# **Convolutional Neural Nets II** EECS 442 – David Fouhey

Winter 2023, University of Michigan

http://web.eecs.umich.edu/~fouhey/teaching/EECS442\_W23/

## **Fully Connected Network**



#### **Convolutional Layer**

#### New Block: 2D Convolution



#### **Convolution Layer**



#### Convolutional Neural Network (CNN)





Convert HxW image into a F-dimensional vector

- What's the probability this image is a cat (F=1)
- Which of 1000 categories is this image? (F=1000)
- At what GPS coord was this image taken? (F=2)
- Identify the X,Y coordinates of 28 body joints of an image of a human (F=56)



Running example: image classification P(image is class #1) P(image is class #2) P(image is class #2)







- Provide:
  - Examples of images and desired outputs
  - Sequence of layers producing a 1x1xF output
  - A loss function that measures success
- Train the network -> network figures out the parameters that makes this work

# Layer Collection

You can construct functions out of layers. The only requirement is the layers "fit" together. Optimization figures out what the parameters of the layers are.



## **Review – Pooling**

Idea: just want spatial resolution of activations / images smaller; applied per-channel

| 1 | 1 | 2 | 4 |
|---|---|---|---|
| 5 | 6 | 7 | 8 |
| 3 | 2 | 1 | 0 |
| 1 | 1 | 3 | 4 |

Max-pool 2x2 Filter Stride 2



#### **Review – Pooling**



# Other Layers – Fully Connected 1x1xC 1x1xF

Map C-dimensional feature to F-dimensional feature using linear transformation W (FxC matrix) + b (Fx1 vector)

How can we write this as a convolution?



Set Fh=1, Fw=1 1x1 Convolution with F Filters  $b + \sum_{i=1}^{F_h} \sum_{j=1}^{F_w} \sum_{k=1}^c F_{i,j,k} * I_{y+i,x+j,k} \longrightarrow b + \sum_{k=1}^c F_k * I_c$ 

# Converting to a Vector HxWxC 1x1xF



#### How can we do this?

# Converting to a Vector\* – Pool HxWxC 1x1xF



# Converting to a Vector – Convolve HxWxC 1x1xF



#### HxW Convolution with F Filters



## Looking At Networks

- We'll look at 3 landmark networks, each trained to solve a 1000-way classification output (Imagenet)
  - Alexnet (2012)
  - VGG-16 (2014)
  - Resnet (2015)





## **CNN** Terminology













All layers followed by ReLU Red layers are followed by maxpool Early layers have "normalization"

#### AlexNet – Details









| Input   | Conv<br>1 | Conv<br>2 | Conv<br>3 | Conv<br>4 | Conv<br>5 | FC<br>6 | FC<br>7 | Output |
|---------|-----------|-----------|-----------|-----------|-----------|---------|---------|--------|
| 227x227 | 55x55     | 27x27     | 13x13     | 13x13     | 13x13     | 1x1     | 1x1     | 1x1    |
| 3       | 96        | 256       | 384       | 384       | 256       | 4096    | 4096    | 1000   |











| Input   | Conv<br>1 | Conv<br>2 | Conv<br>3 | Conv<br>4 | Conv<br>5 | FC<br>6 | FC<br>7 | Output |
|---------|-----------|-----------|-----------|-----------|-----------|---------|---------|--------|
| 227x227 | 55x55     | 27x27     | 13x13     | 13x13     | 13x13     | 1x1     | 1x1     | 1x1    |
| 3       | 96        | 256       | 384       | 384       | 256       | 4096    | 4096    | 1000   |



How long would it take you to list the parameters of Alexnet at 4s / parameter?

1 year? 4 years?

8 years?

16 years?

- 62.4 million parameters
- Vast majority in fully connected layers
- But... paper notes that removing the convolutions is disastrous for performance.

## Dataset – ILSVRC

- Imagenet Largescale Visual Recognition Challenge
- 1.4M images
- 1000 Categories, often ridiculously precise

### Dataset – ILSVRC





flamingo

cock



ruffed grouse



quail partr

partridge ...

bottles

cars

birds







pill bottle beer bottle wine bottle water bottle pop bottle . . .



Figure Credit: O. Russakovsky

## **Visualizing Filters**



#### Conv 1 Filters

 Q. How many input dimensions?

• A: 3

- What does the input mean?
  - R, G, B, duh.

