Descriptors

EECS 442 - David Fouhey
Winter 2023, University of Michigan
https://web.eecs.umich.edu/~fouhey/teaching/EECS442_W23/

Administrivia

- Extra OH, zoom on Tuesday. Post HW topics you think are challenging; will try to cover topvoted questions.

Recap: Motivation

1: find corners+features

Last Time - Gradients

Image gradients - treat image like function of x, y - gives edges, corners, etc.

Figure credit: S. Seitz

Last Time - Corner Detection

Can localize the location, or any shift \rightarrow big intensity change.

"flat" region: no change in all directions

"edge":
no change along the edge direction

"corner": significant change in all directions

Last Time - Corner Detection

Zoom-In at x, y
Window with and w/o Offset

"Window"
At $x+u, y+v$
Here: $u=-2, v=-3$

"Window" At x, y

Last Time - Corner Detection

Zoom-In at x, y Error (Sum Sqs) for u,v offset

$$
E(u, v)=
$$

$\sum_{(x, y) \in W}(I[x+u, y+v]-I[x, y])^{2}$

Formalizing Corner Detection

By linearizing image, we can approximate $E(u, v)$ with quadratic function of u and v

$$
\begin{gathered}
E(u, v) \approx \sum_{(x, y y \in W}\left(I_{x}^{2} u^{2}+2 I_{x} I_{y} u v+I_{y}^{2} v^{2}\right) \\
=[u, v] \boldsymbol{M}[u, v]^{T} \\
\boldsymbol{M}=\left[\begin{array}{ll}
\sum_{x, y \in W} I_{x}^{2} & \sum_{x, y \in W} I_{x} I_{y} \\
\sum_{x, y \in W} I_{x} I_{y} & \sum_{x, y \in W} I_{y}^{2}
\end{array}\right]
\end{gathered}
$$

$\mathrm{Ix}=\mathrm{x}$ derivative

$$
\begin{aligned}
& =[u, v] M[u, v]^{T}
\end{aligned}
$$

ly = y derivative

$$
\begin{gathered}
=[u, v] \boldsymbol{M}[u, v]^{T} \\
\boldsymbol{M}= \\
{\left[\begin{array}{cc}
\sum_{x, y \in W} I_{x}^{2} & \left.\sum_{x, y \in W} I_{x} I_{y}\right) \\
\sum_{x, y \in W} I_{x}\left(I_{y}\right) & \sum_{x, y \in W}\left(I_{y}^{2}\right)
\end{array}\right]}
\end{gathered}
$$

Sum goes over all the pixels in window W :

$$
\sum_{x, y \in W} I_{x}^{2}=\sum_{x, y \in W}\left(I_{x}[y, x]\right)^{2}
$$

i.e., sum of squares of x gradients in window

$$
\boldsymbol{M}=\left[\begin{array}{cc}
=[u, v] M[u, v]^{I} \\
\sum_{x, y \in W} I_{x}^{2} & \sum_{x, y \in W} I_{x} I_{y} \\
\sum_{x, y \in W} I_{x} I_{y} & \sum_{x, y \in W} I_{y}^{2}
\end{array}\right]
$$

Intuitively what is M?

Pretend gradients are either vertical or horizontal Obviously at a pixel (solx ly = 0) Wrong!

$$
\boldsymbol{M}=\left[\begin{array}{ll}
\sum_{x, y \in W} I_{x}^{2} & \sum_{x, y \in W} I_{x} I_{y} \\
\sum_{x, y \in W} I_{x} I_{y} & \sum_{x, y \in W} I_{y}^{2}
\end{array}\right] \approx\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right]
$$

a, b both small: flat

$$
\left[\begin{array}{cc}
0.1 & 0 \\
0 & 0.1
\end{array}\right]
$$

One big, other small:
edge $\square\left[\begin{array}{cc}50 & 0 \\ 0 & 0.1\end{array}\right]$ or $\left[\begin{array}{cc}0.1 & 0 \\ 0 & 50\end{array}\right]$
a, b both big:
corner

$\left[\begin{array}{cc}50 & 0 \\ 0 & 50\end{array}\right]$

Intuitively what is M?

Pretend gradients are either vertical or horizontal at a pixel (solx ly = 0)

$$
\boldsymbol{M}=\left[\begin{array}{lc}
\sum_{x, y \in W} I_{x}^{2} & \sum_{x, y \in W} I_{x} I_{y} \\
\sum_{x, y \in W} I_{x} I_{y} & \sum_{x, y \in W} I_{y}^{2}
\end{array}\right] \approx ?\left[\begin{array}{cc}
a & 0 \\
0 & b
\end{array}\right]
$$

a, b both small: flat
Image might be rotated by rotation θ !

