
Backpropagation
and Neural Nets

EECS 442 – David Fouhey

Winter 2023, University of Michigan
http://web.eecs.umich.edu/~fouhey/teaching/EECS442_W23/

So Far: Linear Models

• Example: find w minimizing squared error over data

• Each datapoint represented by some vector x

• Can find optimal w with ~10 line derivation

𝐿(𝒘)=𝜆 𝒘 2
2 + ෍

𝑖=1

𝑛

𝑦𝑖 −𝒘𝑇𝒙𝑖)
2

Last Class

• What about an arbitrary loss function L?

• What about an arbitrary parametric function f?

• Solution: take the gradient, do gradient descent

𝐿(𝒘)=𝜆 𝒘 2
2 + ෍

𝑖=1

𝑛

𝐿(𝑦𝑖 , 𝑓(𝒙; 𝒙))

𝒘𝑖+1 = 𝒘𝒊 − 𝛼∇𝑤𝐿(𝑓(𝒘𝑖))

What if L(f(w)) is complicated?

Today!

Taking the Gradient – Review

𝑓 𝑥 = −𝑥 + 3 2

𝑓 = 𝑞2 𝑞 = 𝑟 + 3 𝑟 = −𝑥

𝜕𝑓

𝜕𝑞
= 2𝑞

𝜕𝑞

𝜕𝑟
= 1

𝜕𝑟

𝜕𝑥
= −1

= −2 −𝑥 + 3

= 2𝑥 − 6

𝜕𝑓

𝜕𝑥
=
𝜕𝑓

𝜕𝑞

𝜕𝑞

𝜕𝑟

𝜕𝑟

𝜕𝑥
= 2𝑞 ∗ 1 ∗ −1

Chain rule

Supplemental Reading

• Lectures can only introduce you to a topic

• You will solidify your knowledge by doing

• I highly recommend working through
everything in the Stanford CS213N resources

• http://cs231n.github.io/optimization-2/

• These slides follow the general examples with
a few modifications. The primary difference is
that I define local variables n, m per-block.

http://cs231n.github.io/optimization-2/

Let’s Do This Another Way

f

Suppose we have a box representing a function f.

𝑛 𝑓(𝑛)

𝑔𝑔(Τ𝜕𝑓 𝜕𝑛)

This box does two things:

Forward: Given forward input n, compute f(n)

Backwards: Given backwards input g, return g*df/dn

Let’s Do This Another Way

𝑓 𝑥 = −𝑥 + 3 2

-n

x

n+3

-x

n2

-x+3 (-x+3)2

1

= 2 −𝑥 + 3

= −2𝑥 + 6

𝜕

𝜕𝑛
𝑛2 = 2𝑛

(−2𝑥 + 6) ∗ 1
𝜕

𝜕𝑛
∗ 1 =

Let’s Do This Another Way

𝑓 𝑥 = −𝑥 + 3 2

𝜕

𝜕𝑛
= 1

-n

x -x -x+3

n+3

(-x+3)2

n2

1

1 ∗ (−2x + 6)

−2𝑥 + 6

Let’s Do This Another Way

𝑓 𝑥 = −𝑥 + 3 2

-n

x -x -x+3

n+3

(-x+3)2

n2

1

𝜕

𝜕𝑛
= −1

−2𝑥 + 6

−1 ∗ (−2x + 6)

−2𝑥 + 6

2x − 6

Let’s Do This Another Way

𝑓 𝑥 = −𝑥 + 3 2

-n

x -x -x+3

n+3

(-x+3)2

n2

1
−2𝑥 + 62x − 6 −2𝑥 + 6

Two Inputs

f
𝑛

𝑚

𝑓(𝑛,𝑚)

𝑔

𝑔(Τ𝜕𝑓 𝜕𝑛)

𝑔(Τ𝜕𝑓 𝜕𝑚)

