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Administrivia

• Extra OH, zoom on Tuesday. Post HW topics 
you think are challenging; will try to cover top-
voted questions.



Recap: Motivation

1: find corners+features

Image credit: M. Brown



Last Time – Gradients

∇𝑓 =
𝜕𝑓

𝜕𝑥
, 0 ∇𝑓 = 0,

𝜕𝑓

𝜕𝑦
∇𝑓 =

𝜕𝑓

𝜕𝑥
,
𝜕𝑓

𝜕𝑦

Image gradients – treat image like function of 

x,y – gives edges, corners, etc. 

Figure credit: S. Seitz



Last Time – Corner Detection

“edge”:

no change 

along the edge 

direction

“corner”:

significant 

change in all 

directions

“flat” region:

no change in 

all directions

Can localize the location, or any shift →

big intensity change.

Diagram credit: S. Lazebnik



Last Time – Corner Detection

“Window”

At x, y

“Window” 

At x+u, y+v

Here: u=-2,v=-3

Window with and w/o OffsetZoom-In at x,y



Last Time – Corner Detection

Zoom-In at x,y Error (Sum Sqs) for u,v offset

𝐸 𝑢, 𝑣 =

෍

𝑥,𝑦 ∈𝑊

𝐼[𝑥 + 𝑢, 𝑦 + 𝑣] − 𝐼[𝑥, 𝑦] 2

-( )2



Formalizing Corner Detection

𝐸 𝑢, 𝑣 ≈ ෍

𝑥,𝑦 ∈𝑊

𝐼𝑥
2𝑢2 + 2𝐼𝑥𝐼𝑦𝑢𝑣 + 𝐼𝑦

2𝑣2

= 𝑢, 𝑣 𝑴 𝑢, 𝑣 𝑇

By linearizing image, we can approximate E(u,v) 

with quadratic function of u and v

𝑴 =

෍

𝑥,𝑦∈𝑊

𝐼𝑥
2 ෍

𝑥,𝑦∈𝑊

𝐼𝑥𝐼𝑦

෍

𝑥,𝑦∈𝑊

𝐼𝑥𝐼𝑦 ෍

𝑥,𝑦∈𝑊

𝐼𝑦
2



Formalizing Corner Detection

𝐸 𝑢, 𝑣 ≈ ෍

𝑥,𝑦 ∈𝑊

𝐼𝑥
2𝑢2 + 2𝐼𝑥𝐼𝑦𝑢𝑣 + 𝐼𝑦

2𝑣2

= 𝑢, 𝑣 𝑴 𝑢, 𝑣 𝑇

By linearizing image, we can approximate E(u,v) 

with quadratic function of u and v

𝑴 =

෍

𝑥,𝑦∈𝑊

𝐼𝑥
2 ෍

𝑥,𝑦∈𝑊

𝐼𝑥𝐼𝑦

෍

𝑥,𝑦∈𝑊

𝐼𝑥𝐼𝑦 ෍

𝑥,𝑦∈𝑊

𝐼𝑦
2

Ix = x derivative



Formalizing Corner Detection

𝐸 𝑢, 𝑣 ≈ ෍

𝑥,𝑦 ∈𝑊

𝐼𝑥
2𝑢2 + 2𝐼𝑥𝐼𝑦𝑢𝑣 + 𝐼𝑦

2𝑣2

= 𝑢, 𝑣 𝑴 𝑢, 𝑣 𝑇

By linearizing image, we can approximate E(u,v) 