One big, other small:
edge
a, b both big:
corner

Intuitively what is M?

Pretend gradients are either vertical or horizontal at a pixel (so lx ly = 0)

$$
\boldsymbol{M}=\left[\begin{array}{lc}
\sum_{x, y \in W} I_{x}^{2} & \sum_{x, y \in W} I_{x} I_{y} \\
\sum_{x, y \in W} I_{x} I_{y} & \sum_{x, y \in W} I_{y}^{2}
\end{array}\right]=\boldsymbol{V}^{\mathbf{- 1}}\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right] \boldsymbol{V}
$$

a, b both small: flat

One big, other small:
edge
a,b both big:

If image rotated by rotation θ / matrix \mathbf{V}

M will look like

$$
\boldsymbol{V}^{-1}\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right] \boldsymbol{V}
$$

So What Now?

Can calculate M at pixel, by summing nearby gradients, but need access to a and b .

$$
\boldsymbol{M}=\left[\begin{array}{ll}
\sum_{x, y \in W} I_{x}^{2} & \sum_{x, y \in W} I_{x} I_{y} \\
\sum_{x, y \in W} I_{x} I_{y} & \sum_{x, y \in W} I_{y}^{2}
\end{array}\right]=V^{-1}\left[\begin{array}{cc}
a & 0 \\
0 & b
\end{array}\right] \boldsymbol{V}
$$

Given \mathbf{M}, can decompose it into eigenvectors \mathbf{V} and eigenvalues λ_{1}, λ_{2} with $\mathbf{M}=\boldsymbol{V}^{-1}\left[\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right] \boldsymbol{V}$.

Really slow. Why?

So What Now?

Can calculate M at pixel, by summing nearby gradients, but need access to a and b.

$$
\boldsymbol{M}=\left[\begin{array}{cc}
\sum_{x, y \in W} I_{x}^{2} & \sum_{x, y \in W} I_{x} I_{y} \\
\sum_{x, y \in W} I_{x} I_{y} & \sum_{x, y \in W} I_{y}^{2}
\end{array}\right]=\boldsymbol{V}^{\mathbf{- 1}}\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right] \boldsymbol{V}
$$

Instead: compute quantity R from \mathbf{M}

$$
R=\operatorname{det}(\boldsymbol{M})-\alpha \operatorname{trace}(\boldsymbol{M})^{2}=\lambda_{1} \lambda_{2}-\alpha\left(\lambda_{1}+\lambda_{2}\right)^{2}
$$

Easy fast formula

Fast - sum the diagonal for 2×2

Empirical value, usually 0.04-0.06

The tl;dr

TL;DR: Taylor expansion for error $\mathrm{E}(\mathrm{u}, \mathrm{v})$. All terms in equation are sums of image gradients and in \mathbf{M}

$$
\begin{gathered}
\text { Putting It Together } \\
R=\operatorname{det}(\boldsymbol{M})-\alpha \operatorname{trace}(\boldsymbol{M})^{2}=\lambda_{1} \lambda_{2}-\alpha\left(\lambda_{1}+\lambda_{2}\right)^{2}
\end{gathered}
$$

det, trace are fast

Remake of standard diagram from S. Lazebnik from original Harris paper.

In Practice

1. Compute partial derivatives Ix , ly per pixel
2. Compute \mathbf{M} at each pixel, using Gaussian weighting w

$$
\boldsymbol{M}=\left[\begin{array}{cc}
\sum_{x, y \in W} w(x, y) I_{x}^{2} & \sum_{x, y \in W} w(x, y) I_{x} I_{y} \\
\sum_{x, y \in W} w(x, y) I_{x} I_{y} & \sum_{x, y \in W} w(x, y) I_{y}^{2}
\end{array}\right]
$$

C.Harris and M.Stephens. "A Combined Corner and Edge Detector." Proceedings of the 4th Alvey Vision Conference: pages 147-151, 1988.

In Practice

1. Compute partial derivatives Ix , ly per pixel
2. Compute \mathbf{M} at each pixel, using Gaussian weighting w
3. Compute response function R

$$
\begin{aligned}
R & =\operatorname{det}(\boldsymbol{M})-\alpha \operatorname{trace}(\boldsymbol{M})^{2} \\
& =\lambda_{1} \lambda_{2}-\alpha\left(\lambda_{1}+\lambda_{2}\right)^{2}
\end{aligned}
$$

C.Harris and M.Stephens. "A Combined Corner and Edge Detector." Proceedings of the 4th Alvey Vision Conference: pages 147-151, 1988.