Given two inputs, just have two input/output wires

Forward: the same

Backward: the same – send gradients with respect

to each variable

f(x,y,z) = (x+y)z

n+m

n*m

x

y

z

x+y

(x+y)z

Example Credit: Karpathy and Fei-Fei

f(x,y,z) = (x+y)z

n+m

n*m

x

y

z

x+y

(x+y)z

1

𝜕

𝜕𝑛
𝑛𝑚 = 𝑚

→ 𝑧 ∗ 1

𝜕

𝜕𝑚
𝑛𝑚 = 𝑛

→ (𝑥 + 𝑦) ∗ 1

z*1

(x+y)*1

Multiplication

swaps inputs,

multiplies gradient

Example Credit: Karpathy and Fei-Fei

f(x,y,z) = (x+y)z

n+m

n*m

x

y

z

x+y

(x+y)z

1

z*1

(x+y)*1

1*z*1

1*z*1

→ 1 ∗ 𝑧 ∗ 1

𝜕

𝜕𝑛
𝑛 +𝑚 = 1

→ 1 ∗ 𝑧 ∗ 1

𝜕

𝜕𝑚
𝑛 +𝑚 = 1

Addition sends

gradient through

unchanged

Example Credit: Karpathy and Fei-Fei

f(x,y,z) = (x+y)z

n+m

n*m

x

y

z

x+y

(x+y)z

1

z*1

x+y

z

z

𝜕 𝑥 + 𝑦 𝑧

𝜕𝑧
= (𝑥 + 𝑦)

𝜕 𝑥 + 𝑦 𝑧

𝜕𝑥
= 𝑧

𝜕 𝑥 + 𝑦 𝑧

𝜕𝑦
= 𝑧

Example Credit: Karpathy and Fei-Fei

Once More, With Numbers!

f(x,y,z) = (x+y)z

n+m

n*m

1

4

10

5

50

Example Credit: Karpathy and Fei-Fei

f(x,y,z) = (x+y)z

n+m

n*m

1

4

10

5

50

1

𝜕

𝜕𝑛
𝑛𝑚 = 𝑚

→ 10 ∗ 1

𝜕

𝜕𝑚
𝑛𝑚 = 𝑛

→ 5 ∗ 1

10

5

Example Credit: Karpathy and Fei-Fei

f(x,y,z) = (x+y)z

n+m

n*m

1

4

10

5

50

1

10

5

10

10

→ 1 ∗ 10 ∗ 1

𝜕

𝜕𝑛
𝑛 +𝑚 = 1

→ 1 ∗ 10 ∗ 1

𝜕

𝜕𝑚
𝑛 +𝑚 = 1

u

Example Credit: Karpathy and Fei-Fei

Think You’ve Got It?

𝐿 𝑥 = 𝑤 − 6 2

• We want to fit a model w that just will equal 6.

• World’s most basic linear model / neural net: no

inputs, just constant output.

I’ll Need a Few Volunteers

n2
n n2

g2ng
n-6

n n-6

gg

Job #1 (n-6):

Forward:

Compute n-6

Backwards:

Multiply by 1

Job #2 (n2):

Forward:

Compute n2

Backwards:

Multiply by 2n

Job #3:

Backwards:

Give me a 1

𝐿 𝑥 = 𝑤 − 6 2

n2
n n2

g2ng
n-6

n n-6

gg
𝐿 𝑥 = 𝑤 − 6 2

n2
__ __

n-6

__ __

w0: ___

n2
__ __

n-6

__ __

w1: ___

n2
__ __

n-6

__ __

w2: ___

w2 = w1 - (1/4) ___ =

w1 = w0 - (1/4) ___ =

w3 = w2 - (1/4) ___ =

Preemptively

• The diagrams look complex but that’s since
we’re covering the details together

Something More Complex

n+m

𝑓 𝒘, 𝒙 =
1

1 + 𝑒−(𝑤0𝑥0+𝑤1𝑥1+𝑤2)

w0

x0

x1

w2

w1
n*-1 n+1en 1/nn*m

n*m

n+m

Example Credit: Karpathy and Fei-Fei

+

w0

x0

x1

w2

w1

-1 +1en n-1

*

+

2

-1

-3

-2

-3

-2

4

𝑓 𝒘, 𝒙 =
1

1 + 𝑒−(𝑤0𝑥0+𝑤1𝑥1+𝑤2)

1 -1 0.37 1.37 0.736

+

w0

x0

x1

w2

w1

-1 +1en n-1

*

+

2

-1

-3

-2

-3

-2

4

1 -1 0.37 1.37 0.73

𝑓 𝒘, 𝒙 =
1

1 + 𝑒−(𝑤0𝑥0+𝑤1𝑥1+𝑤2)

