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So Far: Linear Models

• Example: find w minimizing squared error over data

• Each datapoint represented by some vector x

• Can find optimal w with ~10 line derivation

𝐿(𝒘)=𝜆 𝒘 2
2 + ෍

𝑖=1

𝑛

𝑦𝑖 −𝒘𝑇𝒙𝑖)
2



Last Class

• What about an arbitrary loss function L?

• What about an arbitrary parametric function f?

• Solution: take the gradient, do gradient descent

𝐿(𝒘)=𝜆 𝒘 2
2 + ෍

𝑖=1

𝑛

𝐿(𝑦𝑖 , 𝑓(𝒙; 𝒙))

𝒘𝑖+1 = 𝒘𝒊 − 𝛼∇𝑤𝐿(𝑓(𝒘𝑖))

What if L(f(w)) is complicated?

Today!



Taking the Gradient – Review 

𝑓 𝑥 = −𝑥 + 3 2

𝑓 = 𝑞2 𝑞 = 𝑟 + 3 𝑟 = −𝑥

𝜕𝑓

𝜕𝑞
= 2𝑞

𝜕𝑞

𝜕𝑟
= 1

𝜕𝑟

𝜕𝑥
= −1

= −2 −𝑥 + 3

= 2𝑥 − 6

𝜕𝑓

𝜕𝑥
=
𝜕𝑓

𝜕𝑞

𝜕𝑞

𝜕𝑟

𝜕𝑟

𝜕𝑥
= 2𝑞 ∗ 1 ∗ −1

Chain rule



Supplemental Reading

• Lectures can only introduce you to a topic

• You will solidify your knowledge by doing

• I highly recommend working through 
everything in the Stanford CS213N resources

• http://cs231n.github.io/optimization-2/

• These slides follow the general examples with 
a few modifications. The primary difference is 
that I define local variables n, m per-block.

http://cs231n.github.io/optimization-2/


Let’s Do This Another Way

f

Suppose we have a box representing a function f.

𝑛 𝑓(𝑛)

𝑔𝑔( Τ𝜕𝑓 𝜕𝑛)

This box does two things:

Forward: Given forward input n, compute f(n)

Backwards: Given backwards input g, return g*df/dn



Let’s Do This Another Way

𝑓 𝑥 = −𝑥 + 3 2

-n

x

n+3

-x

n2

-x+3 (-x+3)2

1

= 2 −𝑥 + 3

= −2𝑥 + 6

𝜕

𝜕𝑛
𝑛2 = 2𝑛

(−2𝑥 + 6) ∗ 1
𝜕

𝜕𝑛
∗ 1 =



Let’s Do This Another Way

𝑓 𝑥 = −𝑥 + 3 2

𝜕

𝜕𝑛
= 1

-n

x -x -x+3

n+3

(-x+3)2

n2

1

1 ∗ (−2x + 6)

−2𝑥 + 6



Let’s Do This Another Way

𝑓 𝑥 = −𝑥 + 3 2

-n

x -x -x+3

n+3

(-x+3)2

n2

1

𝜕

𝜕𝑛
= −1

−2𝑥 + 6

−1 ∗ (−2x + 6)

−2𝑥 + 6

2x − 6



Let’s Do This Another Way

𝑓 𝑥 = −𝑥 + 3 2

-n

x -x -x+3

n+3

(-x+3)2

n2

1
−2𝑥 + 62x − 6 −2𝑥 + 6



Two Inputs

f
𝑛

𝑚

𝑓(𝑛,𝑚)

𝑔

𝑔( Τ𝜕𝑓 𝜕𝑛)

𝑔( Τ𝜕𝑓 𝜕𝑚)