Computing R

Computing R

In Practice

1. Compute partial derivatives Ix, ly per pixel
2. Compute \mathbf{M} at each pixel, using Gaussian weighting w
3. Compute response function R
4. Threshold R
C.Harris and M.Stephens. "A Combined Corner and Edge Detector." Proceedings of the 4th Alvey Vision Conference: pages 147-151, 1988.

Thresholded R

In Practice

1. Compute partial derivatives Ix , ly per pixel
2. Compute \mathbf{M} at each pixel, using Gaussian weighting w
3. Compute response function R
4. Threshold R
5. Take only local maxima (called non-maxima suppression)
C.Harris and M.Stephens. "A Combined Corner and Edge Detector." Proceedings of the 4th Alvey Vision Conference: pages 147-151, 1988.

Thresholded

Final Results

Desirable Properties

If our detectors are repeatable, they should be:

- Invariant to some things: image is transformed and corners remain the same
- Covariant/equivariant with some things: image is transformed and corners transform with it.

Recall Motivating Problem

Images may be different in lighting and geometry

Affine Intensity Change

$$
I_{\text {new }}=a I_{o l d}+b
$$

M only depends on derivatives, so b is irrelevant
But a scales derivatives and there's a threshold

Partially invariant to affine intensity changes

Image Translation

All done with convolution. Convolution is translation equivariant.

Equivariant with translation

Image Scaling

One pixel can become many pixels and vice-versa.

Not equivariant with scaling How do we fix this?

Recap: Motivation

1: find corners+features
2: match based on local image data How?

Today

- Fixing scaling by making detectors in both location and scale
- Enabling matching between features by describing regions

Key Idea: Scale Space

Left to right: each image is half-sized Upsampled with big pixels below

四

Note: I'm also slightly blurring to prevent aliasing (https://en.wikipedia.org/wiki/Aliasing)

Key Idea: Scale Space

Left to right: each image is half-sized If I apply a KxK filter, how much of the original image does it see in each image?

[四

Note: I'm also slightly blurring to prevent aliasing (https://en.wikipedia.org/wiki/Aliasing)

Solution to Scales

Try them all!

See: Multi-Image Matching using Multi-Scale Oriented Patches, Brown et al. CVPR 2005

Blob Detection

Another detector (has some nice properties)

Find maxima and minima of blob filter response in scale and space

Gaussian Derivatives

Gaussian

Laplacian of Gaussian (LoG)

Edge Detection with LoG

Modern remake of classic S. Seitz slide

Edge Detection with LoG

Edges

Edge Detection with LoG

Modern remake of classic S. Seitz slide

Edge Detection with LoG

Edge

Scale Selection

Given binary circle and Laplacian filter of scale σ, we can compute the response as a function of the scale.

Characteristic Scale

Characteristic scale of a blob is the scale that produces the maximum response

Abs. Response

Scale-space blob detector

1. Convolve image with scale-normalized Laplacian at several scales

Scale-space blob detector: Example

Scale-space blob detector: Example

sigma $=11.9912$

Scale-space blob detector

1. Convolve image with scale-normalized Laplacian at several scales
2. Find maxima of squared Laplacian response in scale-space

Finding Maxima

Point i, j is maxima (minima if you flip sign) in image I if it's bigger than all neighbors
for $y=$ range($i-1, i+1+1$):
for x in range $(j-1, j+1+1)$:
if $y==i$ and $x==j$: continue
\#below has to be true
$1[y, x]<\mid[i, j]$

Scale Space

Blue lines are image-space neighbors (should be just one pixel over but that's impossible to draw)

Scale Space

Red lines are the scale-space neighbors

Finding Maxima

Suppose $I[:,:, k]$ is image at scale k. Point i, j, k is maxima (minima if you flip sign) in image I if: for $y=$ range $(i-1, i+1+1)$:
for x in range $(j-1, j+1+1)$:
for c in range $(k-1, k+1+1)$:

$$
\begin{aligned}
\text { if } y== & i \text { and } x==j \text { and } c==k: \\
& \text { continue }
\end{aligned}
$$

\#below has to be true
$\mathrm{I}[\mathrm{y}, \mathrm{x}, \mathrm{c}]<\mathrm{I}[\mathrm{i}, \mathrm{j}, \mathrm{k}]$

Scale-space blob detector: Example

Efficient implementation

- Approximating the Laplacian with a difference of Gaussians:

$$
L=\sigma^{2}\left(G_{x x}(x, y, \sigma)+G_{y y}(x, y, \sigma)\right)
$$

(Laplacian)
$D o G=G(x, y, k \sigma)-G(x, y, \sigma)$
(Difference of Gaussians)

Efficient implementation

David G. Lowe. "Distinctive image features from scale-invariant keypoints." IJCV 60 (2), pp. 91-110, 2004.
Slide credit: S. Lazebnik

Problem 1 Solved

- How do we deal with scales: try them all
- Why is this efficient?