6

𝜕

𝜕𝑛
𝑒𝑛 = 𝑒𝑛

𝜕

𝜕𝑛
𝑎𝑛 = 𝑎

𝜕

𝜕𝑛
𝑛−1 = −𝑛−2

𝜕

𝜕𝑛
𝑐 + 𝑛 = 1

2

4 5

3

𝜕

𝜕𝑛
𝑚 + 𝑛 = 1 𝜕

𝜕𝑛
𝑚𝑛 = 𝑚

0 1

Example Credit: Karpathy and Fei-Fei

+

w0

x0

x1

w2

w1

-1 +1en n-1

*

+

2

-1

-3

-2

-3

-2

4

1 -1 0.37 1.37 0.73

𝑓 𝒘, 𝒙 =
1

1 + 𝑒−(𝑤0𝑥0+𝑤1𝑥1+𝑤2)

1

6

Example Credit: Karpathy and Fei-Fei

𝜕

𝜕𝑛
𝑒𝑛 = 𝑒𝑛

𝜕

𝜕𝑛
𝑎𝑛 = 𝑎

𝜕

𝜕𝑛
𝑛−1 = −𝑛−2

𝜕

𝜕𝑛
𝑐 + 𝑛 = 1

2

4 5

3

𝜕

𝜕𝑛
𝑚 + 𝑛 = 1 𝜕

𝜕𝑛
𝑚𝑛 = 𝑚

0 1

+

w0

x0

x1

w2

w1

-1 +1en n-1

*

+

2

-1

-3

-2

-3

-2

4

1 -1 0.37 1.37 0.73

𝑓 𝒘, 𝒙 =
1

1 + 𝑒−(𝑤0𝑥0+𝑤1𝑥1+𝑤2)

− 1.37 −2 ∗ 1 = −0.53

Where does 1.37 come from?

6

1

Example Credit: Karpathy and Fei-Fei

𝜕

𝜕𝑛
𝑒𝑛 = 𝑒𝑛

𝜕

𝜕𝑛
𝑎𝑛 = 𝑎

𝜕

𝜕𝑛
𝑛−1 = −𝑛−2

𝜕

𝜕𝑛
𝑐 + 𝑛 = 1

2

4 5

3

𝜕

𝜕𝑛
𝑚 + 𝑛 = 1 𝜕

𝜕𝑛
𝑚𝑛 = 𝑚

0 1

+

w0

x0

x1

w2

w1

-1 +1en n-1

*

+

2

-1

-3

-2

-3

-2

4

1 -1 0.37 1.37 0.73

𝑓 𝒘, 𝒙 =
1

1 + 𝑒−(𝑤0𝑥0+𝑤1𝑥1+𝑤2)

1-0.53

1 ∗ −0.53 = −0.53

6

Example Credit: Karpathy and Fei-Fei

𝜕

𝜕𝑛
𝑒𝑛 = 𝑒𝑛

𝜕

𝜕𝑛
𝑎𝑛 = 𝑎

𝜕

𝜕𝑛
𝑛−1 = −𝑛−2

𝜕

𝜕𝑛
𝑐 + 𝑛 = 1

2

4 5

3

𝜕

𝜕𝑛
𝑚 + 𝑛 = 1 𝜕

𝜕𝑛
𝑚𝑛 = 𝑚

0 1

+

w0

x0

x1

w2

w1

-1 +1en n-1

*

+

2

-1

-3

-2

-3

-2

4

1 -1 0.37 1.37 0.73

𝑓 𝒘, 𝒙 =
1

1 + 𝑒−(𝑤0𝑥0+𝑤1𝑥1+𝑤2)

-0.53

𝑒−1 ∗ −0.53 = −0.2

-0.53

6

1

Example Credit: Karpathy and Fei-Fei

𝜕

𝜕𝑛
𝑒𝑛 = 𝑒𝑛

𝜕

𝜕𝑛
𝑎𝑛 = 𝑎

𝜕

𝜕𝑛
𝑛−1 = −𝑛−2

𝜕

𝜕𝑛
𝑐 + 𝑛 = 1

2

4 5

3

𝜕

𝜕𝑛
𝑚 + 𝑛 = 1 𝜕

𝜕𝑛
𝑚𝑛 = 𝑚

0 1

+

w0

x0

x1

w2

w1

-1 +1en n-1

*

+

2

-1

-3

-2

-3

-2

4

1 -1 0.37 1.37 0.73

𝑓 𝒘, 𝒙 =
1

1 + 𝑒−(𝑤0𝑥0+𝑤1𝑥1+𝑤2)