with quadratic function of u and v

𝑴 =

෍

𝑥,𝑦∈𝑊

𝐼𝑥
2 ෍

𝑥,𝑦∈𝑊

𝐼𝑥𝐼𝑦

෍

𝑥,𝑦∈𝑊

𝐼𝑥𝐼𝑦 ෍

𝑥,𝑦∈𝑊

𝐼𝑦
2

Iy = y derivative



Formalizing Corner Detection

𝐸 𝑢, 𝑣 ≈ ෍

𝑥,𝑦 ∈𝑊

𝐼𝑥
2𝑢2 + 2𝐼𝑥𝐼𝑦𝑢𝑣 + 𝐼𝑦

2𝑣2

= 𝑢, 𝑣 𝑴 𝑢, 𝑣 𝑇

By linearizing image, we can approximate E(u,v) 

with quadratic function of u and v

𝑴 =

෍

𝑥,𝑦∈𝑊

𝐼𝑥
2 ෍

𝑥,𝑦∈𝑊

𝐼𝑥𝐼𝑦

෍

𝑥,𝑦∈𝑊

𝐼𝑥𝐼𝑦 ෍

𝑥,𝑦∈𝑊

𝐼𝑦
2

Sum goes over all the pixels in window W: 

෍

𝑥,𝑦∈𝑊

𝐼𝑥
2 = ෍

𝑥,𝑦∈𝑊

(𝐼𝑥[𝑦, 𝑥])

2

i.e., sum of squares of x gradients in window



Intuitively what is M?

𝑴 =

෍

𝑥,𝑦∈𝑊

𝐼𝑥
2 ෍

𝑥,𝑦∈𝑊

𝐼𝑥𝐼𝑦

෍

𝑥,𝑦∈𝑊

𝐼𝑥𝐼𝑦 ෍

𝑥,𝑦∈𝑊

𝐼𝑦
2

≈
𝑎 0
0 𝑏

Pretend gradients are either vertical or horizontal 

at a pixel (so Ix Iy = 0)

a,b both small:
0.1 0
0 0.1

flat

One big, 

other small:
50 0
0 0.1

0.1 0
0 50

oredge

cornera,b both big:
50 0
0 50

Obviously 

Wrong!



Intuitively what is M?

𝑴 =

෍

𝑥,𝑦∈𝑊

𝐼𝑥
2 ෍

𝑥,𝑦∈𝑊

𝐼𝑥𝐼𝑦

෍

𝑥,𝑦∈𝑊

𝐼𝑥𝐼𝑦 ෍

𝑥,𝑦∈𝑊

𝐼𝑦
2

≈?
𝑎 0
0 𝑏

Pretend gradients are either vertical or horizontal 

at a pixel (so Ix Iy = 0)

a,b both small:

One big, 

other small:

a,b both big:

flat

edge

corner

Image might be 

rotated by rotation θ!



Intuitively what is M?

𝑴 =

෍

𝑥,𝑦∈𝑊

𝐼𝑥
2 ෍

𝑥,𝑦∈𝑊

𝐼𝑥𝐼𝑦

෍

𝑥,𝑦∈𝑊

𝐼𝑥𝐼𝑦 ෍

𝑥,𝑦∈𝑊

𝐼𝑦
2

= 𝑽−𝟏
𝑎 0
0 𝑏

𝑽

Pretend gradients are either vertical or horizontal 

at a pixel (so Ix Iy = 0)

a,b both small:

One big, 

other small:

a,b both big:

flat

edge

corner

If image rotated by 

rotation θ / matrix V

M will look like

𝑽−𝟏
𝑎 0
0 𝑏

𝑽



So What Now? 
Can calculate M at pixel, by summing nearby 

gradients, but need access to a and b.

Given M, can decompose it into eigenvectors V and 

eigenvalues 𝜆1, 𝜆2 with 𝐌 = 𝑽−1
𝜆1 0
0 𝜆2

𝑽. 

𝑴 =

෍

𝑥,𝑦∈𝑊

𝐼𝑥
2 ෍

𝑥,𝑦∈𝑊

𝐼𝑥𝐼𝑦

෍

𝑥,𝑦∈𝑊

𝐼𝑥𝐼𝑦 ෍

𝑥,𝑦∈𝑊

𝐼𝑦
2

= 𝑽−𝟏
𝑎 0
0 𝑏

𝑽

Really slow. Why?



