
Descriptors
EECS 442 – David Fouhey

Winter 2023, University of Michigan
https://web.eecs.umich.edu/~fouhey/teaching/EECS442_W23/

Administrivia

• Extra OH, zoom on Tuesday. Post HW topics
you think are challenging; will try to cover top-
voted questions.

Recap: Motivation

1: find corners+features

Image credit: M. Brown

Last Time – Gradients

∇𝑓 =
𝜕𝑓

𝜕𝑥
, 0 ∇𝑓 = 0,

𝜕𝑓

𝜕𝑦
∇𝑓 =

𝜕𝑓

𝜕𝑥
,
𝜕𝑓

𝜕𝑦

Image gradients – treat image like function of

x,y – gives edges, corners, etc.

Figure credit: S. Seitz

Last Time – Corner Detection

“edge”:

no change

along the edge

direction

“corner”:

significant

change in all

directions

“flat” region:

no change in

all directions

Can localize the location, or any shift →

big intensity change.

Diagram credit: S. Lazebnik

Last Time – Corner Detection

“Window”

At x, y

“Window”

At x+u, y+v

Here: u=-2,v=-3

Window with and w/o OffsetZoom-In at x,y

Last Time – Corner Detection

Zoom-In at x,y Error (Sum Sqs) for u,v offset

𝐸 𝑢, 𝑣 =

෍

𝑥,𝑦 ∈𝑊

𝐼[𝑥 + 𝑢, 𝑦 + 𝑣] − 𝐼[𝑥, 𝑦] 2

-()2

Formalizing Corner Detection

𝐸 𝑢, 𝑣 ≈ ෍

𝑥,𝑦 ∈𝑊

𝐼𝑥
2𝑢2 + 2𝐼𝑥𝐼𝑦𝑢𝑣 + 𝐼𝑦

2𝑣2

= 𝑢, 𝑣 𝑴 𝑢, 𝑣 𝑇

By linearizing image, we can approximate E(u,v)

with quadratic function of u and v

𝑴 =

෍

𝑥,𝑦∈𝑊

𝐼𝑥
2 ෍

𝑥,𝑦∈𝑊

𝐼𝑥𝐼𝑦

෍

𝑥,𝑦∈𝑊

𝐼𝑥𝐼𝑦 ෍

𝑥,𝑦∈𝑊

𝐼𝑦
2

Formalizing Corner Detection

𝐸 𝑢, 𝑣 ≈ ෍

𝑥,𝑦 ∈𝑊

𝐼𝑥
2𝑢2 + 2𝐼𝑥𝐼𝑦𝑢𝑣 + 𝐼𝑦

2𝑣2

= 𝑢, 𝑣 𝑴 𝑢, 𝑣 𝑇

By linearizing image, we can approximate E(u,v)

with quadratic function of u and v

𝑴 =

෍

𝑥,𝑦∈𝑊

𝐼𝑥
2 ෍

𝑥,𝑦∈𝑊

𝐼𝑥𝐼𝑦

෍

𝑥,𝑦∈𝑊

𝐼𝑥𝐼𝑦 ෍

𝑥,𝑦∈𝑊

𝐼𝑦
2

Ix = x derivative

Formalizing Corner Detection

𝐸 𝑢, 𝑣 ≈ ෍

𝑥,𝑦 ∈𝑊

𝐼𝑥
2𝑢2 + 2𝐼𝑥𝐼𝑦𝑢𝑣 + 𝐼𝑦

2𝑣2

= 𝑢, 𝑣 𝑴 𝑢, 𝑣 𝑇

By linearizing image, we can approximate E(u,v)

with quadratic function of u and v

𝑴 =

෍

𝑥,𝑦∈𝑊

𝐼𝑥
2 ෍

𝑥,𝑦∈𝑊

𝐼𝑥𝐼𝑦

෍

𝑥,𝑦∈𝑊

𝐼𝑥𝐼𝑦 ෍

𝑥,𝑦∈𝑊

𝐼𝑦
2

Iy = y derivative

Formalizing Corner Detection

𝐸 𝑢, 𝑣 ≈ ෍

𝑥,𝑦 ∈𝑊

𝐼𝑥
2𝑢2 + 2𝐼𝑥𝐼𝑦𝑢𝑣 + 𝐼𝑦

2𝑣2

= 𝑢, 𝑣 𝑴 𝑢, 𝑣 𝑇

By linearizing image, we can approximate E(u,v)

with quadratic function of u and v

𝑴 =

෍

𝑥,𝑦∈𝑊

𝐼𝑥
2 ෍

𝑥,𝑦∈𝑊

𝐼𝑥𝐼𝑦

෍

𝑥,𝑦∈𝑊

𝐼𝑥𝐼𝑦 ෍

𝑥,𝑦∈𝑊

𝐼𝑦
2

Sum goes over all the pixels in window W:

෍

𝑥,𝑦∈𝑊

𝐼𝑥
2 = ෍

𝑥,𝑦∈𝑊

(𝐼𝑥[𝑦, 𝑥])

2

i.e., sum of squares of x gradients in window

Intuitively what is M?

𝑴 =

෍

𝑥,𝑦∈𝑊

𝐼𝑥
2 ෍

𝑥,𝑦∈𝑊

𝐼𝑥𝐼𝑦

෍

𝑥,𝑦∈𝑊

𝐼𝑥𝐼𝑦 ෍

𝑥,𝑦∈𝑊

𝐼𝑦
2

≈
𝑎 0
0 𝑏

Pretend gradients are either vertical or horizontal

at a pixel (so Ix Iy = 0)

a,b both small:
0.1 0
0 0.1

flat

One big,

other small:
50 0
0 0.1

0.1 0
0 50

oredge

cornera,b both big:
50 0
0 50

Obviously

Wrong!

Intuitively what is M?

𝑴 =

෍

𝑥,𝑦∈𝑊

𝐼𝑥
2 ෍

𝑥,𝑦∈𝑊

𝐼𝑥𝐼𝑦

෍

𝑥,𝑦∈𝑊

𝐼𝑥𝐼𝑦 ෍

𝑥,𝑦∈𝑊

𝐼𝑦
2

≈?
𝑎 0
0 𝑏

Pretend gradients are either vertical or horizontal

at a pixel (so Ix Iy = 0)

a,b both small:

One big,

other small:

a,b both big:

flat

edge

corner

Image might be

rotated by rotation θ!

Intuitively what is M?

𝑴 =

෍

𝑥,𝑦∈𝑊

𝐼𝑥
2 ෍

𝑥,𝑦∈𝑊

𝐼𝑥𝐼𝑦

෍

𝑥,𝑦∈𝑊

𝐼𝑥𝐼𝑦 ෍

𝑥,𝑦∈𝑊

𝐼𝑦
2

= 𝑽−𝟏
𝑎 0
0 𝑏

𝑽

Pretend gradients are either vertical or horizontal

at a pixel (so Ix Iy = 0)

a,b both small:

One big,

other small:

a,b both big:

flat

edge

corner

If image rotated by

rotation θ / matrix V

M will look like

𝑽−𝟏
𝑎 0
0 𝑏

𝑽

So What Now?
Can calculate M at pixel, by summing nearby

gradients, but need access to a and b.

Given M, can decompose it into eigenvectors V and

eigenvalues 𝜆1, 𝜆2 with 𝐌 = 𝑽−1
𝜆1 0
0 𝜆2

𝑽.

𝑴 =

෍

𝑥,𝑦∈𝑊

𝐼𝑥
2 ෍

𝑥,𝑦∈𝑊

𝐼𝑥𝐼𝑦

෍

𝑥,𝑦∈𝑊

𝐼𝑥𝐼𝑦 ෍

𝑥,𝑦∈𝑊

𝐼𝑦
2

= 𝑽−𝟏
𝑎 0
0 𝑏

𝑽

Really slow. Why?

So What Now?
Can calculate M at pixel, by summing nearby

gradients, but need access to a and b.

𝑴 =

෍

𝑥,𝑦∈𝑊

𝐼𝑥
2 ෍

𝑥,𝑦∈𝑊

𝐼𝑥𝐼𝑦

෍

𝑥,𝑦∈𝑊

𝐼𝑥𝐼𝑦 ෍

𝑥,𝑦∈𝑊

𝐼𝑦
2

= 𝑽−𝟏
𝑎 0
0 𝑏

𝑽

Instead: compute quantity R from M

𝑅 = det 𝑴 − 𝛼 trace 𝑴 2 = 𝜆1𝜆2 − 𝛼 𝜆1 + 𝜆2
2

Empirical value,

usually 0.04-0.06

Fast – sum the diagonalEasy fast formula

for 2x2

The tl;dr

TL;DR: Taylor expansion for error E(u,v). All terms in

equation are sums of image gradients and in M

𝑴 =

෍

𝑥,𝑦∈𝑊

𝐼𝑥
2 ෍

𝑥,𝑦∈𝑊

𝐼𝑥𝐼𝑦

෍

𝑥,𝑦∈𝑊

𝐼𝑥𝐼𝑦 ෍

𝑥,𝑦∈𝑊

𝐼𝑦
2

=

Can compute at

each pixel

Ix = Ix at point (x,y), Iy = Iy at point (x,y)