-0.53

−1 ∗ −0.2 = 0.2

-0.53-0.2

6

1

Example Credit: Karpathy and Fei-Fei

𝜕

𝜕𝑛
𝑒𝑛 = 𝑒𝑛

𝜕

𝜕𝑛
𝑎𝑛 = 𝑎

𝜕

𝜕𝑛
𝑛−1 = −𝑛−2

𝜕

𝜕𝑛
𝑐 + 𝑛 = 1

2

4 5

3

𝜕

𝜕𝑛
𝑚 + 𝑛 = 1 𝜕

𝜕𝑛
𝑚𝑛 = 𝑚

0 1

+

w0

x0

x1

w2

w1

-1 +1en n-1

*

+

2

-1

-3

-2

-3

-2

4

1 -1 0.37 1.37 0.73

𝑓 𝒘, 𝒙 =
1

1 + 𝑒−(𝑤0𝑥0+𝑤1𝑥1+𝑤2)

-0.53-0.53-0.20.2

1 ∗ 0.2 = 0.2
Gets sent back both directions

6

1

Example Credit: Karpathy and Fei-Fei

𝜕

𝜕𝑛
𝑒𝑛 = 𝑒𝑛

𝜕

𝜕𝑛
𝑎𝑛 = 𝑎

𝜕

𝜕𝑛
𝑛−1 = −𝑛−2

𝜕

𝜕𝑛
𝑐 + 𝑛 = 1

2

4 5

3

𝜕

𝜕𝑛
𝑚 + 𝑛 = 1 𝜕

𝜕𝑛
𝑚𝑛 = 𝑚

0 1

+

w0

x0

x1

w2

w1

-1 +1en n-1

*

+

2

-1

-3

-2

-3

-2

4

1 -1 0.37 1.37 0.73

𝑓 𝒘, 𝒙 =
1

1 + 𝑒−(𝑤0𝑥0+𝑤1𝑥1+𝑤2)

-0.53-0.53-0.20.2

1 ∗ 0.2 = 0.2
Gets sent back both directions

0.2

6

1

0.2
Example Credit: Karpathy and Fei-Fei

𝜕

𝜕𝑛
𝑒𝑛 = 𝑒𝑛

𝜕

𝜕𝑛
𝑎𝑛 = 𝑎

𝜕

𝜕𝑛
𝑛−1 = −𝑛−2

𝜕

𝜕𝑛
𝑐 + 𝑛 = 1

2

4 5

3

𝜕

𝜕𝑛
𝑚 + 𝑛 = 1 𝜕

𝜕𝑛
𝑚𝑛 = 𝑚

0 1

+

w0

x0

x1

w2

w1

-1 +1en n-1

*

+

2

-1

-3

-2

-3

6

-2

4

1 -1 0.37 1.37 0.73

𝑓 𝒘, 𝒙 =
1

1 + 𝑒−(𝑤0𝑥0+𝑤1𝑥1+𝑤2)

-0.53-0.53-0.20.2

−1 ∗ 0.2 = −0.2

0.2
0.2

0.2

2 ∗ 0.2 = 0.4

1

0.2
Example Credit: Karpathy and Fei-Fei

𝜕

𝜕𝑛
𝑒𝑛 = 𝑒𝑛

𝜕

𝜕𝑛
𝑎𝑛 = 𝑎

𝜕

𝜕𝑛
𝑛−1 = −𝑛−2

𝜕

𝜕𝑛
𝑐 + 𝑛 = 1

2

4 5

3

𝜕

𝜕𝑛
𝑚 + 𝑛 = 1 𝜕

𝜕𝑛
𝑚𝑛 = 𝑚

0 1

+

w0

x0

x1

w2

w1

-1 +1en n-1

*

+

2

-1

-3

-2

-3

6

-2

4

1 -1 0.37 1.37 0.73

𝑓 𝒘, 𝒙 =
1

1 + 𝑒−(𝑤0𝑥0+𝑤1𝑥1+𝑤2)

