Backpropagation and Neural Nets

EECS 442 – David Fouhey
Winter 2023, University of Michigan

http://web.eecs.umich.edu/~fouhey/teaching/EECS442_W23/
So Far: Linear Models

\[L(w) = \lambda \|w\|_2^2 + \sum_{i=1}^{n} (y_i - w^T x_i)^2 \]

- Example: find \(w \) minimizing squared error over data
- Each datapoint represented by some vector \(x \)
- Can find optimal \(w \) with \(\sim 10 \) line derivation
Last Class

\[L(w) = \lambda \|w\|^2 + \sum_{i=1}^{n} L(y_i, f(x; x)) \]

- What about an arbitrary loss function \(L \)?
- What about an arbitrary parametric function \(f \)?
- Solution: take the gradient, do gradient descent

\[w_{i+1} = w_i - \alpha \nabla_w L(f(w_i)) \]

What if \(L(f(w)) \) is complicated? **Today!**
Taking the Gradient – Review

\[f(x) = (-x + 3)^2 \]

\[f = q^2 \quad q = r + 3 \quad r = -x \]

\[\frac{\partial f}{\partial q} = 2q \quad \frac{\partial q}{\partial r} = 1 \quad \frac{\partial r}{\partial x} = -1 \]

\[\frac{\partial f}{\partial x} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial r} \frac{\partial r}{\partial x} = 2q \ast 1 \ast -1 \]

\[= -2(-x + 3) \]

\[= 2x - 6 \]

Chain rule
Supplemental Reading

• Lectures can only introduce you to a topic
• You will solidify your knowledge by **doing**
• I highly recommend working through everything in the Stanford CS213N resources
• These slides follow the general examples with a few modifications. The primary difference is that I define local variables n, m per-block.
Let’s Do This Another Way

Suppose we have a box representing a function f.

This box does two things:

Forward: Given forward input n, compute $f(n)$

Backwards: Given backwards input g, return $g \cdot df/\partial n$
Let’s Do This Another Way

\[f(x) = (-x + 3)^2 \]

\[
\frac{\partial}{\partial n} n^2 = 2n = 2(-x + 3) \\
= -2x + 6
\]

\[
\frac{\partial}{\partial n} \times 1 = (-2x + 6) \times 1
\]
Let’s Do This Another Way

\[f(x) = (-x + 3)^2 \]
Let’s Do This Another Way

\[f(x) = (-x + 3)^2 \]

\[\frac{\partial}{\partial n} = -1 \]

\[-1 \times (-2x + 6) \]

\[2x - 6 \]
Let’s Do This Another Way

\[f(x) = (-x + 3)^2 \]
Given two inputs, just have two input/output wires

Forward: the same

Backward: the same – send gradients with respect to each variable
f(x, y, z) = (x + y)z

Example Credit: Karpathy and Fei-Fei
\[f(x,y,z) = (x+y)z \]

Example Credit: Karpathy and Fei-Fei
\[f(x, y, z) = (x+y)z \]

Example Credit: Karpathy and Fei-Fei
\[f(x, y, z) = (x + y)z \]

\[
\frac{\partial (x + y)z}{\partial x} = z \\
\frac{\partial (x + y)z}{\partial y} = z \\
\frac{\partial (x + y)z}{\partial z} = (x + y)
\]

Example Credit: Karpathy and Fei-Fei
Once More, With Numbers!
\[f(x, y, z) = (x + y)z \]
\[f(x,y,z) = (x+y)z \]

\[
\frac{\partial}{\partial n} nm = m \\
\rightarrow 10 \times 1
\]

\[
\frac{\partial}{\partial m} nm = n \\
\rightarrow 5 \times 1
\]
\(f(x,y,z) = (x+y)z \)

\[
\frac{\partial}{\partial n} (n + m) = 1 \quad \rightarrow 1 \ast 10 \ast 1
\]

\[
\frac{\partial}{\partial m} (n + m) = 1 \quad \rightarrow 1 \ast 10 \ast 1
\]