Given two inputs, just have two input/output wires

Forward: the same

Backward: the same – send gradients with respect 

to each variable



f(x,y,z) = (x+y)z

n+m

n*m

x

y

z

x+y

(x+y)z

Example Credit: Karpathy and Fei-Fei



f(x,y,z) = (x+y)z

n+m

n*m

x

y

z

x+y

(x+y)z

1

𝜕

𝜕𝑛
𝑛𝑚 = 𝑚

→ 𝑧 ∗ 1

𝜕

𝜕𝑚
𝑛𝑚 = 𝑛

→ (𝑥 + 𝑦) ∗ 1

z*1

(x+y)*1

Multiplication 

swaps inputs, 

multiplies gradient 

Example Credit: Karpathy and Fei-Fei



f(x,y,z) = (x+y)z

n+m

n*m

x

y

z

x+y

(x+y)z

1

z*1

(x+y)*1

1*z*1

1*z*1

→ 1 ∗ 𝑧 ∗ 1

𝜕

𝜕𝑛
𝑛 +𝑚 = 1

→ 1 ∗ 𝑧 ∗ 1

𝜕

𝜕𝑚
𝑛 +𝑚 = 1

Addition sends 

gradient through 

unchanged

Example Credit: Karpathy and Fei-Fei



f(x,y,z) = (x+y)z

n+m

n*m

x

y

z

x+y

(x+y)z

1

z*1

x+y

z

z

𝜕 𝑥 + 𝑦 𝑧

𝜕𝑧
= (𝑥 + 𝑦)

𝜕 𝑥 + 𝑦 𝑧

𝜕𝑥
= 𝑧

𝜕 𝑥 + 𝑦 𝑧

𝜕𝑦
= 𝑧

Example Credit: Karpathy and Fei-Fei



Once More, With Numbers!



f(x,y,z) = (x+y)z

n+m

n*m

1

4

10

5

50

Example Credit: Karpathy and Fei-Fei



f(x,y,z) = (x+y)z

n+m

n*m

1

4

10

5

50

1

𝜕

𝜕𝑛
𝑛𝑚 = 𝑚

→ 10 ∗ 1

𝜕

𝜕𝑚
𝑛𝑚 = 𝑛

→ 5 ∗ 1

10

5

Example Credit: Karpathy and Fei-Fei



f(x,y,z) = (x+y)z

n+m

n*m

1

4

10

5

50

1

10

5

10

10

→ 1 ∗ 10 ∗ 1

𝜕

𝜕𝑛
𝑛 +𝑚 = 1

→ 1 ∗ 10 ∗ 1

𝜕

𝜕𝑚
𝑛 +𝑚 = 1

u

Example Credit: Karpathy and Fei-Fei



Think You’ve Got It?

𝐿 𝑥 = 𝑤 − 6 2

• We want to fit a model w that just will equal 6.

• World’s most basic linear model / neural net: no 

inputs, just constant output.



I’ll Need a Few Volunteers

n2
n n2

g2ng
n-6

n n-6

gg

Job #1 (n-6):

Forward: 

Compute n-6

Backwards:

Multiply by 1

Job #2 (n2):

Forward: 

Compute n2

Backwards:

Multiply by 2n

Job #3:

Backwards:

Give me a 1

𝐿 𝑥 = 𝑤 − 6 2



n2
n n2

g2ng
n-6

n n-6

gg
𝐿 𝑥 = 𝑤 − 6 2

n2
__ __

____
n-6

__ __

____
w0: ___

n2
__ __

____
n-6

__ __

____
w1: ___

n2
__ __

____
n-6

__ __

____
w2: ___

w2 = w1 - (1/4) ___ = 

w1 = w0 - (1/4) ___ = 

w3 = w2 - (1/4) ___ = 



Preemptively 

• The diagrams look complex but that’s since 
we’re covering the details together



Something More Complex

n+m

𝑓 𝒘, 𝒙 =
1

1 + 𝑒−(𝑤0𝑥0+𝑤1𝑥1+𝑤2)

w0

x0

x1

w2

w1
n*-1 n+1en 1/nn*m

n*m

n+m

Example Credit: Karpathy and Fei-Fei



+

w0

x0

x1

w2

w1

*-1 +1en n-1*

*

+

2

-1

-3

-2

-3

-2

4

𝑓 𝒘, 𝒙 =
1

1 + 𝑒−(𝑤0𝑥0+𝑤1𝑥1+𝑤2)

