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Convolutional Layer

New Block: 2D Convolution
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Convolution Layer
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Slide credit: Karpathy and Fei-Fei



Convolutional Neural Network 
(CNN)

x C f(n)

W1 b1

C f(n)

W2 b2

C f(n)

W3 b3



Today

H

W
C

1
1 F

CNN

Convert HxW image into a F-dimensional vector

• What’s the probability this image is a cat (F=1)

• Which of 1000 categories is this image? (F=1000)

• At what GPS coord was this image taken? (F=2)

• Identify the X,Y coordinates of 28 body joints of an 

image of a human (F=56)



Today’s Running Example: 
Classification

H

W
C

1
1 F

CNN

Running example: 

image classification

P(image is class #1)
P(image is class #2)

P(image is class #F)



Today’s Running Example: 
Classification

H

W
C

1
1

CNN 0.5 0.2 0.1 0.2

“Hippo”

yi: class #0

− log
exp( 𝑊𝑥 𝑦𝑖

σ𝑘 exp( 𝑊𝑥 𝑘))

Loss function



Today’s Running Example: 
Classification

H

W
C

1
1

CNN 0.5 0.2 0.1 0.2

“Baboon”

yi: class #3

− log
exp( 𝑊𝑥 𝑦𝑖

σ𝑘 exp( 𝑊𝑥 𝑘))

Loss function



Model For Your Head

H

W
C

1
1 F

CNN

• Provide:

• Examples of images and desired outputs

• Sequence of layers producing a 1x1xF output

• A loss function that measures success

• Train the network -> network figures out the 

parameters that makes this work



Layer Collection

Image credit: lego.com

You can construct functions out of layers. The only 

requirement is the layers “fit” together. Optimization 

figures out what the parameters of the layers are.



Review – Pooling 

Idea: just want spatial resolution of activations 

/ images smaller; applied per-channel
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Slide credit: Karpathy and Fei-Fei



Review – Pooling
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Other Layers – Fully Connected

1x1xC 1x1xF

Map C-dimensional feature to F-dimensional 

feature using linear transformation 

W (FxC matrix) + b (Fx1 vector)

How can we write this as a convolution?



Everything’s a Convolution

1x1 Convolution with F Filters

1x1xC 1x1xF
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Converting to a Vector

HxWxC 1x1xF

How can we do this?



Converting to a Vector* – Pool

HxWxC 1x1xF

1 1 2
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Avg Pool

HxW Filter

Stride 1

*(If F == C)



Converting to a Vector – Convolve

HxW Convolution with F Filters

∗
Single value

Per-filter

HxWxC 1x1xF



Looking At Networks

• We’ll look at 3 landmark networks, each trained 
to solve a 1000-way classification output 
(Imagenet)

• Alexnet (2012)

• VGG-16 (2014)

• Resnet (2015)



AlexNet
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Each block is a HxWxC volume.

You transform one volume to another with convolution



CNN Terminology 
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Each entry is called an 

“activation”/“neuron”/“feature”



AlexNet
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AlexNet
Conv

1

55x55

96

Input

227x227

3

227x227

3

55x55

96

11x11 filter, stride of 4

(227-11)/4+1 = 55

55x55

96

ReLU



AlexNet
Conv
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All layers followed by ReLU

Red layers are followed by maxpool

Early layers have “normalization”



AlexNet – Details 
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AlexNet
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13x13 Input, 1x1 output. How?  



Alexnet – How Many Parameters? 
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Alexnet – How Many Parameters? 
Conv
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96 11x11 filters on 3-channel input 

11x11x3x96+96 = 34,944



Alexnet – How Many Parameters?  
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6x6x256x4096+4096 = 38 million

4096 6x6 filters on 256-channel input 

Note: max pool to 6x6



Alexnet – How Many Parameters?  
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4096 1x1 filters on 4096-channel input 

1x1x4096x4096+4096 = 17 million



Alexnet – How Many Parameters

• 62.4 million parameters

• Vast majority in fully connected layers

• But... paper notes that removing the 

convolutions is disastrous for performance. 

How long would it take you to list the 

parameters of Alexnet at 4s / parameter?

1 year? 4 years? 8 years? 16 years?



Dataset – ILSVRC 

• Imagenet Largescale Visual Recognition 
Challenge

• 1.4M images

• 1000 Categories, often ridiculously precise



Dataset – ILSVRC

Figure Credit: O. Russakovsky



Visualizing Filters
Conv

1

55x55

96

Input

227x227

3

Conv 1 Filters

• Q. How many input 

dimensions?

• A: 3

• What does the input mean?

• R, G, B, duh.



What’s Learned – Recap 

First layer filters of a 

network trained to 

distinguish 1000 

categories of objects

Remember these 

filters go over color. 

Figure Credit: Karpathy and Fei-Fei



Visualizing Later Filters
Conv

2

27x27

256

Conv
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55x55

96

Input

227x227

3

Conv 2 Filters

• Q. How many input 

dimensions?