Should know

Directions

Amounts

Optional

𝑽−1
𝜆1 0
0 𝜆2

𝑽

Putting It Together

R >> 0

𝜆1

𝜆2

R << 0

R << 0|R|≈0corner 𝜆1 ≈ 𝜆2 ≫ 0

edge
𝜆1 ≫ 𝜆2 ≫ 0
𝜆2 ≫ 𝜆1 ≫ 0

flat 𝜆1, 𝜆2 ≈ 0

Remake of standard diagram from S. Lazebnik from original Harris paper.

𝑅 = det 𝑴 − 𝛼 trace 𝑴 2 = 𝜆1𝜆2 − 𝛼 𝜆1 + 𝜆2
2

det, trace are fast

In Practice

1. Compute partial derivatives Ix, Iy per pixel

2. Compute M at each pixel, using Gaussian
weighting w

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.”
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.

Slide credit: S. Lazebnik

𝑴 =

෍

𝑥,𝑦∈𝑊

𝑤(𝑥, 𝑦)𝐼𝑥
2 ෍

𝑥,𝑦∈𝑊

𝑤(𝑥, 𝑦)𝐼𝑥𝐼𝑦

෍

𝑥,𝑦∈𝑊

𝑤(𝑥, 𝑦)𝐼𝑥𝐼𝑦 ෍

𝑥,𝑦∈𝑊

𝑤(𝑥, 𝑦)𝐼𝑦
2

http://www.bmva.org/bmvc/1988/avc-88-023.pdf

In Practice

1. Compute partial derivatives Ix, Iy per pixel

2. Compute M at each pixel, using Gaussian
weighting w

3. Compute response function R

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.”
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.

Slide credit: S. Lazebnik

𝑅 = det 𝑴 − 𝛼 𝑡𝑟𝑎𝑐𝑒 𝑴 2

= 𝜆1𝜆2 − 𝛼 𝜆1 + 𝜆2
2

http://www.bmva.org/bmvc/1988/avc-88-023.pdf

Computing R

Slide credit: S. Lazebnik

Computing R

Slide credit: S. Lazebnik

In Practice

1. Compute partial derivatives Ix, Iy per pixel

2. Compute M at each pixel, using Gaussian
weighting w

3. Compute response function R

4. Threshold R

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.”
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.

Slide credit: S. Lazebnik

http://www.bmva.org/bmvc/1988/avc-88-023.pdf

Thresholded R

Slide credit: S. Lazebnik

In Practice

1. Compute partial derivatives Ix, Iy per pixel

2. Compute M at each pixel, using Gaussian
weighting w

3. Compute response function R

4. Threshold R

5. Take only local maxima (called non-maxima
suppression)

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.”
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.

Slide credit: S. Lazebnik

http://www.bmva.org/bmvc/1988/avc-88-023.pdf

Thresholded

Slide credit: S. Lazebnik

Final Results

Slide credit: S. Lazebnik

Desirable Properties

If our detectors are repeatable, they should be:

• Invariant to some things: image is transformed
and corners remain the same

• Covariant/equivariant with some things:
image is transformed and corners transform
with it.

Slide credit: S. Lazebnik

Recall Motivating Problem

Images may be different in lighting and geometry

Affine Intensity Change

Partially invariant to affine intensity changes

Slide credit: S. Lazebnik

𝐼𝑛𝑒𝑤 = 𝑎𝐼𝑜𝑙𝑑 + 𝑏

M only depends on derivatives, so b is irrelevant

R

x (image coordinate)

threshold

R

x (image coordinate)

But a scales derivatives and there’s a threshold

Image Translation

Slide credit: S. Lazebnik

All done with convolution. Convolution is

translation equivariant.

Equivariant with translation

Image Scaling

Corner

One pixel can become many pixels and

vice-versa.

