Detectors and Descriptors EECS 442 – David Fouhey

Winter 2023, University of Michigan

https://web.eecs.umich.edu/~fouhey/teaching/EECS442_W23/

Goal

How big is this image as a vector? 389x600 = 233,400 dimensions (big)

Applications To Have In Mind

Part of the same photo?

Same computer from another angle?

Applications To Have In Mind

Building a 3D Reconstruction Out Of Images

Slide Credit: N. Seitz

Applications To Have In Mind

Stitching photos taken at different angles

One Example

Given two images: how do you align them?

One Solution

for y in range(-ySearch,ySearch+1):
 for x in range(-xSearch,xSearch+1):
 #Touches all HxW pixels!
 check_alignment_with_images()

One Motivating Example

Given these images: how do you align them?

These aren't off by a small 2D translation but instead by a 3D rotation + translation of the camera.

Photo credit: M. Brown, D. Lowe

One Solution

tor y in yRange: for x in xRange: for z in zRange: for xRot in xRotVals: for yRot in yRotVals: for zRot in zRotVals: #touches all HxW pixels! check alignment with images() This code should make you really unhappy

Note: this actually isn't even the full number of parameters; it's actually 8 for loops.

An Alternate Approach

Given these images: how would you align them?

An Alternate Approach

Finding and Matching

find corners+features match based on local image data

Slide Credit: S. Lazebnik, original figure: M. Brown, D. Lowe

What Now?

Given pairs p1,p2 of correspondence, how do I align?

Consider translationonly case from HW1.

An Alternate Approach Solving for a Transformation

3: Solve for transformation T (e.g. such that $p1 \equiv T p2$) that fits the matches well

Note the homogeneous coordinates, you'll see them again.

Slide Credit: S. Lazebnik, original figure: M. Brown, D. Lowe

An Alternate Approach Blend Them Together

Key insight: we don't work with full image. We work with only parts of the image.

Photo Credit: M. Brown, D. Lowe

Today

Finding edges (part 1) and corners (part 2) in images.

Depth / Distance Discontinuity

Surface Normal / Orientation Discontinuity

Surface Color / Reflectance Properties Discontinuity

Last Time

Derivatives

Remember derivatives?

Derivative: rate at which a function f(x) changes at a point as well as the direction that increases the function

Gradient: all of the partial derivatives (derivatives in only one direction) stacked together.

What Should I Know?

- Gradients are simply partial derivatives perdimension: if x in f(x) has n dimensions, $\nabla_f(x)$ has n dimensions
- Gradients point in direction of ascent and tell the rate of ascent
- If a is minimum of $f(\mathbf{x}) \rightarrow \nabla_{f}(a) = \mathbf{0}$
- Reverse is not true, especially in highdimensional spaces

Last Time

Other Differentiation Operations

Why might people use these compared to [-1,0,1]?

Images as Functions or Points

Key idea: can treat image as a point in R^(HxW) or as a function of x,y.

 $\nabla I(x,y) = \begin{bmatrix} \frac{\partial I}{\partial x}(x,y) \\ \frac{\partial I}{\partial y}(x,y) \end{bmatrix} \qquad \begin{array}{c} \text{How much the intensity} \\ \text{how much the intensity} \\ \text{of the image changes} \\ \text{as you go horizontally} \\ \text{at } (x,y) \\ \text{(Often called lx)} \end{array}$

Image Gradient Direction

Some gradients

Image Gradient

Gradient: direction of maximum change. What's the relationship to edge direction?

Ix

Image Gradient (Ix² + Iy²)^{1/2} : magnitude

Image Gradient atan2(Iy,Ix): orientation

I'm making the lightness equal to gradient magnitude

Image Gradient atan2(Iy,Ix): orientation

Now I'm showing all the gradients

Image Gradient atan2(Iy,Ix): orientation

Why is there structure at 1 and not at 2?

Noise

Consider a row of f(x,y) (i.e., fix y)

Slide Credit: S. Seitz

Noise

Noise

Consider a row of f(x,y) (i.e., make y constant)

How can we use the last class to fix this?