• A: 96…. hmmm

• What does the input mean?

• Uh, the uh, previous slide



Visualizing Later Filters

• Understanding the meaning of the later filters 
from their values is typically impossible: too 
many input dimensions, not even clear what 
the input means.



Understanding Later Filters
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CNN that extracts a 

13x13x256 output

2-hidden layer 

Neural network 



Understanding Later Filters
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1-hidden 

layer NN



Understanding Later Filters

CNN that extracts a 

13x13x256 output
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Understanding Later Filters

13x13

256

13x13

256

Feed an image in, see what score the filter 

gives it. A more pleasant version of a real 

neuroscience procedure. 

Which one’s bigger? What image 

makes the output biggest? 



Figure Credit: Girschick et al. CVPR 2014. 



What’s Up With the White Boxes?
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What’s Up With the White Boxes?

227

227

13

13

3 384

Receptive

Field

Due to convolution, each later layer’s value depends 

on / “sees” only a fraction of the input image. 

1



Can use receptive fields to see where the 

network is “looking” to make its decisions

B. Zhou et al. Learning Deep Features for Discriminative Localization. CVPR 2016.

A very active area of research 

(lots of great work done by Bolei Zhou, MIT now UCLA)



3 Tricks

• 3x3 Filters

• Batch Normalization

• Residual Learning



Key Idea – 3x3 Filters

3x3 filter followed by

3x3 filter 

→

Filter with 5x5 

receptive field

2 21 →5



Key Idea – 3x3 Filters

3x3 filter followed by

3x3 filter followed by

3x3 filter 

→

Filter with 7x7 

receptive field

3 31 →7



Why Does This Make A Difference?

Empirically, repeated 3x3 

filters do better compared to a 

7x7 filter.

Why?



Key Idea – 3x3 Filters

Receptive Field: 7x7 pixels 

Parameters/channel: 49

Number of ReLUs: 1

Receptive Field: 7x7 pixels 

Parameters/channel: 3x3x3=27

Number of ReLUs: 3



We Want More Non-linearity!
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+ +
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+
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+
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implement xor?

No Yes



VGG16
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All filters 3x3 

All filters followed by ReLU



Training Deeper Networks

Why not just stack continuously?

What will happen to gradient going back?

…



Backprop

Every backpropagation step multiplies 

the gradient by the local gradient

…

1 *d * d * d … * d = dn-1
What if d << 1, n big? 

Vanishing Gradients



Backprop

Every backpropagation step multiplies 

the gradient by the local gradient

…

1 *d * d * d … * d = dn-1
What if d >> 1, n big? 

Exploding Gradients



Solution 1 – Batch Normalization 

X

Y Data

Mean(x) != Mean(Y) != 0

Var(x) != Var(y) != 0

Cov(x,y) != 0

X

Y
Data

Mean(x) = Mean(Y) = 0

Var(x) = Var(y) = 1

Cov(x,y) = 0

Learning algorithms work far better when data looks 

like the right as opposed to the left



Solution 1 – Batch Normalization

S. Ioffe and C. Szegedy. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. 

X

Y
Data

Mean(x) = Mean(Y) = 0

Var(x) = Var(y) = 1

Idea: make layer (Batch Norm) 

that normalizes things going 

through it based on estimates of 

Var(xi) in each batch. 

Stick in between other layers

Source of tons of bugs



There exists vs. We Can Find

• Still can’t fit models to the data: Deeper model fits 

worse than shallower model on the training data.

• There exists a deeper model that’s identical to 

the shallow model. Why?

K. He et al. Deep Residual Learning for Image Recognition. CVPR 2016



Residual Learning

F(x)x

+

x+F(x)

𝒙 + 𝐹 𝒙New Building Block:

Lets you train networks with 100s of layers.



Evaluating Results

− log
exp( 𝑊𝑥 𝑦𝑖

σ𝑘 exp( 𝑊𝑥 𝑘))
At training time, we minimize:

At test time, we evaluate, given predicted class ෝ𝑦𝑖:

Accuracy:
1

𝑛


𝑖=1

𝑛

1(𝑦𝑖 = ෝ𝑦𝑖)



Evaluating Many Categories

Does this image depict a cat or a dog?

Image credit: Coco dataset

To avoid penalizing 

ambiguous images, many 

challenges let you make 

five guesses (top-5 

accuracy): 

Your prediction is correct if 

one of the guesses is right.



Accuracy over the Years

Top 1 Error Top 5 Error 

ResNet-152, 2015 21.7% 5.9%

Human* - 5.1%

ConvNeXt, 2022 14.5% -

Swin Transf., 2021 15.5% -

CoAtNet-7* 2021 (2B params!) 9.1% -

ResNet-50 done better, 2018 20.7% 5.4%

Many results from https://paperswithcode.com/sota/image-classification-on-imagenet . I am missing loads of great papers, and 

the numbers depend on tons of practical details. *Human – this number is from Andrej Karpathy and isn’t really human

performance with training but a ballpark. Resnet-50 one better = “Bag of Tricks for Image Classification with Convolutional 

Neural Networks”, He et al.