Not equivariant with scaling

How do we fix this?
Slide credit: S. Lazebnik

Recap: Motivation

1: find corners+features

2: match based on local image data

How?
Image credit: M. Brown

Today

• Fixing scaling by making detectors in both
location and scale

• Enabling matching between features by
describing regions

Key Idea: Scale Space

1/2 1/2 1/2

Note: I’m also slightly blurring to prevent aliasing (https://en.wikipedia.org/wiki/Aliasing)

Left to right: each image is half-sized

Upsampled with big pixels below

https://en.wikipedia.org/wiki/Aliasing

Key Idea: Scale Space

1/2 1/2 1/2

Note: I’m also slightly blurring to prevent aliasing (https://en.wikipedia.org/wiki/Aliasing)

Left to right: each image is half-sized

If I apply a KxK filter, how much of the

original image does it see in each image?

A B C

https://en.wikipedia.org/wiki/Aliasing

Solution to Scales

Try them all!

See: Multi-Image Matching using Multi-Scale Oriented Patches, Brown et al. CVPR 2005

Harris Detection Harris Detection Harris Detection Harris Detection

Blob Detection

Another detector (has some nice properties)

∗ =

Find maxima and minima of blob filter response in

scale and space

Slide credit: N. Snavely

Minima

Maxima

Gaussian Derivatives

𝜕

𝜕𝑦
𝑔

𝜕

𝜕𝑥
𝑔

Gaussian

1st Deriv

𝜕2

𝜕2𝑦
𝑔

𝜕2

𝜕2𝑥
𝑔

2nd Deriv

Laplacian of Gaussian (LoG)

𝜕2

𝜕2𝑦
𝑔

𝜕2

𝜕2𝑥
𝑔

𝜕2

𝜕2𝑥
𝑔 +

𝜕2

𝜕2𝑦
𝑔

+

Slight detail: for technical reasons, you need to scale the Laplacian

of Gaussian if you want to compare across sigmas. ∇𝑛𝑜𝑟𝑚
2 = 𝜎2

𝜕2

𝜕𝑥2
𝑔 +

𝜕2

𝜕2𝑦
𝑔

Edge Detection with LoG

𝑓 Edge

𝜕2

𝜕2𝑥
𝑔

Laplacian

Of Gaussian

(LoG)

𝑓 ∗
𝜕2

𝜕2𝑥
𝑔

Edge =

Zero-crossing

Modern remake of classic S. Seitz slide

Edges

Edges *

LoG =

Zero-crossings

𝑓

𝑓 ∗
𝜕2

𝜕2𝑥
𝑔

Modern remake of classic S. Seitz slide

Edge Detection with LoG

𝑓

𝑓 ∗
𝜕2

𝜕2𝑥
𝑔

Modern remake of classic S. Seitz slide

Edge Detection with LoG

What happens if

we make input 1

unit wide?

Edges

Edges *

LoG =

Zero-crossings

Edge

Edge *

LoG =

Zero-crossing

𝑓

𝑓 ∗
𝜕2

𝜕2𝑥
𝑔

Modern remake of classic S. Seitz slide

Edge Detection with LoG

Scale Selection

Given binary circle and Laplacian filter of scale σ, we

can compute the response as a function of the scale.

𝜎 = 2
R: 0.02

𝜎 = 6
R: 2.9

𝜎 = 10
R: 1.8Radius: 8

Image

Characteristic Scale

Characteristic scale of a blob is the scale

that produces the maximum response

Image Abs. Response

Slide credit: S. Lazebnik. For more, see: T. Lindeberg (1998). "Feature detection with automatic scale selection."

International Journal of Computer Vision 30 (2): pp 77--116.

http://www.nada.kth.se/cvap/abstracts/cvap198.html

Scale-space blob detector

1. Convolve image with scale-normalized
Laplacian at several scales

Slide credit: S. Lazebnik

Scale-space blob detector: Example

Slide credit: S. Lazebnik

Scale-space blob detector: Example

Slide credit: S. Lazebnik

Scale-space blob detector

1. Convolve image with scale-normalized
Laplacian at several scales

2. Find maxima of squared Laplacian response
in scale-space

Slide credit: S. Lazebnik

Finding Maxima

Point i,j is maxima (minima if you flip sign) in
image I if it’s bigger than all neighbors

for y=range(i-1,i+1+1):

for x in range(j-1,j+1+1):

if y == i and x== j: continue

#below has to be true

I[y,x] < I[i,j]

Scale Space

Blue lines are image-space neighbors (should be just

one pixel over but that’s impossible to draw)