1 -1 0.37 1.37 0.736



+

w0

x0

x1

w2

w1

*-1 +1en n-1*

*

+

2

-1

-3

-2

-3

-2

4

1 -1 0.37 1.37 0.73

𝑓 𝒘, 𝒙 =
1

1 + 𝑒−(𝑤0𝑥0+𝑤1𝑥1+𝑤2)

6

𝜕

𝜕𝑛
𝑒𝑛 = 𝑒𝑛

𝜕

𝜕𝑛
𝑎𝑛 = 𝑎

𝜕

𝜕𝑛
𝑛−1 = −𝑛−2

𝜕

𝜕𝑛
𝑐 + 𝑛 = 1

2

4 5

3

𝜕

𝜕𝑛
𝑚 + 𝑛 = 1 𝜕

𝜕𝑛
𝑚𝑛 = 𝑚

0 1

Example Credit: Karpathy and Fei-Fei



+

w0

x0

x1

w2

w1

*-1 +1en n-1*

*

+

2

-1

-3

-2

-3

-2

4

1 -1 0.37 1.37 0.73

𝑓 𝒘, 𝒙 =
1

1 + 𝑒−(𝑤0𝑥0+𝑤1𝑥1+𝑤2)

1

6

Example Credit: Karpathy and Fei-Fei

𝜕

𝜕𝑛
𝑒𝑛 = 𝑒𝑛

𝜕

𝜕𝑛
𝑎𝑛 = 𝑎

𝜕

𝜕𝑛
𝑛−1 = −𝑛−2

𝜕

𝜕𝑛
𝑐 + 𝑛 = 1

2

4 5

3

𝜕

𝜕𝑛
𝑚 + 𝑛 = 1 𝜕

𝜕𝑛
𝑚𝑛 = 𝑚

0 1



+

w0

x0

x1

w2

w1

*-1 +1en n-1*

*

+

2

-1

-3

-2

-3

-2

4

1 -1 0.37 1.37 0.73

𝑓 𝒘, 𝒙 =
1

1 + 𝑒−(𝑤0𝑥0+𝑤1𝑥1+𝑤2)

− 1.37 −2 ∗ 1 = −0.53

Where does 1.37 come from?

6

1

Example Credit: Karpathy and Fei-Fei

𝜕

𝜕𝑛
𝑒𝑛 = 𝑒𝑛

𝜕

𝜕𝑛
𝑎𝑛 = 𝑎

𝜕

𝜕𝑛
𝑛−1 = −𝑛−2

𝜕

𝜕𝑛
𝑐 + 𝑛 = 1

2

4 5

3

𝜕

𝜕𝑛
𝑚 + 𝑛 = 1 𝜕

𝜕𝑛
𝑚𝑛 = 𝑚

0 1



+

w0

x0

x1

w2

w1

*-1 +1en n-1*

*

+

2

-1

-3

-2

-3

-2

4

1 -1 0.37 1.37 0.73

𝑓 𝒘, 𝒙 =
1

1 + 𝑒−(𝑤0𝑥0+𝑤1𝑥1+𝑤2)

1-0.53

1 ∗ −0.53 = −0.53

6

Example Credit: Karpathy and Fei-Fei

𝜕

𝜕𝑛
𝑒𝑛 = 𝑒𝑛

𝜕

𝜕𝑛
𝑎𝑛 = 𝑎

𝜕

𝜕𝑛
𝑛−1 = −𝑛−2

𝜕

𝜕𝑛
𝑐 + 𝑛 = 1

2

4 5

3

𝜕

𝜕𝑛
𝑚 + 𝑛 = 1 𝜕

𝜕𝑛
𝑚𝑛 = 𝑚

0 1
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w2

w1

*-1 +1en n-1*

*

+
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-1

-3

-2

-3

-2

4

1 -1 0.37 1.37 0.73

𝑓 𝒘, 𝒙 =
1

1 + 𝑒−(𝑤0𝑥0+𝑤1𝑥1+𝑤2)