#### What's Learned – Recap



First layer filters of a network trained to distinguish 1000 categories of objects

Remember these filters go over color.

Figure Credit: Karpathy and Fei-Fei

# **Visualizing Later Filters**





#### Conv 2 Filters

- Q. How many input dimensions?
  - A: 96.... hmmm
- What does the input mean?
  - Uh, the uh, previous slide
## Visualizing Later Filters

 Understanding the meaning of the later filters from their values is typically impossible: too many input dimensions, not even clear what the input means.









| Input   | Conv  | Conv  | Conv  | Conv  | Conv  |
|---------|-------|-------|-------|-------|-------|
|         | 1     | 2     | 3     | 4     | 5     |
| 227x227 | 55x55 | 27x27 | 13x13 | 13x13 | 13x13 |
| 3       | 96    | 256   | 384   | 384   | 256   |



Feed an image in, see what score the filter gives it. A more pleasant version of a real neuroscience procedure.





Figure Credit: Girschick et al. CVPR 2014.





Due to convolution, each later layer's value depends on / "sees" only a fraction of the input image.

# Can use receptive fields to see where the network is "looking" to make its decisions



#### A very active area of research (lots of great work done by Bolei Zhou, MIT now UCLA)

B. Zhou et al. Learning Deep Features for Discriminative Localization. CVPR 2016.

### 3 Tricks

- 3x3 Filters
- Batch Normalization
- Residual Learning



3x3 filter followed by 3x3 filter

Filter with 5x5 receptive field



3x3 filter followed by 3x3 filter followed by 3x3 filter

Filter with 7x7 receptive field

### Why Does This Make A Difference?



Empirically, repeated 3x3 filters do better compared to a 7x7 filter.

Why?



### Key Idea – 3x3 Filters



Receptive Field: 7x7 pixels Parameters/channel: 49 Number of ReLUs: 1



Receptive Field: 7x7 pixels Parameters/channel: 3x3x3=**27** Number of ReLUs: **3** 

### We Want More Non-linearity!

# Can they implement xor?





## VGG16





### **Training Deeper Networks**

### Why not just stack continuously? What will happen to gradient going back?



# Backprop

Every backpropagation step multiplies the gradient by the local gradient

\*d \* d \* d ... \* d = 
$$d^{n-1}$$

1

What if d << 1, n big?

Vanishing Gradients



# Backprop

Every backpropagation step multiplies the gradient by the local gradient

$$1 * d * d * d ... * d = d^{n-1}$$

What if d >> 1, n big?

**Exploding Gradients** 



### Solution 1 – Batch Normalization Learning algorithms work far better when data looks like the right as opposed to the left



### Solution 1 – Batch Normalization



Idea: make layer (**Batch Norm**) that normalizes things going through it based on estimates of Var(x<sub>i</sub>) in each batch. Stick in between **other layers Source of tons of bugs** 

Mean(x) = Mean(Y) = 0Var(x) = Var(y) = 1



S. loffe and C. Szegedy. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift.

### There exists vs. We Can Find

- Still can't fit models to the data: Deeper model fits worse than shallower model on the training data.
- There exists a deeper model that's identical to the shallow model. Why?



K. He et al. Deep Residual Learning for Image Recognition. CVPR 2016

# Residual Learning New Building Block: x + F(x)

Lets you train networks with 100s of layers.



### **Evaluating Results**

At training time, we minimize:  $-\log\left(\frac{\exp((Wx)_{y_i})}{\sum_k \exp((Wx)_k)}\right)$ 

At test time, we evaluate, given predicted class  $\hat{y}_i$ :

Accuracy: 
$$\frac{1}{n} \sum_{i=1}^{n} 1(y_i = \widehat{y}_i)$$

### **Evaluating Many Categories**

Does this image depict a cat or a dog?



To avoid penalizing ambiguous images, many challenges let you make five guesses (top-5 accuracy):

Your prediction is correct if one of the guesses is right.