Handling Noise

Slide Credit: S. Seitz

Noise in 2D

Noisy Input

Ix via [-1,01]

Noise + Smoothing

Smoothed Input

Ix via [-1,01]

Let's Make It One Pass (1D)

Slide Credit: S. Seitz

Let's Make It One Pass (2D) Gaussian Derivative Filter

Which one finds the X direction?

Slide Credit: L. Lazebnik

Applying the Gaussian Derivative1 pixel3 pixels7 pixels

Removes noise, but blurs edge

Slide Credit: D. Forsyth

Compared with the Past

Why would anybody use the bottom filter?

Filters We've Seen

Problems

Image

human segmentation

gradient magnitude

Still an unsolved problem

Localizing Reliably

- Suppose you need to meet someone but you can't use your cell phone to coordinate
- Where do you agree to meet?
- A: Along the Huron river
- **B: Along State Street**
- C: At Liberty and State Street
- D: On North Campus

Desirables

- Repeatable: should find same things even with distortion
- Saliency: each feature should be distinctive
- Compactness: shouldn't just be all the pixels
- Locality: should only depend on local image data

Example

Can you find the correspondences?

Slide credit: N. Snavely

Example Matches

Look for the colored squares

Slide credit: N. Snavely

Basic Idea

Should see where we are based on small window, or any shift \rightarrow big intensity change.

"flat" region: no change in all directions "edge": no change along the edge direction "corner": significant change in all directions

Zoom-In at x,y

Original Image

Window without and with Offset Zoom-In at x,y "Window" At x+u, y+v Here: u=-2,v=-3 "Window" At x, y

How might we measure similarity?

Zoom-In at x,y

Error (Sum Sqs) for u,v offset $E(u,v) = \sum_{(x,y)\in W} (I[x+u,y+v] - I[x,y])^2$

Original Image and Zoom-In

Original Image and Zoom-In

Original Image and Zoom-In

Original Image and Zoom-In

Ok But Back To Math

$$E(u,v) = \sum_{(x,y)\in W} (I[x+u,y+v] - I[x,y])^2$$

Shifting windows around is expensive! We'll find a trick to approximate this.

Note: only need to get the gist

Aside: Taylor Series for Images

Recall Taylor Series – way of *linearizing* a function:

$$f(x+d) \approx f(x) + \frac{\partial f}{\partial x}d$$

Do the same with images, treating them as function of x, y

$$I(x+u, y+v) \approx I(x, y) + I_x u + I_y v$$

For brevity: Ix = Ix at point (x,y), Iy = Iy at point (x,y)

Taylor series
expansion for I
$$\approx$$

at every single
point in window

$$E(u, v) = \sum_{(x,y)\in W} (I[x + u, y + v] - I[x, y])^2$$

$$\approx \sum_{(x,y)\in W} (I[x, y] + I_x u + I_y v - I[x, y])^2$$

$$= \sum_{(x,y)\in W} (I_x u + I_y v)^2$$

$$= \sum_{(x,y)\in W} I_x^2 u^2 + 2I_x I_y uv + I_y^2 v^2$$

Expand

Cancel

 $= \sum_{(x,y)\in W} I_{x}^{2} u^{2} + 2I_{x}I_{y}uv + I_{y}^{2}v^{2}$

For brevity: Ix = Ix at point (x,y), Iy = Iy at point (x,y)

By linearizing image, we can approximate E(u,v) with quadratic function of u and v

$$E(u, v) \approx \sum_{(x,y)\in W} (I_x^2 u^2 + 2I_x I_y uv + I_y^2 v^2)$$

= $[u, v] \mathbf{M} [u, v]^T$
$$\mathbf{M} = \begin{bmatrix} \sum_{x,y\in W} I_x^2 & \sum_{x,y\in W} I_x I_y \\ \sum_{x,y\in W} I_x I_y & \sum_{x,y\in W} I_y^2 \end{bmatrix}$$

M is called the second moment matrix

Intuitively what is M? Pretend gradients are *either* vertical or horizontal at a pixel (so Ix Iy = 0) $\boldsymbol{M} = \begin{bmatrix} \sum_{x,y \in W} I_x^2 & \sum_{x,y \in W} I_x I_y \\ \sum_{x,y \in W} I_x I_y & \sum_{x,y \in W} I_y^2 \end{bmatrix} \approx ? \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$ $\langle D \rangle$ Image might be a,b both small: flat rotated by rotation θ ! One big, edge other small: corner a,b both big:

So What Now?