-0.53

𝑒−1 ∗ −0.53 = −0.2

-0.53

6

1

Example Credit: Karpathy and Fei-Fei
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4 5
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𝑚 + 𝑛 = 1 𝜕
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0 1
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x0
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w2

w1

*-1 +1en n-1*
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2

-1

-3

-2

-3

-2

4

1 -1 0.37 1.37 0.73

𝑓 𝒘, 𝒙 =
1

1 + 𝑒−(𝑤0𝑥0+𝑤1𝑥1+𝑤2)

-0.53

−1 ∗ −0.2 = 0.2

-0.53-0.2

6
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Example Credit: Karpathy and Fei-Fei
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0 1



+

w0

x0

x1

w2

w1

*-1 +1en n-1*

*

+

2

-1

-3

-2

-3

-2

4

1 -1 0.37 1.37 0.73

𝑓 𝒘, 𝒙 =
1

1 + 𝑒−(𝑤0𝑥0+𝑤1𝑥1+𝑤2)

-0.53-0.53-0.20.2

1 ∗ 0.2 = 0.2
Gets sent back both directions

6

1

Example Credit: Karpathy and Fei-Fei
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𝜕

𝜕𝑛
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𝜕

𝜕𝑛
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4 5
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𝜕

𝜕𝑛
𝑚 + 𝑛 = 1 𝜕

𝜕𝑛
𝑚𝑛 = 𝑚

0 1



+

w0

x0

x1

w2
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*-1 +1en n-1*

*

+

2

-1

-3

-2

-3

-2

4

1 -1 0.37 1.37 0.73

𝑓 𝒘, 𝒙 =
1

1 + 𝑒−(𝑤0𝑥0+𝑤1𝑥1+𝑤2)

-0.53-0.53-0.20.2

1 ∗ 0.2 = 0.2
Gets sent back both directions

0.2

6

1

0.2
Example Credit: Karpathy and Fei-Fei

𝜕
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𝑒𝑛 = 𝑒𝑛

𝜕

𝜕𝑛
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𝜕

𝜕𝑛
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𝜕

𝜕𝑛
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4 5
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𝜕𝑛
𝑚 + 𝑛 = 1 𝜕

𝜕𝑛
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0 1
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w0

x0

x1

w2

w1

*-1 +1en n-1*

*

+

2

-1

-3

-2

-3

6

-2

4

1 -1 0.37 1.37 0.73

𝑓 𝒘, 𝒙 =
1

1 + 𝑒−(𝑤0𝑥0+𝑤1𝑥1+𝑤2)

-0.53-0.53-0.20.2

−1 ∗ 0.2 = −0.2

0.2
0.2

0.2

2 ∗ 0.2 = 0.4

1

0.2
Example Credit: Karpathy and Fei-Fei
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𝜕

𝜕𝑛
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𝜕𝑛
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𝜕
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𝑐 + 𝑛 = 1

2

4 5

3

𝜕

𝜕𝑛
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0 1
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-3
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4

1 -1 0.37 1.37 0.73

𝑓 𝒘, 𝒙 =
1

1 + 𝑒−(𝑤0𝑥0+𝑤1𝑥1+𝑤2)

-0.53-0.53-0.20.2

0.2
0.2

0.2
0.4

-0.2

1

−2 ∗ 0.2 = −0.4
−3 ∗ 0.2 = −0.60.2

Example Credit: Karpathy and Fei-Fei
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𝜕
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𝜕

𝜕𝑛
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2
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𝜕

𝜕𝑛
𝑚 + 𝑛 = 1 𝜕

𝜕𝑛
𝑚𝑛 = 𝑚

0 1
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+
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1 -1 0.37 1.37 0.73

𝑓 𝒘, 𝒙 =
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1 + 𝑒−(𝑤0𝑥0+𝑤1𝑥1+𝑤2)

-0.53-0.53-0.20.2
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0.2

0.2
0.4

-0.2
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-0.4

0.2
Example Credit: Karpathy and Fei-Fei
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𝑓 𝒘, 𝒙 =
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-0.6