So What Now? 
Can calculate M at pixel, by summing nearby 

gradients, but need access to a and b.

𝑴 =

෍

𝑥,𝑦∈𝑊

𝐼𝑥
2 ෍

𝑥,𝑦∈𝑊

𝐼𝑥𝐼𝑦

෍

𝑥,𝑦∈𝑊

𝐼𝑥𝐼𝑦 ෍

𝑥,𝑦∈𝑊

𝐼𝑦
2

= 𝑽−𝟏
𝑎 0
0 𝑏

𝑽

Instead: compute quantity R from M

𝑅 = det 𝑴 − 𝛼 trace 𝑴 2 = 𝜆1𝜆2 − 𝛼 𝜆1 + 𝜆2
2

Empirical value, 

usually 0.04-0.06

Fast – sum the diagonalEasy fast formula

for 2x2



The tl;dr

TL;DR: Taylor expansion for error E(u,v). All terms in 

equation are sums of image gradients and in M

𝑴 =

෍

𝑥,𝑦∈𝑊

𝐼𝑥
2 ෍

𝑥,𝑦∈𝑊

𝐼𝑥𝐼𝑦

෍

𝑥,𝑦∈𝑊

𝐼𝑥𝐼𝑦 ෍

𝑥,𝑦∈𝑊

𝐼𝑦
2

=

Can compute at 

each pixel

Ix = Ix at point (x,y), Iy = Iy at point (x,y)

Should know

Directions

Amounts 

Optional

𝑽−1
𝜆1 0
0 𝜆2

𝑽



Putting It Together

R >> 0

𝜆1

𝜆2

R << 0

R << 0|R|≈0corner 𝜆1 ≈ 𝜆2 ≫ 0

edge
𝜆1 ≫ 𝜆2 ≫ 0
𝜆2 ≫ 𝜆1 ≫ 0

flat 𝜆1, 𝜆2 ≈ 0

Remake of standard diagram from S. Lazebnik from original Harris paper. 

𝑅 = det 𝑴 − 𝛼 trace 𝑴 2 = 𝜆1𝜆2 − 𝛼 𝜆1 + 𝜆2
2

det, trace are fast



In Practice

1. Compute partial derivatives Ix, Iy per pixel

2. Compute M at each pixel, using Gaussian 
weighting w

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.” 
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.

Slide credit: S. Lazebnik

𝑴 =

෍

𝑥,𝑦∈𝑊

𝑤(𝑥, 𝑦)𝐼𝑥
2 ෍

𝑥,𝑦∈𝑊

𝑤(𝑥, 𝑦)𝐼𝑥𝐼𝑦

෍

𝑥,𝑦∈𝑊

𝑤(𝑥, 𝑦)𝐼𝑥𝐼𝑦 ෍

𝑥,𝑦∈𝑊

𝑤(𝑥, 𝑦)𝐼𝑦
2

http://www.bmva.org/bmvc/1988/avc-88-023.pdf


In Practice

1. Compute partial derivatives Ix, Iy per pixel

2. Compute M at each pixel, using Gaussian 
weighting w

3. Compute response function R

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.” 
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.

Slide credit: S. Lazebnik

𝑅 = det 𝑴 − 𝛼 𝑡𝑟𝑎𝑐𝑒 𝑴 2

= 𝜆1𝜆2 − 𝛼 𝜆1 + 𝜆2
2

http://www.bmva.org/bmvc/1988/avc-88-023.pdf


Computing R

Slide credit: S. Lazebnik



Computing R

Slide credit: S. Lazebnik



In Practice

1. Compute partial derivatives Ix, Iy per pixel

2. Compute M at each pixel, using Gaussian 
weighting w

3. Compute response function R

4. Threshold R

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.” 
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.