Can calculate M at pixel, by summing nearby gradients, but need access to a and b.

$$\boldsymbol{M} = \begin{bmatrix} \sum_{x,y \in W} I_x^2 & \sum_{x,y \in W} I_x I_y \\ \sum_{x,y \in W} I_x I_y & \sum_{x,y \in W} I_y^2 \end{bmatrix} = \boldsymbol{V}^{-1} \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \boldsymbol{V}$$

Given **M**, can decompose it into eigenvectors **V** and eigenvalues λ_1, λ_2 with $\mathbf{M} = \mathbf{V}^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \mathbf{V}$.

Really slow. Why?

So What Now?

Can calculate M at pixel, by summing nearby gradients, but need access to a and b.

So What Now?

R tells us whether we're at a corner, edge, or flat

 $R = \det(\mathbf{M}) - \alpha \operatorname{trace}(\mathbf{M})^2 = \lambda_1 \lambda_2 - \alpha (\lambda_1 + \lambda_2)^2$

Remake of standard diagram from S. Lazebnik from original Harris paper.

What Do I Need To Know?

- Need to be able to take derivatives of image
- Need to be able to compute the entries of **M** at every pixel.
- Should know that some properties of **M** indicate whether a pixel is a corner or not.

$$\boldsymbol{M} = \begin{bmatrix} \sum_{x,y \in W} I_x^2 & \sum_{x,y \in W} I_x I_y \\ \sum_{x,y \in W} I_x I_y & \sum_{x,y \in W} I_y^2 \end{bmatrix}$$

In Practice

- 1. Compute partial derivatives Ix, Iy per pixel
- 2. Compute **M** at each pixel, using Gaussian weighting w

$$\boldsymbol{M} = \begin{bmatrix} \sum_{x,y \in W} w(x,y)I_x^2 & \sum_{x,y \in W} w(x,y)I_xI_y \\ \sum_{x,y \in W} w(x,y)I_xI_y & \sum_{x,y \in W} w(x,y)I_y^2 \end{bmatrix}$$

C.Harris and M.Stephens. <u>"A Combined Corner and Edge Detector."</u> *Proceedings of the 4th Alvey Vision Conference*: pages 147—151, 1988.

Slide credit: S. Lazebnik

In Practice

- 1. Compute partial derivatives Ix, Iy per pixel
- 2. Compute **M** at each pixel, using Gaussian weighting w
- 3. Compute response function R

$$R = \det(\mathbf{M}) - \alpha \ trace(\mathbf{M})^{2}$$
$$= \lambda_{1}\lambda_{2} - \alpha(\lambda_{1} + \lambda_{2})^{2}$$

C.Harris and M.Stephens. <u>"A Combined Corner and Edge Detector."</u> *Proceedings of the 4th Alvey Vision Conference*: pages 147—151, 1988.

Computing R

Computing R

In Practice

- 1. Compute partial derivatives Ix, Iy per pixel
- 2. Compute **M** at each pixel, using Gaussian weighting w
- 3. Compute response function R
- 4. Threshold R

C.Harris and M.Stephens. <u>"A Combined Corner and Edge Detector."</u> *Proceedings of the 4th Alvey Vision Conference*: pages 147—151, 1988.