-0.53-0.53-0.20.2

0.2
0.2

0.2
0.4

-0.2

1

−2 ∗ 0.2 = −0.4
−3 ∗ 0.2 = −0.60.2

Example Credit: Karpathy and Fei-Fei

𝜕

𝜕𝑛
𝑒𝑛 = 𝑒𝑛

𝜕

𝜕𝑛
𝑎𝑛 = 𝑎

𝜕

𝜕𝑛
𝑛−1 = −𝑛−2

𝜕

𝜕𝑛
𝑐 + 𝑛 = 1

2

4 5

3

𝜕

𝜕𝑛
𝑚 + 𝑛 = 1 𝜕

𝜕𝑛
𝑚𝑛 = 𝑚

0 1

+

w0

x0

x1

w2

w1

-1 +1en n-1

*

+

2

-1

-3

-2

-3

6

-2

4

1 -1 0.37 1.37 0.73

𝑓 𝒘, 𝒙 =
1

1 + 𝑒−(𝑤0𝑥0+𝑤1𝑥1+𝑤2)

-0.53-0.53-0.20.2

0.2
0.2

0.2
0.4

-0.2

1-0.6

-0.4

0.2
Example Credit: Karpathy and Fei-Fei

𝜕

𝜕𝑛
𝑒𝑛 = 𝑒𝑛

𝜕

𝜕𝑛
𝑎𝑛 = 𝑎

𝜕

𝜕𝑛
𝑛−1 = −𝑛−2

𝜕

𝜕𝑛
𝑐 + 𝑛 = 1

2

4 5

3

𝜕

𝜕𝑛
𝑚 + 𝑛 = 1 𝜕

𝜕𝑛
𝑚𝑛 = 𝑚

0 1

+

w0

x0

x1

w2

w1

-1 +1en n-1

*

+

2

-1

-3

-2

-3

6

-2

4

1 -1 0.37 1.37 0.73

𝑓 𝒘, 𝒙 =
1

1 + 𝑒−(𝑤0𝑥0+𝑤1𝑥1+𝑤2)

0.4

-0.2

-0.6

-0.4

0.2
PHEW!

Example Credit: Karpathy and Fei-Fei

𝜕

𝜕𝑛
𝑒𝑛 = 𝑒𝑛

𝜕

𝜕𝑛
𝑎𝑛 = 𝑎

𝜕

𝜕𝑛
𝑛−1 = −𝑛−2

𝜕

𝜕𝑛
𝑐 + 𝑛 = 1

2

4 5

3

𝜕

𝜕𝑛
𝑚 + 𝑛 = 1 𝜕

𝜕𝑛
𝑚𝑛 = 𝑚

0 1

Summary

Each block computes backwards (g) * local

gradient (df/dxi) at the evaluation point

f
𝑓(𝑥1, … , 𝑥𝑛)

𝑔

𝑥1
𝑔(Τ𝜕𝑓 𝜕𝑥1)

𝑔(Τ𝜕𝑓 𝜕𝑥2)
𝑥2

𝑥𝑛
𝑔(Τ𝜕𝑓 𝜕𝑥𝑛)

…

Multiple Outputs Flowing Back

Gradients from different backwards sum up

f
𝑓1(𝑥1, … , 𝑥𝑛)

𝑔1

𝑥1

𝑥𝑛

…
𝑓𝐾(𝑥1, … , 𝑥𝑛)

𝑔𝐾

෍
𝑗=1

𝐾

𝑔𝑗 (Τ𝜕𝑓𝑗 𝜕𝑥1)

෍
𝑗=1

𝐾

𝑔𝑗 (Τ𝜕𝑓𝑗 𝜕𝑥𝑛)

෍
𝑗=1

𝐾

𝑔𝑗 (Τ𝜕𝑓𝑗 𝜕𝑥𝑖)

Multiple Outputs Flowing Back

𝑓 𝑥 = −𝑥 + 3 2

-n n+3

-n n+3

m*n

-x

-x

-x+3

-x+3

1

(-x+3)2

x

x

x

-x+3

-x+3-x+3

-x+3
x-3

x-3

Multiple Outputs Flowing Back

𝑓 𝑥 = −𝑥 + 3 2

x

x
x

x-3

x-3

= 2𝑥 − 6

= 𝑥 − 3 + 𝑥 − 3
𝜕𝑓

𝜕𝑥

Does It Have To Be So Painful?