### Accuracy over the Years

#### Top 1 Error Top 5 Error

| Best Pre-Deep (~2012)        | -     | 26.2% |
|------------------------------|-------|-------|
| Alexnet, 2012                | 43.5% | 20.9% |
| VGG-16, 2014                 | 28.4% | 9.6%  |
| ResNet-50, 2015              | 24.7% | 7.8%  |
| ResNet-152, 2015             | 21.7% | 5.9%  |
| ResNet-50 done better, 2018  | 20.7% | 5.4%  |
| Swin Transf., 2021           | 15.5% | -     |
| ConvNeXt, 2022               | 14.5% | -     |
| CoAtNet-7* 2021 (2B params!) | 9.1%  | -     |
| Human*                       | -     | 5.1%  |

Many results from <u>https://paperswithcode.com/sota/image-classification-on-imagenet</u>. I am missing loads of great papers, and the numbers depend on tons of practical details. \*Human – this number is from Andrej Karpathy and isn't really human performance with training but a ballpark. Resnet-50 one better = "Bag of Tricks for Image Classification with Convolutional Neural Networks", He et al.

### A Practical Aside

- People usually use hardware specialized for matrix multiplies (the card below does 13.4T flops if it's matrix multiplies).
- The real answer to why we love homogeneous coordinates?
  - Makes rendering matrix multiplies  $\rightarrow$
  - leads to matrix multiplication hardware  $\rightarrow$
  - deep learning.





# Training a CNN

- Download a big dataset
- Initialize network weights randomly
- for epoch in range(epochs):
  - Shuffle dataset
  - for each minibatch in datsaet.:
    - Put data on GPU
    - Compute gradient
    - Update gradient with SGD

## Training a CNN from Scratch

Need to start **w** somewhere

- AlexNet: weights ~ Normal(0,0.01), bias = 1
- "Xavier" initialization: Uniform $(\frac{-1}{\sqrt{n}}, \frac{1}{\sqrt{n}})$  where n is the number of neurons
- "Kaiming" initialization: Normal $(0,\sqrt{2/n})$

Take-home: important, but use defaults

### Training a ConvNet

- Convnets typically have millions of parameters:
  - AlexNet: 62 million
  - VGG16: 138 million
  - ConvNeXt-L: 198M
- Convnets typically fit on ~1.2 million images
- Remember least squares: if we have fewer data points than parameters, we're in trouble
- Solution: need regularization / more data

### Training a CNN – Weight Decay

SGD Update  $w_{t+1} = w_t - \epsilon \frac{\partial L}{\partial w_t}$ 

+Weight Decay  $w_{t+1} = w_t - \eta \epsilon w_t + \epsilon \frac{\partial L}{\partial w_t}$ 

### What does this remind you of?

Weight decay is similar to regularization but is not be the same for more complex optimization techniques.

See "Decoupled Weight Decay Regularization", Loshchilov and Hutter.

### Quick Quiz

### Raise your hand if it's a hippo



### Horizontal Flip

Color Jitter Image Cropping

## Training a CNN –Augmentation

- Apply transformations that don't affect the output
- Produces more data but you have to be careful that it doesn't change the meaning of the output



### Training a CNN – Fine-tuning

• What if you don't have data?

### Fine-Tuning: Pre-trained Features

Extract some layer from an existing network
Use as your new feature.
Learn a linear model.
Surprisingly effective



## Fine-Tuning: Transfer Learning

- Rather than initialize from random weights, initialize from some "pre-trained" model that does something else.
- Most common model is trained on ImageNet.
- Other pretraining tasks exist but are less popular.
## Fine-Tuning: Transfer Learning

#### Why should this work? Transferring from objects (dog) to scenes (waterfall)



Bau and Zhou et al. Network Dissection: Quantifying Interpretability of Deep Visual Representations. CVPR 2017.

#### Recommendations

- <10K images: features</p>
- Always try fine-tuning
- >100K images: consider trying from scratch

# Summary

- We learned about converting an image into a vector output (e.g., which of K classes is this image, or predict K continuous outputs)
- We learned about some building blocks for doing this

### Extras if You're Curious

Input

227x227 3



Input SIFT 227x227 227x227 128 3 Dense SIFT (a few layers)

Recall: can compute a descriptor based on histograms of image gradients. Do it densely (at each pixel).









## **Classic vs Deep Recognition**

Classic Pipeline of handengineered steps

Deep

Pipeline of learned convolutions + simple operations

#### What are some differences?

The classic steps don't: talk to each other or have many parameters that are learned from data.