Thresholded R

In Practice

- 1. Compute partial derivatives Ix, Iy per pixel
- 2. Compute **M** at each pixel, using Gaussian weighting w
- 3. Compute response function R
- 4. Threshold R
- 5. Take only local maxima (called non-maxima suppression)

C.Harris and M.Stephens. <u>"A Combined Corner and Edge Detector."</u> *Proceedings of the 4th Alvey Vision Conference*: pages 147—151, 1988.

Thresholded, NMS R

Final Results

Desirable Properties

If our detectors are repeatable, they should be:

- Invariant to some things: image is transformed and corners remain the same
- Covariant/equivariant with some things: image is transformed and corners transform with it.

Recall Motivating Problem

Images may be different in lighting and geometry

Affine Intensity Change $I_{new} = aI_{old} + b$

M only depends on derivatives, so b is irrelevant But a scales derivatives and there's a threshold

Partially invariant to affine intensity changes

Image Translation

All done with convolution. Convolution is translation invariant.

Equivariant with translation

Image Rotation

Rotations just cause the corner rotation to change. Eigenvalues remain the same.

Equivariant with rotation

One pixel can become many pixels and viceversa.

Not equivariant with scaling

For the Curious

Review: Quadratic Forms

Suppose have symmetric matrix **M**, scalar a, vector [u,v]:

$$E([u,v]) = [u,v]\boldsymbol{M}[u,v]^T$$

Then the isocontour / slice-through of F, i.e.

$$E([u,v]) = a$$

is an ellipse.

Review: Quadratic Forms

We can look at the shape of this ellipse by decomposing M into a rotation + scaling

$$\boldsymbol{M} = \boldsymbol{R}^{-1} \begin{bmatrix} \lambda_1 & \boldsymbol{0} \\ \boldsymbol{0} & \lambda_2 \end{bmatrix} \boldsymbol{R}$$

Interpreting The Matrix M

The second moment matrix tells us how quickly the image changes and in which directions.

Visualizing M

Visualizing M

Technical note: M is often best *visualized* by first taking inverse, so long edge of ellipse goes along edge

Interpreting Eigenvalues of M

Slide credit: S. Lazebnik; Note: this refers to previous ellipses, not original M ellipse. Other slides on the internet may vary

Putting Together The Eigenvalues

$$R = \det(\mathbf{M}) - \alpha trace(\mathbf{M})^{2}$$
$$= \lambda_{1}\lambda_{2} - \alpha(\lambda_{1} + \lambda_{2})^{2}$$

α: constant (0.04 to 0.06)

Slide credit: S. Lazebnik; Note: this refers to previous ellipses, not original M ellipse. Other slides on the internet may vary

Corners

Derivatives Review

Given quadratic function f(x) $f(x) = (x - 2)^2 + 5$

Rates of change $f(x) = (x-2)^2 + 5$

Suppose I want to increase f(x) by changing x:

Blue area: move left Red area: move right

Derivative tells you direction of ascent and rate

What Calculus Should I Know

- Really need intuition
- Need chain rule
- Rest you should look up / use a computer algebra system / use a cookbook
- Partial derivatives (and that's it from multivariable calculus)

Partial Derivatives

- Pretend other variables are constant, take a derivative. That's it.
- Make our function a function of two variables

$$f(x) = (x - 2)^{2} + 5$$

$$\frac{\partial}{\partial x}f(x) = 2(x - 2) * 1 = 2(x - 2)$$

$$f_{2}(x, y) = (x - 2)^{2} + 5 + (y + 1)^{2}$$

$$\frac{\partial}{\partial x}f_{2}(x) = 2(x - 2)$$

Pretend it's constant \rightarrow
derivative = 0

Zooming Out $f_2(x, y) = (x - 2)^2 + 5 + (y + 1)^2$ 3 $\frac{\partial}{\partial y}f_2(x,y)$ is 2 2(y+1)and is the rate of 1 change & direction in 0 y dimension $^{-1}$

Zooming Out $f_2(x, y) = (x - 2)^2 + 5 + (y + 1)^2$

Gradient/Jacobian:

Making a vector of $\nabla_{f} = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$ gives rate and direction of change.

Arrows point OUT of minimum / basin.