-0.4

0.2
PHEW!

Example Credit: Karpathy and Fei-Fei
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0 1



Summary

Each block computes backwards (g) * local 

gradient (df/dxi) at the evaluation point 

f
𝑓(𝑥1, … , 𝑥𝑛)

𝑔

𝑥1
𝑔( Τ𝜕𝑓 𝜕𝑥1)

𝑔( Τ𝜕𝑓 𝜕𝑥2)
𝑥2

𝑥𝑛
𝑔( Τ𝜕𝑓 𝜕𝑥𝑛)

…



Multiple Outputs Flowing Back

Gradients from different backwards sum up

f
𝑓1(𝑥1, … , 𝑥𝑛)

𝑔1

𝑥1

𝑥𝑛

…
𝑓𝐾(𝑥1, … , 𝑥𝑛)

𝑔𝐾

෍
𝑗=1

𝐾

𝑔𝑗 ( Τ𝜕𝑓𝑗 𝜕𝑥1)

෍
𝑗=1

𝐾

𝑔𝑗 ( Τ𝜕𝑓𝑗 𝜕𝑥𝑛)

෍
𝑗=1

𝐾

𝑔𝑗 ( Τ𝜕𝑓𝑗 𝜕𝑥𝑖)



Multiple Outputs Flowing Back

𝑓 𝑥 = −𝑥 + 3 2

-n n+3

-n n+3

m*n

-x

-x

-x+3

-x+3

1

(-x+3)2

x

x

x

-x+3

-x+3-x+3

-x+3
x-3

x-3



Multiple Outputs Flowing Back

𝑓 𝑥 = −𝑥 + 3 2

x

x
x

x-3

x-3

= 2𝑥 − 6

= 𝑥 − 3 + 𝑥 − 3
𝜕𝑓

𝜕𝑥



Does It Have To Be So Painful?

n+m

𝑓 𝒘, 𝒙 =
1

1 + 𝑒−(𝑤0𝑥0+𝑤1𝑥1+𝑤2)

w0

x0

x1

w2

w1
n*-1 n+1en 1/xn*m

n*m

n+m

𝜎 𝑛 =
1

1 + 𝑒−𝑛

Example Credit: Karpathy and Fei-Fei



Does It Have To Be So Painful?

𝜎 𝑛 =
1

1 + 𝑒−𝑛

𝜕

𝜕𝑛
𝜎 𝑛 =

𝑒−𝑛

1 + 𝑒−𝑛 2
=

1 + 𝑒−𝑛 − 1

1 + 𝑒−𝑛
1

1 + 𝑒−𝑛

1 + 𝑒−𝑛

1 + 𝑒−𝑛
−

1

1 + 𝑒−𝑛
= 1 − 𝜎(𝑛)

= 1 − 𝜎 𝑛 𝜎(𝑛)

𝜎(𝑛)

Example Credit: Karpathy and Fei-Fei

𝜕

𝜕𝑛
𝜎 𝑛 =

−1

1 + 𝑒−𝑛 2 ∗ 1 ∗ 𝑒−𝑛 ∗ −1
Chain rule: d/dx (1/x)*d/dx (1+x)*

d/dx (e*x)*d/dx (-x)

Line 

1 to 2:

For the curious



Does It Have To Be So Painful?

n+m

𝑓 𝒘, 𝒙 =
1

1 + 𝑒−(𝑤0𝑥0+𝑤1𝑥1+𝑤2)

w0

x0

x1

w2

w1
σ(n)n*m

n*m

n+m

𝜎 𝑛 =
1

1 + 𝑒−𝑛
𝜕𝜎(𝑛)

𝜕𝑛
= (1 − 𝜎 𝑛 )𝜎(𝑛)

Example Credit: Karpathy and Fei-Fei



Does It Have To Be So Painful?