n+m

𝑓 𝒘, 𝒙 =
1

1 + 𝑒−(𝑤0𝑥0+𝑤1𝑥1+𝑤2)

w0

x0

x1

w2

w1
n*-1 n+1en 1/xn*m

n*m

n+m

𝜎 𝑛 =
1

1 + 𝑒−𝑛

Example Credit: Karpathy and Fei-Fei

Does It Have To Be So Painful?

𝜎 𝑛 =
1

1 + 𝑒−𝑛

𝜕

𝜕𝑛
𝜎 𝑛 =

𝑒−𝑛

1 + 𝑒−𝑛 2
=

1 + 𝑒−𝑛 − 1

1 + 𝑒−𝑛
1

1 + 𝑒−𝑛

1 + 𝑒−𝑛

1 + 𝑒−𝑛
−

1

1 + 𝑒−𝑛
= 1 − 𝜎(𝑛)

= 1 − 𝜎 𝑛 𝜎(𝑛)

𝜎(𝑛)

Example Credit: Karpathy and Fei-Fei

𝜕

𝜕𝑛
𝜎 𝑛 =

−1

1 + 𝑒−𝑛 2 ∗ 1 ∗ 𝑒−𝑛 ∗ −1
Chain rule: d/dx (1/x)*d/dx (1+x)*

d/dx (e*x)*d/dx (-x)

Line

1 to 2:

For the curious

Does It Have To Be So Painful?

n+m

𝑓 𝒘, 𝒙 =
1

1 + 𝑒−(𝑤0𝑥0+𝑤1𝑥1+𝑤2)

w0

x0

x1

w2

w1
σ(n)n*m

n*m

n+m

𝜎 𝑛 =
1

1 + 𝑒−𝑛
𝜕𝜎(𝑛)

𝜕𝑛
= (1 − 𝜎 𝑛)𝜎(𝑛)

Example Credit: Karpathy and Fei-Fei

Does It Have To Be So Painful?

• Can compute for any function

• Pick your functions carefully: existing code is
usually structured into sensible blocks

Building Blocks

Input from

other cells

Output to

other cells

Takes signals from

other cells, processes,

sends out

Neuron diagram credit: Karpathy and Fei-Fei

Artificial Neuron

෍

𝑖

𝑤𝑖𝑥𝑖 + 𝑏 Activation 𝑓 ෍

𝑖

𝑤𝑖𝑥𝑖 + 𝑏

Weighted average of other

neuron outputs passed

through an activation

function

Artificial Neuron

∑ f

bw2

*x2

w3

*x3

Can differentiate whole thing e.g., dNeuron/dx1.

w1

*x1

What can we now do?

Artificial Neuron

∑ f

w,b

x

Each artificial neuron is a linear model +

an activation function f

Can find w, b that minimizes a loss

function with gradient descent

Artificial Neurons

∑ f

w,b

x

∑ f

w,b

x

∑ f

w,b

x

∑ f

w,b

x

Connect neurons to make

a more complex function;

use backprop to compute

gradient

What’s The Activation Function

Sigmoid

• Nice interpretation

• Squashes things to

(0,1)

• Gradients are near

zero if neuron is

high/low

𝑠 𝑥 =
1

1 + 𝑒−𝑥

What’s The Activation Function

ReLU
(Rectifying Linear Unit)

• Constant gradient

• Converges ~6x

faster

• If neuron negative,

zero gradient. Be

careful!

max(0, 𝑥)

What’s The Activation Function

Leaky ReLU
(Rectifying Linear Unit)

𝑥 ∶ 𝑥 ≥ 0

0.01𝑥 ∶ 𝑥 < 0

• ReLU, but allows

some small

gradient for

negative vales

Setting Up A Neural Net

y1

y2

y3

x2

x1

h1

h2

h3

h4

Input Hidden Output

Setting Up A Neural Net

y1

y2

y3

x2

x1

a1

a2

a3

a4

Input Hidden 1 Output

h1

h2

h3

h4

Hidden 2

Fully Connected Network

Each neuron connects

to each neuron in the

previous layer

y1

y2

y3

x2

x1

a1

a2

a3

a4

h1

h2

h3

h4

Fully Connected Network

y1

y2

y3

x2

x1

a1

a2

a3

a4

h1

h2

h3

h4

𝒂 All layer a values

𝒘𝒊, 𝑏𝑖 Neuron i weights, bias

𝑓 Activation function

ℎ𝑖 = 𝑓(𝒘𝒊
𝑻𝒂 + 𝑏𝑖)

How do we do all the neurons all at once?