Best Pre-Deep (~2012) - 26.2%

Alexnet, 2012 43.5% 20.9%

VGG-16, 2014 28.4% 9.6%

ResNet-50, 2015 24.7% 7.8%

https://paperswithcode.com/sota/image-classification-on-imagenet


A Practical Aside

• People usually use hardware specialized for 
matrix multiplies (the card below does 13.4T 
flops if it’s matrix multiplies). 

• The real answer to why we love homogeneous 
coordinates? 

• Makes rendering matrix multiplies → 

• leads to matrix multiplication hardware → 

• deep learning.



Training a CNN

• Download a big dataset

• Initialize network weights randomly

• for epoch in range(epochs):

• Shuffle dataset

• for each minibatch in datsaet.:
• Put data on GPU

• Compute gradient

• Update gradient with SGD



Training a CNN from Scratch

Need to start w somewhere

• AlexNet: weights ~ Normal(0,0.01), bias = 1

• “Xavier” initialization: Uniform(
−1

𝑛
,
1

𝑛
) where n 

is the number of neurons

• “Kaiming” initialization: Normal(0, 2/𝑛)

Take-home: important, but use defaults



Training a ConvNet

• Convnets typically have millions of parameters:
• AlexNet: 62 million

• VGG16: 138 million

• ConvNeXt-L: 198M

• Convnets typically fit on ~1.2 million images

• Remember least squares: if we have fewer 
data points than parameters, we’re in trouble

• Solution: need regularization / more data



Training a CNN – Weight Decay

𝒘𝒕+𝟏 = 𝒘𝒕 − 𝜖
𝜕𝐿

𝜕𝒘𝒕

SGD 

Update

𝒘𝒕+𝟏 = 𝒘𝒕 − 𝜂𝜖𝒘𝒕 + 𝜖
𝜕𝐿

𝜕𝒘𝒕

+Weight

Decay

What does this remind you of?

Weight decay is similar to regularization but is not be the same 

for more complex optimization techniques.

See “Decoupled Weight Decay Regularization”, Loshchilov and Hutter.



Quick Quiz

Raise your hand if it’s a hippo

Horizontal 

Flip

Color

Jitter

Image 

Cropping



Training a CNN –Augmentation

• Apply transformations 
that don’t affect the 
output

• Produces more data 
but you have to be 
careful that it doesn’t 
change the meaning of 
the output



Training a CNN – Fine-tuning 

• What if you don’t have data? 



Fine-Tuning: Pre-trained Features

Convolutions that extract a 

1x1x4096 feature (Fixed/Frozen/Locked)

Wx

+b

1. Extract some layer from an existing network

2. Use as your new feature. 

3. Learn a linear model.

Surprisingly effective



Fine-Tuning: Transfer Learning 

• Rather than initialize from random weights, 
initialize from some “pre-trained” model that 
does something else. 

• Most common model is trained on ImageNet.

• Other pretraining tasks exist but are less 
popular.



Fine-Tuning: Transfer Learning

Bau and Zhou et al. Network Dissection: Quantifying Interpretability of Deep Visual Representations. CVPR 2017.

Why should this work? 

Transferring from objects (dog) to scenes (waterfall)



Recommendations

• <10K images: features

• Always try fine-tuning

• >100K images: consider trying from scratch



Summary

• We learned about converting an image into a 
vector output (e.g., which of K classes is this 
image, or predict K continuous outputs)

• We learned about some building blocks for 
doing this





Extras if You’re Curious



Classic Recognition 
Input

227x227

3



Classic Recognition 
Input

227x227

3

227x227

128

SIFT Recall: can compute a 

descriptor based on 

histograms of image 

gradients. Do it densely 

(at each pixel).

Dense

SIFT

(a few 

layers)



Classic Recognition 
Input

227x227

3

227x227

128

SIFT

HxW

#codewords

Bag of Words

Can do bag-of-words-like 

techniques on SIFT, taking into 

consideration spatial location.

Dense

SIFT

(a few 

layers)



Classic Recognition 
Input

227x227

3

227x227

128

SIFT

HxW

#codewords

Bag of Words

Dense

SIFT

(a few 

layers)

BOW

1x1

1000

Output

Classifier



Classic Recognition 
Input

227x227

3

227x227

128

SIFT

HxW

#codewords

Bag of Words

Dense

SIFT

(a few 

layers)

BOW

1x1

1000

Output

Classifier



Classic vs Deep Recognition

Pipeline of hand-

engineered steps 
Classic

Pipeline of learned 

convolutions + 

simple operations

Deep

What are some differences? 

The classic steps don’t: talk to each other or have 

many parameters that are learned from data.
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