Vast majority of effort is in the first and second scales

$$
1+\frac{1}{4}+\frac{1}{16}+\frac{1}{64}+\frac{1}{4^{i}} \ldots=\frac{4}{3}
$$

Problem 2 - Describing Features

Image - 40 $1 / 2$ size, rot. 45°
Lightened+40

Full Image

Problem 2 - Describing Features

Once we've found a corner/blobs, we can't just use the image nearby. What about:

1. Scale?
2. Rotation?
3. Additive light?

Handling Scale

Given characteristic scale (maximum Laplacian response), we can just rescale image

Handling Rotation

Given window, can compute "dominant orientation" and then rotate image

Scale and Rotation

SIFT features at characteristic scales and dominant orientations

Picture credit: S. Lazebnik. Paper: David G. Lowe. "Distinctive image features from scale-invariant keypoints." IJCV 60 (2), pp. 91-110, 2004.

Scale and Rotation

Picture credit: S. Lazebnik. Paper: David G. Lowe. "Distinctive image features from scale-invariant keypoints." IJCV 60 (2), pp. 91-110, 2004.

SIFT Descriptors

1. Compute gradients
2. Build histogram (2×2 here, 4×4 in practice) Gradients ignore global illumination changes

Figure from David G. Lowe. "Distinctive image features from scale-invariant keypoints." IJCV 60 (2), pp. 91-110, 2004.

SIFT Descriptors

- In principle: build a histogram of the gradients
- In reality: quite complicated
- Gaussian weighting: smooth response
- Normalization: reduces illumination effects
- Clamping
- Tons of more stuff

Properties of SIFT

- Can handle: up to ~ 60 degree out-of-plane rotation, changes of illumination
- Fast, efficient, code available (but was patented)

Feature Descriptors

Think of feature as some non-linear filter that maps pixels to 128D feature

Photo credit: N. Snavely

Instance Matching

Example credit: J. Hays

Instance Matching

Example credit: J. Hays

$2^{\text {nd }}$ Nearest Neighbor Trick

- Given a feature x_{q}, nearest neighbor to x is a good match, but distances can't be thresholded.
- Instead, find nearest neighbor ($\mathrm{x}_{1 \mathrm{NN}}$) and second nearest neighbor ($\mathrm{x}_{2 \mathrm{NN}}$). This ratio is a good test for matches:

$$
r=\frac{\left\|\boldsymbol{x}_{q}-\boldsymbol{x}_{1 N N}\right\|}{\left\|\boldsymbol{x}_{q}-\boldsymbol{x}_{2 N N}\right\|}
$$

So Far; What's Next?

1: find corners+features
2: match based on local image data
3: next time: compute offsets from matches

Extra Reading for the Curious

Aside: This Trick is Common

Given a 50×16 person detector, how do I detect: (a) 250×80 (b) 150×48 (c) 100×32 (d) 25×8 people?

Sample people from image

Aside: This Trick is Common

Detecting all the people
 The red box is a fixed size

Sample people from image
 4

Aside: This Trick is Common

Detecting all the people
 The red box is a fixed size

Sample people from image

Aside: This Trick is Common

Detecting all the people
 The red box is a fixed size

Sample people from image

Affine adaptation

Consider the second moment matrix of the window containing the blob:

$$
M=\sum_{x, y} w(x, y)\left[\begin{array}{cc}
I_{x}^{2} & I_{x} I_{y} \\
I_{x} I_{y} & I_{y}^{2}
\end{array}\right]=R^{-1}\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right] R
$$

This ellipse visualizes the "characteristic shape" of the window

Affine adaptation example

Scale-invariant regions (blobs)

Affine adaptation example

Affine-adapted blobs

$2^{\text {nd }}$ Nearest Neighbor Trick

Figure from David G. Lowe. "Distinctive image features from scale-invariant keypoints." IJCV 60 (2), pp. 91-110, 2004.