Slide credit: S. Lazebnik

http://www.bmva.org/bmvc/1988/avc-88-023.pdf


Thresholded R

Slide credit: S. Lazebnik



In Practice

1. Compute partial derivatives Ix, Iy per pixel

2. Compute M at each pixel, using Gaussian 
weighting w

3. Compute response function R

4. Threshold R

5. Take only local maxima (called non-maxima 
suppression)

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.” 
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.

Slide credit: S. Lazebnik

http://www.bmva.org/bmvc/1988/avc-88-023.pdf


Thresholded

Slide credit: S. Lazebnik



Final Results

Slide credit: S. Lazebnik



Desirable Properties

If our detectors are repeatable, they should be:

• Invariant to some things: image is transformed 
and corners remain the same

• Covariant/equivariant with some things: 
image is transformed and corners transform 
with it.

Slide credit: S. Lazebnik



Recall Motivating Problem

Images may be different in lighting and geometry



Affine Intensity Change

Partially invariant to affine intensity changes

Slide credit: S. Lazebnik

𝐼𝑛𝑒𝑤 = 𝑎𝐼𝑜𝑙𝑑 + 𝑏

M only depends on derivatives, so b is irrelevant

R

x (image coordinate)

threshold

R

x (image coordinate)

But a scales derivatives and there’s a threshold



Image Translation

Slide credit: S. Lazebnik

All done with convolution. Convolution is 

translation equivariant. 

Equivariant with translation



Image Scaling

Corner

One pixel can become many pixels and 

vice-versa.

Not equivariant with scaling

How do we fix this?
Slide credit: S. Lazebnik



Recap: Motivation

1: find corners+features

2: match based on local image data

How? 
Image credit: M. Brown



Today

• Fixing scaling by making detectors in both 
location and scale

• Enabling matching between features by 
describing regions



Key Idea: Scale Space

1/2 1/2 1/2

Note: I’m also slightly blurring to prevent aliasing (https://en.wikipedia.org/wiki/Aliasing)  

Left to right: each image is half-sized

Upsampled with big pixels below

https://en.wikipedia.org/wiki/Aliasing


Key Idea: Scale Space

1/2 1/2 1/2

Note: I’m also slightly blurring to prevent aliasing (https://en.wikipedia.org/wiki/Aliasing)  

Left to right: each image is half-sized

If I apply a KxK filter, how much of the 

original image does it see in each image? 

A B C

https://en.wikipedia.org/wiki/Aliasing


Solution to Scales

Try them all! 

See: Multi-Image Matching using Multi-Scale Oriented Patches, Brown et al. CVPR 2005

Harris Detection Harris Detection Harris Detection Harris Detection



Blob Detection

Another detector (has some nice properties)

∗ =

Find maxima and minima of blob filter response in 

scale and space

Slide credit: N. Snavely

Minima

Maxima



Gaussian Derivatives

𝜕

𝜕𝑦
𝑔

𝜕

𝜕𝑥
𝑔

Gaussian

1st Deriv

𝜕2

𝜕2𝑦
𝑔

𝜕2

𝜕2𝑥
𝑔

2nd Deriv



Laplacian of Gaussian (LoG)

𝜕2

𝜕2𝑦
𝑔

𝜕2

𝜕2𝑥
𝑔

𝜕2

𝜕2𝑥
𝑔 +

𝜕2

𝜕2𝑦
𝑔

+

Slight detail: for technical reasons, you need to scale the Laplacian 

of Gaussian if you want to compare across sigmas. ∇𝑛𝑜𝑟𝑚
2 = 𝜎2

𝜕2

𝜕𝑥2
𝑔 +

𝜕2

𝜕2𝑦
𝑔



Edge Detection with LoG

𝑓 Edge

𝜕2

𝜕2𝑥
𝑔

Laplacian 

Of Gaussian

(LoG)

𝑓 ∗
𝜕2

𝜕2𝑥
𝑔

Edge = 

Zero-crossing

Modern remake of classic S. Seitz slide 



Edges

Edges * 

LoG = 

Zero-crossings

𝑓

𝑓 ∗
𝜕2

𝜕2𝑥
𝑔

Modern remake of classic S. Seitz slide 

Edge Detection with LoG



𝑓

𝑓 ∗
𝜕2

𝜕2𝑥
𝑔

Modern remake of classic S. Seitz slide 

Edge Detection with LoG

What happens if 

we make input 1 

unit wide? 