Example Credit: Karpathy and Fei-Fei
Think You’ve Got It?

\[L(x) = (w - 6)^2 \]

- We want to fit a model \(w \) that just will equal 6.
- World’s most basic linear model / neural net: no inputs, just constant output.
I’ll Need a Few Volunteers

\[L(x) = (w - 6)^2 \]

Job #1 (n-6):
Forward: Compute n-6
Backwards: Multiply by 1

Job #2 (n^2):
Forward: Compute n^2
Backwards: Multiply by 2n

Job #3:
Backwards: Give me a 1
\[L(x) = (w - 6)^2 \]

\[
\begin{align*}
w0: \quad & n-6 \quad n \quad n^2 \quad g \\
n-6: \quad & n-6 \quad 2ng \quad n^2 \quad g \\
L(x) = w0: \quad & w0 = w0 - (1/4) w2 = w1 - (1/4) w3 = w2 - (1/4)\]
\]

\[
w1 = w0 - (1/4) w2 = w1 - (1/4) w3 = w2 - (1/4)\]

\[
w2 = w1 - (1/4) w3 = w2 - (1/4)\]

\[
w0 = w0 - (1/4) w2 = w1 - (1/4) w3 = w2 - (1/4)\]

\[
w1 = w0 - (1/4) w2 = w1 - (1/4) w3 = w2 - (1/4)\]

\[
w2 = w1 - (1/4) w3 = w2 - (1/4)\]

\[
w3 = w2 - (1/4)\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]
Preemptively

• The diagrams look complex but that’s since we’re covering the details together
Something More Complex

\[f(w, x) = \frac{1}{1 + e^{-(w_0x_0 + w_1x_1 + w_2)}} \]

Example Credit: Karpathy and Fei-Fei
\[f(w, x) = \frac{1}{1 + e^{-(w_0x_0 + w_1x_1 + w_2)}} \]
\[f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}} \]

Example Credit: Karpathy and Fei-Fei
\[f(w, x) = \frac{1}{1 + e^{-(w_0x_0 + w_1x_1 + w_2)}} \]

Example Credit: Karpathy and Fei-Fei
\[f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}} \]

Where does 1.37 come from?

\[-(1.37)^{-2} \times 1 = -0.53 \]

Example Credit: Karpathy and Fei-Fei
$$f(w, x) = \frac{1}{1 + e^{-(w_0x_0 + w_1x_1 + w_2)}}$$

Example Credit: Karpathy and Fei-Fei
\[f(w, x) = \frac{1}{1 + e^{-(w_0x_0 + w_1x_1 + w_2)}} \]

Example Credit: Karpathy and Fei-Fei
\[f(w, x) = \frac{1}{1 + e^{-(w_0x_0 + w_1x_1 + w_2)}} \]

\[0 \quad \frac{\partial}{\partial n} m + n = 1 \]
\[1 \quad \frac{\partial}{\partial n} mn = m \]
\[2 \quad \frac{\partial}{\partial n} e^n = e^n \]
\[3 \quad \frac{\partial}{\partial n} n^{-1} = -n^{-2} \]
\[4 \quad \frac{\partial}{\partial n} an = a \]
\[5 \quad \frac{\partial}{\partial n} c + n = 1 \]

Example Credit: Karpathy and Fei-Fei
\[f(w, x) = \frac{1}{1 + e^{-(w_0x_0 + w_1x_1 + w_2)}} \]

\[\frac{\partial}{\partial n} m + n = 1 \]
\[\frac{\partial}{\partial n} mn = m \]
\[\frac{\partial}{\partial n} e^n = e^n \]
\[\frac{\partial}{\partial n} an = a \]
\[\frac{\partial}{\partial n} c + n = 1 \]

Example Credit: Karpathy and Fei-Fei
\[f(w, x) = \frac{1}{1 + e^{-(w_0x_0 + w_1x_1 + w_2)}} \]

\[\frac{\partial}{\partial n} m + n = 1 \]
\[\frac{\partial}{\partial n} mn = m \]
\[\frac{\partial}{\partial n} e^n = e^n \]
\[\frac{\partial}{\partial n} n^{-1} = -n^{-2} \]
\[\frac{\partial}{\partial n} an = a \]
\[\frac{\partial}{\partial n} c + n = 1 \]

