pixel can become many pixels and viceversa.

Not equivariant with scaling

For the Curious

Review: Quadratic Forms

Suppose have symmetric matrix M, scalar a, vector [u,v]:

$$
E([u, v])=[u, v] \boldsymbol{M}[u, v]^{T}
$$

Then the isocontour / slice-through of F, i.e.

$$
E([u, v])=a
$$

is an ellipse.

Review: Quadratic Forms

We can look at the shape of this ellipse by decomposing M into a rotation + scaling

$$
\boldsymbol{M}=\boldsymbol{R}^{-1}\left[\begin{array}{rr}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right] \boldsymbol{R}
$$

λ_{1} and λ_{2} are eigenvalues

Interpreting The Matrix M

The second moment matrix tells us how quickly the image changes and in which directions.

Visualizing M

Slide credit: S. Lazebnik

Visualizing M

Technical note: M is often best visualized by first taking inverse, so long edge of ellipse goes along edge

[^0]
Interpreting Eigenvalues of M

Putting Together The Eigenvalues

$$
\begin{aligned}
& R=\operatorname{det}(\boldsymbol{M})-\alpha \operatorname{trace}(\boldsymbol{M})^{2} \\
& \quad=\lambda_{1} \lambda_{2}-\alpha\left(\lambda_{1}+\lambda_{2}\right)^{2} \\
& \alpha: \text { constant (0.04 to } 0.06)
\end{aligned}
$$

Corners

9300 Harris Corners Pkwy, Charlotte, NC

Derivatives Review

Given quadratic function $f(x)$

$$
f(x)=(x-2)^{2}+5
$$

$f(x)$ is function

$$
g(x)=f^{\prime}(x)
$$

aka
$g(x)=\frac{d}{d x} f(x)$

Given quadratic function $f(x)$

$$
f(x)=(x-2)^{2}+5
$$

What's special about $\mathrm{x}=2$?
$f(x)$ minim. at 2 $g(x)=0$ at 2
$a=$ minimum of $f \rightarrow$

$$
g(a)=0
$$

Reverse is not true

> Rates of change $f(x)=(x-2)^{2}+5$

Suppose I want to increase $f(x)$ by changing x :

Blue area: move left Red area: move right

Derivative tells you direction of ascent and rate

What Calculus Should I Know

- Really need intuition
- Need chain rule
- Rest you should look up / use a computer algebra system / use a cookbook
- Partial derivatives (and that's it from multivariable calculus)

Partial Derivatives

- Pretend other variables are constant, take a derivative. That's it.
- Make our function a function of two variables

$$
\begin{array}{ll}
f(x)=(x-2)^{2}+5 & \\
\frac{\partial}{\partial x} f(x)=2(x-2) * 1=2(x-2) & \\
f_{2}(x, y)=(x-2)^{2}+5+(y+1)^{2} & \begin{array}{l}
\text { Pretend it's } \\
\text { constant } \rightarrow \\
\text { derivative }=0
\end{array} \\
\frac{\partial}{\partial x} f_{2}(x)=2(x-2) &
\end{array}
$$

Zooming Out

$$
f_{2}(x, y)=(x-2)^{2}+5+(y+1)^{2}
$$

Dark $=f(x, y)$ low Bright $=f(x, y)$ high

Taking a slice of

$$
f_{2}(x, y)=(x-2)^{2}+5+(y+1)^{2}
$$

Slice of $\mathrm{y}=0$ is the function from before: 2
$f(x)=(x-2)^{2}+5$ $f^{\prime}(x)=2(x-2)$

Taking a slice of

$$
f_{2}(x, y)=(x-2)^{2}+5+(y+1)^{2}
$$

$\frac{\partial}{\partial x} f_{2}(x, y)$ is rate of

change \& direction in x dimension

Zooming Out

$$
f_{2}(x, y)=(x-2)^{2}+5+(y+1)^{2}
$$

$$
\begin{gathered}
\frac{\partial}{\partial y} f_{2}(x, y) \text { is } \\
2(y+1)
\end{gathered}
$$

Zooming Out

$$
f_{2}(x, y)=(x-2)^{2}+5+(y+1)^{2}
$$

Gradient/Jacobian: Making a vector of

[^0]: Slide credit: S. Lazebnik