Edges

Edges * 

LoG = 

Zero-crossings



Edge

Edge * 

LoG = 

Zero-crossing

𝑓

𝑓 ∗
𝜕2

𝜕2𝑥
𝑔

Modern remake of classic S. Seitz slide 

Edge Detection with LoG



Scale Selection

Given binary circle and Laplacian filter of scale σ, we 

can compute the response as a function of the scale.

𝜎 = 2
R: 0.02

𝜎 = 6
R: 2.9

𝜎 = 10
R: 1.8Radius: 8

Image



Characteristic Scale

Characteristic scale of a blob is the scale

that produces the maximum response 

Image Abs. Response

Slide credit: S. Lazebnik. For more, see: T. Lindeberg (1998). "Feature detection with automatic scale selection."

International Journal of Computer Vision 30 (2): pp 77--116. 

http://www.nada.kth.se/cvap/abstracts/cvap198.html


Scale-space blob detector

1. Convolve image with scale-normalized 
Laplacian at several scales

Slide credit: S. Lazebnik



Scale-space blob detector: Example

Slide credit: S. Lazebnik



Scale-space blob detector: Example

Slide credit: S. Lazebnik



Scale-space blob detector

1. Convolve image with scale-normalized 
Laplacian at several scales

2. Find maxima of squared Laplacian response 
in scale-space

Slide credit: S. Lazebnik



Finding Maxima

Point i,j is maxima (minima if you flip sign) in 
image I if it’s bigger than all neighbors

for y=range(i-1,i+1+1):

for x in range(j-1,j+1+1):

if y == i and x== j: continue

#below has to be true

I[y,x] < I[i,j]   



Scale Space

Blue lines are image-space neighbors (should be just 

one pixel over but that’s impossible to draw)

𝜎 = 2
R: 0.02

𝜎 = 6
R: 2.9

𝜎 = 10
R: 1.8Radius: 8

Image



Scale Space

Red lines are the scale-space neighbors

𝜎 = 2
R: 0.02

𝜎 = 6
R: 2.9

𝜎 = 10
R: 1.8Radius: 8

Image



Finding Maxima

Suppose I[:,:,k] is image at scale k. Point i,j,k is 
maxima (minima if you flip sign) in image I if:

for y=range(i-1,i+1+1):

for x in range(j-1,j+1+1):

for c in range(k-1,k+1+1):

if y == i and x== j and c==k: 
continue

#below has to be true

I[y,x,c] < I[i,j,k]   



Scale-space blob detector: 
Example

Slide credit: S. Lazebnik



• Approximating the Laplacian with a difference 
of Gaussians:

( )2 ( , , ) ( , , )xx yyL G x y G x y  = +

( , , ) ( , , )DoG G x y k G x y = −

(Laplacian)

(Difference of Gaussians)

Efficient implementation

Slide credit: S. Lazebnik



Efficient implementation

David G. Lowe. "Distinctive image features from scale-invariant 

keypoints.” IJCV 60 (2), pp. 91-110, 2004. 
Slide credit: S. Lazebnik

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf


Problem 1 Solved

• How do we deal with scales: try them all

• Why is this efficient?

