
442 Final Project Report

442 Staff

1. When is it due?

We’ll take the project reports and vidoes until April 25,
2023 at noon. This is, for better or worse, a hard deadline
to ensure having final grades in. We are delighted to have
you turn in your projects early, but understand if you want
more time.

2. Overall structure of the report

Overall, your report should tell us about what you did.
The report should be four pages, not including references.
We will stop reading at the fourth page. This report should
follow the CVPR format, for which there are LATEXand MS
Word templates. Please see this link (which downloads a
.zip file) You do not have to use LATEX– we are perfectly
happy with Word. If you’d like, Overleaf is a great way to
try it without installing it on your computer.

A good way to structure things would be the following
sections (given with their roles in the paper):

1. Introduction (≤ 1 page): what did you do and why do
I care?

2. Approach: what did you do in detail?
3. Experiments: how did you test that you did what you

wanted to do?
4. Implementation (≤ 1/4 page): what stuff did you do,

what stuff did you rely on others for.
5. References: refer to anything you used or any things

you’d like to cite. References do not count.
If you collected a lot of data yourself, you may want to add
a section on data. If you think there’s another section that
would be important to have, feel free to include it. Finally
you do not need an abstract.

3. Sections of the report

Here are some descriptions of the sections and the ques-
tions you must address. You should always have an intro-
duction, approach, experiments, and implementation.

Introduction (≤ 1 page): A good introduction (at least for
this report) should include:

1. Please motivate the problem you are solving and the
method you are using.

2. Why should I care about the problem? Does it have an
impact on life?

3. Why should I be able to solve the problem? Why
should I be able to solve it with computer vision to-
day?

4. What are some related pieces of work? Maybe men-
tion 1 – 3. You may be building on these.

5. Finally, please summarize your method in at most
three sentences. Less is more here.

Don’t address these in question form – tell a story!

Approach: A good description of an approach should let
a knowledgeable expert reproduce things. Given the page
length, that’s going to be tricky. You’ll need to decide what
stays in and what does out. A common trick is to build
on the work of others: the sentence “For finding the pup-
pies, we train a maskRCNN detector on a Resnet-50 FPN
backbone using ADAM” might require hundreds of pages
to explain if starting from scratch, but a handful of citations.
Here are a few guidelines:

1. If it’s a deep network, describe at least the architecture,
the loss functions, and the training procedure.

2. If it’s an algorithm, describe the steps in a coherent and
simple way. If you have lots of steps, divide them up
into sensible groups.

3. Please draw at least one figure that helps the reader
understand the method. I draw all of my figures in
powerpoint. Google slides is also good. You are free
to use powerpoint figures from the class slides, so long
as you properly credit them. The same goes for other
peoples’ figures.

Experiments: Please describe experimental validation of
your project. You should include both qualitative (i.e., out-
puts of the system for humans to look at, like pictures) and
quantitative (i.e., numbers quantifying how well the system
works). A section should probably include the following:

1. Data: What data did you test things on? Why does the
data make sense?

2. Metrics: How do you measure success? Is it qualitative
or quantitative? Why is it reasonable? What are some
potential downsides? You should have SOME measure
of quantitative evaluation, even if it’s someone looking

1

https://media.icml.cc/Conferences/CVPR2023/cvpr2023-author_kit-v1_1-1.zip
https://media.icml.cc/Conferences/CVPR2023/cvpr2023-author_kit-v1_1-1.zip


at results.
3. Qualitative results: please include some (i.e., at least

one) figures showing your results.
4. Quantitative results: please include some quantitative

numbers. You should compare against, if possible,
some sort of simple baseline like random chance. Ran-
dom chance is usually very easy to compare with.

Implementation (≤ 1/4 page): If you are building on the
code of others, please indicate what is yours and what was
others work. You almost certainly have built off of the work
of others. That’s expected! But it’s important to identify
what is yours and what is someone else’s.

Data: If you’ve spent a lot of time collecting data, you may
want to explain what you did.

References: You should cite stuff that you use. You can
cite stuff to get out of explaining complicated stuff like the
particulars of the deep network you used.

Special instructions for special situations: Invariably,
some people will fall into these categories:

1. Our stuff doesn’t work because our idea just doesn’t
work and we now understand why: Identify why, and
describe why. The best researchers will routinely pick
apart their past ideas as missing the mark and that’s
fine. Most interesting projects don’t work, and part of
the point of doing a project is to identify if it will work.