Fully Connected Network

y1

y2

y3

x2

x1

a1

a2

a3

a4

h1

h2

h3

h4

𝒂 All layer a values

𝒘𝒊, 𝑏𝑖 Neuron i weights, bias

𝑓 Activation function

𝒉 = 𝑓(𝑾𝒂+ 𝒃)

=

𝑤1
𝑇

𝑤2
𝑇

𝑤3
𝑇

𝑤4
𝑇

𝑏1
𝑏2

𝑏3
𝑏4

𝑎1
𝑎2

𝑎3
𝑎4

ℎ1
ℎ2

ℎ3
ℎ4

+𝑓()

Fully Connected Network

Define New Block: “Linear Layer”
(Ok technically it’s Affine)

n L

W b

𝐿 𝒏 = 𝑾𝒏 + 𝒃

Can get gradient with respect to all the inputs

(do on your own; useful trick: have to be able

to do matrix multiply)

Fully Connected Network

x L f(n)

W b

y1

y2

y3

x2

x1

a1

a2

a3

a4

h1

h2

h3

h4

L f(n)

W b

L f(n)

W b

Fully Connected Network

x L

W b

y1

y2

y3

x2

x1

a1

a2

a3

a4

h1

h2

h3

h4

L

W b

L

W b

What happens if we remove the

activation functions?

Demo Time

https://cs.stanford.edu/people/karpathy/con

vnetjs/demo/classify2d.html

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html
https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

	Default Section
	Slide 1: Backpropagation and Neural Nets
	Slide 2: So Far: Linear Models
	Slide 3: Last Class
	Slide 4: Taking the Gradient – Review
	Slide 5: Supplemental Reading
	Slide 6: Let’s Do This Another Way
	Slide 7: Let’s Do This Another Way
	Slide 8: Let’s Do This Another Way
	Slide 9: Let’s Do This Another Way
	Slide 10: Let’s Do This Another Way
	Slide 11: Two Inputs
	Slide 12: f(x,y,z) = (x+y)z
	Slide 13: f(x,y,z) = (x+y)z
	Slide 14: f(x,y,z) = (x+y)z
	Slide 15: f(x,y,z) = (x+y)z
	Slide 16: Once More, With Numbers!
	Slide 17: f(x,y,z) = (x+y)z
	Slide 18: f(x,y,z) = (x+y)z
	Slide 19: f(x,y,z) = (x+y)z
	Slide 20: Think You’ve Got It?
	Slide 21: I’ll Need a Few Volunteers
	Slide 22
	Slide 23: Preemptively
	Slide 24: Something More Complex
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38: Summary
	Slide 39: Multiple Outputs Flowing Back
	Slide 40: Multiple Outputs Flowing Back
	Slide 41: Multiple Outputs Flowing Back
	Slide 42: Does It Have To Be So Painful?
	Slide 43: Does It Have To Be So Painful?
	Slide 44: Does It Have To Be So Painful?
	Slide 45: Does It Have To Be So Painful?
	Slide 46: Building Blocks
	Slide 47: Artificial Neuron
	Slide 48: Artificial Neuron
	Slide 49: Artificial Neuron
	Slide 50: Artificial Neurons
	Slide 51: What’s The Activation Function
	Slide 52: What’s The Activation Function
	Slide 53: What’s The Activation Function
	Slide 54: Setting Up A Neural Net
	Slide 55: Setting Up A Neural Net
	Slide 56: Fully Connected Network
	Slide 57: Fully Connected Network
	Slide 58: Fully Connected Network
	Slide 59: Fully Connected Network
	Slide 60: Fully Connected Network
	Slide 61: Fully Connected Network
	Slide 62: Demo Time
	Slide 63