Example Credit: Karpathy and Fei-Fei
\[f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}} \]

0. \[\frac{\partial}{\partial n} m + n = 1 \]
1. \[\frac{\partial}{\partial n} mn = m \]
2. \[\frac{\partial}{\partial n} e^n = e^n \]
3. \[\frac{\partial}{\partial n} n^{-1} = -n^{-2} \]
4. \[\frac{\partial}{\partial n} a n = a \]
5. \[\frac{\partial}{\partial n} c + n = 1 \]

Example Credit: Karpathy and Fei-Fei
\[f(w, x) = \frac{1}{1 + e^{-(w_0x_0 + w_1x_1 + w_2)}} \]

\[
\begin{align*}
0 & \quad \frac{\partial}{\partial n} m + n = 1 \\
1 & \quad \frac{\partial}{\partial n} mn = m \\
2 & \quad \frac{\partial}{\partial n} e^n = e^n \\
3 & \quad \frac{\partial}{\partial n} n^{-1} = -n^{-2} \\
4 & \quad \frac{\partial}{\partial n} an = a \\
5 & \quad \frac{\partial}{\partial n} c + n = 1 \\
\end{align*}
\]

Example Credit: Karpathy and Fei-Fei
\[f(w, x) = \frac{1}{1 + e^{-(w_0x_0+w_1x_1+w_2)}} \]

\[
\begin{align*}
0 & \quad \frac{\partial}{\partial n} m + n = 1 \\
1 & \quad \frac{\partial}{\partial n} mn = m \\
2 & \quad \frac{\partial}{\partial n} e^n = e^n \\
3 & \quad \frac{\partial}{\partial n} n^{-1} = -n^{-2} \\
4 & \quad \frac{\partial}{\partial n} an = a \\
5 & \quad \frac{\partial}{\partial n} c + n = 1
\end{align*}
\]

Example Credit: Karpathy and Fei-Fei
\[f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}} \]

\[
\begin{align*}
\frac{\partial}{\partial n} m + n &= 1 \\
\frac{\partial}{\partial n} m n &= m \\
\frac{\partial}{\partial n} e^n &= e^n \\
\frac{\partial}{\partial n} a n &= a \\
\frac{\partial}{\partial n} c + n &= 1
\end{align*}
\]

Example Credit: Karpathy and Fei-Fei
Summary

Each block computes backwards \((g) * \text{local gradient} \,(\frac{df}{dx_i})\) at the evaluation point

\[
\begin{align*}
g(\frac{\partial f}{\partial x_1}) & \quad x_1 \\
g(\frac{\partial f}{\partial x_2}) & \quad x_2 \\
g(\frac{\partial f}{\partial x_n}) & \quad x_n \\
\end{align*}
\]

\[
\begin{align*}
g & \quad f(x_1, \ldots, x_n)
\end{align*}
\]
Multiple Outputs Flowing Back

Gradients from different backwards sum up

$$\sum_{j=1}^{K} g_j \left(\frac{\partial f_j}{\partial x_i} \right)$$

$$\sum_{j=1}^{K} g_j \left(\frac{\partial f_j}{\partial x_1} \right)$$

$$\sum_{j=1}^{K} g_j \left(\frac{\partial f_j}{\partial x_n} \right)$$
Multiple Outputs Flowing Back

\[f(x) = (-x + 3)^2 \]
Multiple Outputs Flowing Back

\[f(x) = (-x + 3)^2 \]

\[
\frac{\partial f}{\partial x} = (x - 3) + (x - 3)
\]

\[= 2x - 6 \]
Does It Have To Be So Painful?

\[f(w, x) = \frac{1}{1 + e^{-(w_0x_0 + w_1x_1 + w_2)}} \]

\[\sigma(n) = \frac{1}{1 + e^{-n}} \]