2. Our stuff doesn’t work because we can’t get it to
work: Identify some concrete subgoals that you have
achieved and describe them.

Figures, Credits, etc.: You will build on the work of others.
That’s good! You just need to be precise and careful about
what you claim credit for. See the later section on using
open source code.

4. Writing advice for the report

It is true that 442 isn’t a course on writing. But poor
writing and communication can get in the way of you get-
ting credit for what you’ve done. There’s a somewhat in-
famous quote from AI pioneer Patrick Henry Winston that
says “Your careers will be determined largely by how well
you speak, by how well you write, and by the quality of
your ideas, in that order.”

Here are some general tips, accumulated from various
feedback I’ve given on technical writing:

1. (Structure) Tell a story: Good technical writing con-
vinces people to read. In the case of the final report,
we’re obliged to read the document. However, most of
your audiences in life will be apathetic. You may want
to pose questions. This way we’ll read on to find the
answers. You want to maintain a narrative so we know

where things are going. You want to tell a story so we
root for your system to succeed.

2. (Structure) Your goal is to find the best paper in
the page limit, not make the best paper fit in the
page limit. What you did obviously won’t fit the page
limit and so you have to lose information when you
compress the idea. The question is not “can I make it
fit” but “what are the most important parts of the story”
and “what is the best 4 page story”.

3. (Structure) Abstraction is key: Before you explain
details, give the sketch: what are the inputs, what are
the outputs, what’s the main goal? If the writing flows
across the sections and requires long chains of thought,
refactor. You should want to have a single section for
each thing. Don’t have previews, don’t bring things
back

4. (Structure) Be ordered: Don’t explain details for
methods before you’ve introduced them.

5. (Writing) Don’t write: Writing is often a terrible
medium for communication. If you can use a figure,
go for it. If you can refer to a paper to explain it, do it.
If you don’t need to mention it, don’t mention it.

6. (Writing) Don’t be complicated: The temptation is
always to make things complicated. Don’t! The high-
est praise for an idea is that it is clean and neat!

7. (Writing) One point per paragraph: Every para-
graph should have exactly one point. Some paragraphs
have more than one point and they end up being con-
fusing. Some paragraphs have zero points and the
reader is then sad.
Moreover, that point should be summarized in the first
sentence. This helps with people skimming. If your
main point is halfway through the paragraph, people
tend to miss it / get confused. The same logic applies
to sentences and sections. However, people often don’t
have this issue because they use sentences a lot and
because the sections are helpfully labeled.

8. (Writing) Be clear: obfuscation does not work. Re-
jection is the default in life. You need to positively
prove that you’ve done good work, not hide the details
and hope that “nobody takes points off”.

9. (Actually Writing) Use a spellchecker: It’s hard to
catch typos, and I always have a few. If you use over-
leaf there’s the classic red squiggle thing (and if you
use word there’s a spellchecker). If you edit .tex files
on your computer, use aspell (aspell -c file.tex).

10. (Actually Writing) Read it out loud: You can’t catch
sentence fragments because you wrote them, but they
jump out to casual readers. Reading the paper out loud
helps. Writing then reading the next day helps even
more. If you want to read out loud like a professional
editor, I have been told that reading the sentences in

2



reverse order is very useful.
11. (Actually Writing) Rewrite: Few people are blessed

to write well the first time. For almost everyone it is
far easier to write something and then edit until it looks
better. Most of my good papers involve total rewrites.

3



5. Showcase Video
Instead of a poster presentation or showcase, you will

participate in a virtual poster session. Most of this will be
you a 4 minute video of your group members presenting
your project. This doesnt need to be fancy or overly pro-
duced; talking over a set of PowerPoint slides is perfectly
acceptable. Depending on votes, we’ll try to figure out a
way to watch videos together or have people present in per-
son and have it recorded.

The exact format and structure of the presentation can
vary depending on the nature of your project. But you
should clearly cover the following:

1. What is the problem you were solving?
2. Why is this problem important?
3. How have people tried to solve this problem before?

Give a brief summary of 1-3 key pieces of related
work.

4. How do you approach the problem? What is your key
insight?

5. What are your main experimental results? You dont
have to go into all details, but you should mention your
main experiments.

6. What challenges remain? If you were to keep working
on this project, what would you do in the future?

Showcase FAQ.

• Is this synchronous? No. The end of the semester is
tricky. Given the current situation, we’re not going to
have a mandatory appearance. However, we’ll try to
find some way to have some synchronous time when
we can all see each other’s projects and talk about what
you did, as well as an asynchronous way of comment-
ing on peoples’ presentations.