𝜎 = 2
R: 0.02

𝜎 = 6
R: 2.9

𝜎 = 10
R: 1.8Radius: 8

Image

Scale Space

Red lines are the scale-space neighbors

𝜎 = 2
R: 0.02

𝜎 = 6
R: 2.9

𝜎 = 10
R: 1.8Radius: 8

Image

Finding Maxima

Suppose I[:,:,k] is image at scale k. Point i,j,k is
maxima (minima if you flip sign) in image I if:

for y=range(i-1,i+1+1):

for x in range(j-1,j+1+1):

for c in range(k-1,k+1+1):

if y == i and x== j and c==k:
continue

#below has to be true

I[y,x,c] < I[i,j,k]

Scale-space blob detector:
Example

Slide credit: S. Lazebnik

• Approximating the Laplacian with a difference
of Gaussians:

()2 (, ,) (, ,)xx yyL G x y G x y  = +

(, ,) (, ,)DoG G x y k G x y = −

(Laplacian)

(Difference of Gaussians)

Efficient implementation

Slide credit: S. Lazebnik

Efficient implementation

David G. Lowe. "Distinctive image features from scale-invariant

keypoints.” IJCV 60 (2), pp. 91-110, 2004.
Slide credit: S. Lazebnik

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

Problem 1 Solved

• How do we deal with scales: try them all

• Why is this efficient?

1 +
1

4
+

1

16
+

1

64
+
1

4𝑖
… =

4

3

Vast majority of effort is in the first and second scales

Problem 2 – Describing Features

Image – 40

Full

Image

1/2 size, rot. 45°

Lightened+40

100x100 crop

at Glasses

Problem 2 – Describing Features

Once we’ve found a corner/blobs, we can’t just
use the image nearby. What about:

1. Scale?

2. Rotation?

3. Additive light?

Handling Scale

Given characteristic scale (maximum Laplacian

response), we can just rescale image

Slide credit: S. Lazebnik

Handling Rotation

0 2 p

Given window, can compute “dominant orientation”

and then rotate image

Slide credit: S. Lazebnik

“y”

“x”

Scale and Rotation

SIFT features at characteristic scales and

dominant orientations

Picture credit: S. Lazebnik. Paper: David G. Lowe. "Distinctive image features from scale-invariant keypoints.” IJCV

60 (2), pp. 91-110, 2004.

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

Scale and Rotation

Picture credit: S. Lazebnik. Paper: David G. Lowe. "Distinctive image features from scale-invariant keypoints.” IJCV

60 (2), pp. 91-110, 2004.

Rotate and set to

common scale

j

Rotate and set to

common scale

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

SIFT Descriptors

Figure from David G. Lowe. "Distinctive image features from scale-invariant keypoints.” IJCV 60 (2), pp. 91-110,

2004.

j

1. Compute gradients

2. Build histogram (2x2 here, 4x4 in practice)

Gradients ignore global illumination changes

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

SIFT Descriptors

• In principle: build a histogram of the gradients

• In reality: quite complicated
• Gaussian weighting: smooth response

• Normalization: reduces illumination effects

• Clamping

• Tons of more stuff

Properties of SIFT

• Can handle: up to ~60 degree out-of-plane rotation,

changes of illumination

• Fast, efficient, code available (but was patented)

Slide credit: N. Snavely

Feature Descriptors

128D

vector x

Think of feature as some non-linear filter that maps

pixels to 128D feature

Photo credit: N. Snavely

Instance Matching

Example credit: J. Hays

𝒙1

𝒙2

𝒙1 − 𝒙2 = 0.61

𝒙3

𝒙1 − 𝒙3 = 1.22

Instance Matching

Example credit: J. Hays

𝒙4

𝒙5 𝒙6 𝒙7

𝒙4 − 𝒙5 = 0.34

𝒙4 − 𝒙6 = 0.30

𝒙4 − 𝒙6 = 0.40

2nd Nearest Neighbor Trick

• Given a feature xq, nearest neighbor to x is a good

match, but distances can’t be thresholded.

• Instead, find nearest neighbor (x1NN) and second

nearest neighbor (x2NN). This ratio is a good test for

matches:

𝑟 =
𝒙𝑞 − 𝒙1𝑁𝑁

𝒙𝑞 − 𝒙2𝑁𝑁

So Far; What’s Next?

1: find corners+features

2: match based on local image data

3: next time: compute offsets from matches

Extra Reading for the Curious

Aside: This Trick is Common

Given a 50x16 person detector, how do I detect:

(a) 250x80 (b) 150x48 (c) 100x32 (d) 25x8 people?