• Can compute for any function

• Pick your functions carefully: existing code  is 
usually structured into sensible blocks



Building Blocks

Input from

other cells

Output to

other cells

Takes signals from 

other cells, processes, 

sends out

Neuron diagram credit: Karpathy and Fei-Fei



Artificial Neuron

෍

𝑖

𝑤𝑖𝑥𝑖 + 𝑏 Activation 𝑓 ෍

𝑖

𝑤𝑖𝑥𝑖 + 𝑏

Weighted average of other 

neuron outputs passed 

through an activation 

function 



Artificial Neuron

∑ f

bw2

*x2

w3

*x3

Can differentiate whole thing e.g., dNeuron/dx1. 

w1

*x1

What can we now do?



Artificial Neuron

∑ f

w,b

x

Each artificial neuron is a linear model + 

an activation function f

Can find w, b that minimizes a loss 

function with gradient descent



Artificial Neurons

∑ f

w,b

x

∑ f

w,b

x

∑ f

w,b

x

∑ f

w,b

x

Connect neurons to make 

a more complex function; 

use backprop to compute 

gradient



What’s The Activation Function

Sigmoid

• Nice interpretation 

• Squashes things to 

(0,1)

• Gradients are near 

zero if neuron is 

high/low

𝑠 𝑥 =
1

1 + 𝑒−𝑥



What’s The Activation Function

ReLU
(Rectifying Linear Unit)

• Constant gradient

• Converges ~6x 

faster

• If neuron negative, 

zero gradient. Be 

careful!

max(0, 𝑥)



What’s The Activation Function

Leaky ReLU
(Rectifying Linear Unit)

𝑥 ∶ 𝑥 ≥ 0

0.01𝑥 ∶ 𝑥 < 0

• ReLU, but allows 

some small 

gradient for 

negative vales



Setting Up A Neural Net

y1

y2

y3

x2

x1

h1

h2

h3

h4

Input Hidden Output



Setting Up A Neural Net

y1

y2

y3

x2

x1

a1

a2

a3

a4

Input Hidden 1 Output

h1

h2

h3

h4

Hidden 2 



Fully Connected Network

Each neuron connects 

to each neuron in the 

previous layer

y1

y2

y3

x2

x1

a1

a2

a3

a4

h1

h2

h3

h4



Fully Connected Network

y1

y2

y3

x2

x1

a1

a2

a3

a4

h1

h2

h3

h4

𝒂 All layer a values

𝒘𝒊, 𝑏𝑖 Neuron i weights, bias

𝑓 Activation function

ℎ𝑖 = 𝑓(𝒘𝒊
𝑻𝒂 + 𝑏𝑖)

How do we do all the neurons all at once?



Fully Connected Network

y1

y2

y3

x2

x1

a1

a2

a3

a4

h1

h2

h3

h4

𝒂 All layer a values

𝒘𝒊, 𝑏𝑖 Neuron i weights, bias

𝑓 Activation function

𝒉 = 𝑓(𝑾𝒂+ 𝒃)

=

𝑤1
𝑇

𝑤2
𝑇

𝑤3
𝑇

𝑤4
𝑇

𝑏1
𝑏2

𝑏3
𝑏4

𝑎1
𝑎2

𝑎3
𝑎4

ℎ1
ℎ2

ℎ3
ℎ4

+𝑓( )



Fully Connected Network

Define New Block: “Linear Layer”
(Ok technically it’s Affine)

n L

W b

𝐿 𝒏 = 𝑾𝒏 + 𝒃

Can get gradient with respect to all the inputs 

(do on your own; useful trick: have to be able 

to do matrix multiply)



Fully Connected Network

x L f(n)

W b

y1

y2

y3

x2

x1

a1

a2

a3

a4

h1

h2

h3

h4

L f(n)

W b

L f(n)

W b



Fully Connected Network

x L

W b

y1

y2

y3

x2

x1

a1

a2

a3

a4

h1

h2

h3

h4

L

W b

L

W b

What happens if we remove the 

activation functions?



Demo Time

https://cs.stanford.edu/people/karpathy/con

vnetjs/demo/classify2d.html

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html
https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html
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