• Do I need fancy video production? No. Some of the
best speakers I know of have genuinely not so great
visuals. They’re not flashy, but they are effective.

• How long should it be? It should be approximately 4
minutes but must not be more than 5 minutes.

4



6. Using Open Source Code

The question of “can I use existing code?” is compli-
cated because it means lots of different things. We’ve an-
swered a few questions and so we’ll try to answer it once
and only once. In general, open-source code is great. If we
had to re-invent the wheel everytime we built something in
science, we’d be in trouble. Hopefuly you build your sys-
tem on top of open source code!

Before anything else, if you’re worried, we under-
stand. This is tricky. Please feel free to talk to us. We’re
happy to help you.

The key question is: what value are you adding on top
of the existing source? This value-added needs to be clear
to you and it needs to be clear in the report. Above all else,
you can’t just pass off other peoples’ code as your own, and
you can’t just copy-paste stuff in.

Here are some examples along the spectrum, using col-
orization as an example.

1. Rewriting a deep learning library from scratch in as-
sembly and making a colorization system with it. Well
that’s something. Totally not necessary but inter-
esting!

2. Implementing colorization from scratch in PyTorch us-
ing standard libraries. Great! That’s exciting.

3. Using someone else’s super duper cool data loader
for semantic segmentation, adapting it for coloriza-
tion, and saying “we did colorization and we used X”
for data loading. Great! You explained what code
is from where. Colorization’s a different problem
than semantic segmentation and so there’s value
added here.

4. Running colorization and evaluating your results using
a standard library. Great! Totally fine. Using some-
one else’s evaluation is good since evaluation code
is hard to write.

5. Running someone else’s code for colorization and
saying “we did colorization by git clone &&
python demo.py”. No good, but honest. There’s
not much work in running git clone. Can you do
some more work on top of this library?

6. Reading someone else’s code for colorization and then
implementing it from scratch yourself. Not ideal, es-
pecially if you’re doing a side-by-side read. This is
the real danger territory. Don’t do this.

7. Running someone else’s code for colorization and say-
ing “we implemented colorization”. No good. There’s
not a lot work and you’re passing off someone else’s
code as your own.

Here are different ways that you could interact with other
code:

1. Libraries/packages enable you to use existing code in
a nicely packaged API format. These are always safe
so long as they do not trivialize the problem. Calling
yolo.detect() does make for a real object detec-
tion project. But you can use YOLO if you’re trying to
track giraffes.

2. Officialish tutorials are probably fine if it’s not a line-
by-line description of code to do the entirety of a task.

3. Course code is always fine.
4. Unrelated small (< 50 line) snippets like data load-

ers, training loops, unusual losses, GPU magic. Totally
fine if they enable you do something cool and so long
as you do not pass it off as your own.

5. Github repos that implement what you are doing
are not ok.

Unfortunately, the peril of open-ended stuff is going to
be that it’s hard to draw exact lines without forcing people
into a few pre-made projects, and without sucking the fun
out of the project.

5



7. Grading Scheme
Each component of the project grading will be based on

≈ 50% apparent amount accomplished and ≈ 50% qual-
ity of presentation. If peer ratings suggest that something
has gone seriously wrong, there’s at most a ≈ 25% addi-
tive penalty based on optional peer ratings (if applicable –
mostly this will be ignored).

Peer Review: We will also optionally invite the team to
comment on the relative contributions of its members. His-
torically this has only been an issue for 1 or 2 groups a term.
If there have been people who have been total free-riders or
people who have carried the team. If your project has gone
as well as any group effort, then you do not need to fill this
out. Remember: group projects do not go away as you get
older, they just get fancier titles.

We will ask you to rate all the team members’ contribu-
tions from 1-3: 1 is 1

3× the work of an average student; 3 is
3× the work of an average student. Most team members are
a 2 – this is not Uber or WeRateDogs – and we do not want
to litigate differences between 25% and 35%. However, if
someone refuses to show up to any meetings, they should
not get credit for the work of others.

Are we ranking projects: No. We’re not stack ranking
people. Given the spread of experience coming into the
course in computer vision, this is a terrible idea – then
the project is a measurement of what you knew coming in
rather than what you learned along the way. The lack of
stack-ranking is especially important for projects that are
pre-baked. There’s not a finite number of high grades to be
given out for depth prediction.

6