1 +
1

4
+

1

16
+

1

64
+
1

4𝑖
… =

4

3

Vast majority of effort is in the first and second scales



Problem 2 – Describing Features

Image – 40

Full

Image

1/2 size, rot. 45°

Lightened+40

100x100 crop 

at Glasses



Problem 2 – Describing Features

Once we’ve found a corner/blobs, we can’t just 
use the image nearby. What about:

1. Scale?

2. Rotation?

3. Additive light?



Handling Scale

Given characteristic scale (maximum Laplacian 

response), we can just rescale image

Slide credit: S. Lazebnik



Handling Rotation

0 2 p

Given window, can compute “dominant orientation” 

and then rotate image

Slide credit: S. Lazebnik

“y”

“x”



Scale and Rotation

SIFT features at characteristic scales and 

dominant orientations

Picture credit: S. Lazebnik. Paper: David G. Lowe. "Distinctive image features from scale-invariant keypoints.” IJCV

60 (2), pp. 91-110, 2004. 

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf


Scale and Rotation

Picture credit: S. Lazebnik. Paper: David G. Lowe. "Distinctive image features from scale-invariant keypoints.” IJCV

60 (2), pp. 91-110, 2004. 

Rotate and set to 

common scale

j

Rotate and set to 

common scale

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf


SIFT Descriptors

Figure from David G. Lowe. "Distinctive image features from scale-invariant keypoints.” IJCV 60 (2), pp. 91-110, 

2004. 

j

1. Compute gradients

2. Build histogram (2x2 here, 4x4 in practice)

Gradients ignore global illumination changes

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf


SIFT Descriptors

• In principle: build a histogram of the gradients

• In reality: quite complicated
• Gaussian weighting: smooth response

• Normalization: reduces illumination effects

• Clamping

• Tons of more stuff



Properties of SIFT

• Can handle: up to ~60 degree out-of-plane rotation, 

changes of illumination

• Fast, efficient, code available (but was patented)

Slide credit: N. Snavely



Feature Descriptors

128D 

vector x

Think of feature as some non-linear filter that maps 

pixels to 128D feature

Photo credit: N. Snavely



Instance Matching

Example credit: J. Hays

𝒙1

𝒙2

𝒙1 − 𝒙2 = 0.61

𝒙3

𝒙1 − 𝒙3 = 1.22



Instance Matching

Example credit: J. Hays

𝒙4

𝒙5 𝒙6 𝒙7

𝒙4 − 𝒙5 = 0.34

𝒙4 − 𝒙6 = 0.30

𝒙4 − 𝒙6 = 0.40



2nd Nearest Neighbor Trick 

• Given a feature xq, nearest neighbor to x is a good 

match, but distances can’t be thresholded.

• Instead, find nearest neighbor (x1NN) and second 

nearest neighbor (x2NN). This ratio is a good test for 

matches:

𝑟 =
𝒙𝑞 − 𝒙1𝑁𝑁

𝒙𝑞 − 𝒙2𝑁𝑁



So Far; What’s Next?

1: find corners+features

2: match based on local image data

3: next time: compute offsets from matches





Extra Reading for the Curious



Aside: This Trick is Common

Given a 50x16 person detector, how do I detect:

(a) 250x80 (b) 150x48 (c) 100x32 (d) 25x8 people?

Sample people from image



Aside: This Trick is Common

Detecting all the people

The red box is a fixed size

Sample people from image



Aside: This Trick is Common

Sample people from image

Detecting all the people

The red box is a fixed size



Aside: This Trick is Common

Sample people from image

Detecting all the people

The red box is a fixed size



Affine adaptation
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Recall:

This ellipse visualizes the “characteristic shape” of the 

window Slide: S. Lazebnik



Affine adaptation example

Scale-invariant regions (blobs)

Slide: S. Lazebnik



Affine adaptation example

Affine-adapted blobs

Slide: S. Lazebnik



2nd Nearest Neighbor Trick 

Figure from David G. Lowe. "Distinctive image features from scale-invariant keypoints.” IJCV 60 (2), pp. 91-110, 

2004. 

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
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