Example Credit: Karpathy and Fei-Fei
Does It Have To Be So Painful?

\[
\sigma(n) = \frac{1}{1 + e^{-n}}
\]

\[
\frac{\partial}{\partial n} \sigma(n) = \frac{e^{-n}}{(1 + e^{-n})^2} = \left(\frac{1 + e^{-n} - 1}{1 + e^{-n}}\right) \left(\frac{1}{1 + e^{-n}}\right)
\]

\[
= (1 - \sigma(n))\sigma(n)
\]

For the curious

Line 1 to 2: \[
\frac{\partial}{\partial n} \sigma(n) = \left(\frac{-1}{(1 + e^{-n})^2}\right) \cdot 1 \cdot e^{-n} \cdot -1
\]

Chain rule: \[
d/dx \left(\frac{1}{x}\right) \cdot d/dx \left(1 + x\right) \
d/dx \left(e^x\right) \cdot d/dx \left(-x\right)
\]

Example Credit: Karpathy and Fei-Fei
Does It Have To Be So Painful?

\[f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}} \]

\[\sigma(n) = \frac{1}{1 + e^{-n}} \quad \frac{\partial \sigma(n)}{\partial n} = (1 - \sigma(n))\sigma(n) \]

Example Credit: Karpathy and Fei-Fei
Does It Have To Be So Painful?

• Can compute for any function
• Pick your functions carefully: existing code is usually structured into sensible blocks
Building Blocks

Takes signals from other cells, processes, sends out

Input from other cells

Output to other cells

Neuron diagram credit: Karpathy and Fei-Fei
Artificial Neuron

Weighted average of other neuron outputs passed through an activation function

\[\sum_i w_i x_i + b \]

\[f \left(\sum_i w_i x_i + b \right) \]
Artificial Neuron

Can differentiate whole thing e.g., dNeuron/dx_1. What can we now do?
Artificial Neuron

Each artificial neuron is a linear model + an **activation function** f
Can find w, b that minimizes a loss function with gradient descent
Artificial Neurons

Connect neurons to make a more complex function; use backprop to compute gradient.
What’s The Activation Function

Sigmoid

\[s(x) = \frac{1}{1 + e^{-x}} \]

- Nice interpretation
- Squashes things to (0,1)
- Gradients are near zero if neuron is high/low
What’s The Activation Function

ReLU (Rectifying Linear Unit)
\[\text{ReLU}(x) = \max(0, x) \]

- Constant gradient
- Converges \(~6\times\) faster
- If neuron negative, zero gradient. Be careful!
What’s The Activation Function

Leaky ReLU

(Rectifying Linear Unit)

\[x : x \geq 0 \]
\[0.01x : x < 0 \]

- ReLU, but allows some small gradient for negative values
Setting Up A Neural Net

Input Hidden Output

\[x_1 \quad h_1 \quad h_2 \quad h_3 \quad h_4 \quad y_1 \quad y_2 \quad y_3 \]
Setting Up A Neural Net

Input Hidden 1 Hidden 2 Output

x_1 a_1 h_1 y_1
x_2 a_2 h_2 y_2
 a_3 h_3 y_3
 a_4 h_4
Fully Connected Network

Each neuron connects to each neuron in the previous layer
Fully Connected Network

\[h_i = f(w_i^T a + b_i) \]

How do we do all the neurons all at once?

\(a \) All layer a values
\(w_i, b_i \) Neuron i weights, bias
\(f \) Activation function
Fully Connected Network

\[h = f(Wa + b) \]

- **a**: All layer a values
- **w_i, b_i**: Neuron i weights, bias
- **f**: Activation function

\[h_1 \]
\[h_2 \]
\[h_3 \]
\[h_4 \]
Fully Connected Network

Define New Block: “Linear Layer”
(Ok technically it’s Affine)

\[L(n) = Wn + b \]

Can get gradient with respect to all the inputs
(do on your own; useful trick: have to be able to do matrix multiply)
Fully Connected Network
What happens if we remove the activation functions?
Demo Time

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html