Sample people from image

Aside: This Trick is Common

Detecting all the people

The red box is a fixed size

Sample people from image

Aside: This Trick is Common

Sample people from image

Detecting all the people

The red box is a fixed size

Aside: This Trick is Common

Sample people from image

Detecting all the people

The red box is a fixed size

Affine adaptation

RR
III

III
yxwM

yyx

yxx

yx









=












= −

2

11

2

2

, 0

0
),(





direction of

the slowest

change

direction of the

fastest change

(max)
-1/2

(min)
-1/2

Consider the second moment matrix of the window

containing the blob:

const][=








v

u
Mvu

Recall:

This ellipse visualizes the “characteristic shape” of the

window Slide: S. Lazebnik

Affine adaptation example

Scale-invariant regions (blobs)

Slide: S. Lazebnik

Affine adaptation example

Affine-adapted blobs

Slide: S. Lazebnik

2nd Nearest Neighbor Trick

Figure from David G. Lowe. "Distinctive image features from scale-invariant keypoints.” IJCV 60 (2), pp. 91-110,

2004.

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

	Slide 1: Descriptors
	Slide 2: Administrivia
	Slide 3: Recap: Motivation
	Slide 4: Last Time – Gradients
	Slide 5: Last Time – Corner Detection
	Slide 6: Last Time – Corner Detection
	Slide 7: Last Time – Corner Detection
	Slide 8: Formalizing Corner Detection
	Slide 9: Formalizing Corner Detection
	Slide 10: Formalizing Corner Detection
	Slide 11: Formalizing Corner Detection
	Slide 12: Intuitively what is M?
	Slide 13: Intuitively what is M?
	Slide 14: Intuitively what is M?
	Slide 15: So What Now?
	Slide 16: So What Now?
	Slide 17: The tl;dr
	Slide 18: Putting It Together
	Slide 19: In Practice
	Slide 20: In Practice
	Slide 21: Computing R
	Slide 22: Computing R
	Slide 23: In Practice
	Slide 24: Thresholded R
	Slide 25: In Practice
	Slide 26: Thresholded
	Slide 27: Final Results
	Slide 28: Desirable Properties
	Slide 29: Recall Motivating Problem
	Slide 30: Affine Intensity Change
	Slide 31: Image Translation
	Slide 33: Image Scaling
	Slide 34: Recap: Motivation
	Slide 35: Today
	Slide 36: Key Idea: Scale Space
	Slide 37: Key Idea: Scale Space
	Slide 38: Solution to Scales
	Slide 39: Blob Detection
	Slide 40: Gaussian Derivatives
	Slide 41: Laplacian of Gaussian (LoG)
	Slide 42: Edge Detection with LoG
	Slide 43
	Slide 44
	Slide 45
	Slide 46: Scale Selection
	Slide 47: Characteristic Scale
	Slide 48: Scale-space blob detector
	Slide 49: Scale-space blob detector: Example
	Slide 50: Scale-space blob detector: Example
	Slide 51: Scale-space blob detector
	Slide 52: Finding Maxima
	Slide 53: Scale Space
	Slide 54: Scale Space
	Slide 55: Finding Maxima
	Slide 56: Scale-space blob detector: Example
	Slide 57: Efficient implementation
	Slide 58: Efficient implementation
	Slide 59: Problem 1 Solved
	Slide 60: Problem 2 – Describing Features
	Slide 61: Problem 2 – Describing Features
	Slide 62: Handling Scale
	Slide 63: Handling Rotation
	Slide 64: Scale and Rotation
	Slide 65: Scale and Rotation
	Slide 66: SIFT Descriptors
	Slide 67: SIFT Descriptors
	Slide 68: Properties of SIFT
	Slide 69: Feature Descriptors
	Slide 70: Instance Matching
	Slide 71: Instance Matching
	Slide 72: 2nd Nearest Neighbor Trick
	Slide 73: So Far; What’s Next?
	Slide 74
	Slide 75: Extra Reading for the Curious
	Slide 76: Aside: This Trick is Common
	Slide 77: Aside: This Trick is Common
	Slide 78: Aside: This Trick is Common
	Slide 79: Aside: This Trick is Common
	Slide 80: Affine adaptation
	Slide 81: Affine adaptation example
	Slide 82: Affine adaptation example
	Slide 83: 2nd Nearest Neighbor Trick

