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ABSTRACT

The estimation of models or structures from outlier-contaminated data containing

multiple models has a large number of applications in computer vision, the study

of the automated understanding of visual data: for instance, geometric figures may

be detected from 2D points, and planar surfaces in a scene may be found in pairs

of images of the scene using feature matches. This thesis describes a number of

contemporary algorithms for multi-model estimation and some of their historical

antecedents, as well as an evaluation methodology for the multi-model estimation

problem.
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CHAPTER 1

INTRODUCTION: LEAST SQUARES AND ITS DISCONTENTS

Given a class of model (e.g., a line or circle) and a set of data points con-

taminated by noise, one can often find a “best-fit” model. In many situations in

the physical and social sciences, we wish to find a function f(x) that best pre-

dicts the value of y = f(x) given a value x. Commonly, given some data points

{(x1, y1), . . . , (xn, yn)}, we try to minimize the sum of squared residuals, or devia-

tions from the prediction of the model. In many cases, we may naturally define the

residual as the quantity |f(xi)− yi|, as f(xi) is the prediction of the model and

yi is the actual value. The model-estimation technique that minimizes the sum

of squared residuals is commonly known as ordinary least-squares as it produces

the model that has the least sum of squares of the residuals out of all the possible

models. Using such techniques, we can see through the noise in the data to get

a good sense of the underlying generative process. However, although techniques

such as least-squares are successful at mitigating the impact of noise on model

fitting, they are likely to produce inaccurate model estimates in the presence of

outliers, points that do not fit a model, or when there are multiple instances of

models.

As an example, we present the task of fitting lines to four sets of data points

in the Cartesian plane. In this case, ordinary least-squares, with which the reader

is most likely to be familiar, minimizes the distance between the points and the

line in only the y dimension, and is thus unsuitable. Instead, we use a technique

that minimizes the sum of squared distance between the points and the fitted line.

In general, we could solve such a problem using a technique called Total Least

Squares [30]; however, in the specific case of two-dimensional points and lines, we

use a technique called Principal Components Analysis (PCA), which will be more
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(a) One model, no outliers (b) One model, one outlier

(c) Two models, no outliers (d) Two models one outlier

Figure 1.1: The impact of outliers and multiple models on PCA. In each diagram,
the ground-truth models are plotted in blue and the estimated model is plotted in
red.

thoroughly explained in Section 2.2. Under either name, the technique is a least-

squares approach, as its criterion for model selection is that the model minimizes

the sum of squared residuals. In Fig. 1.1, we use PCA on four data sets containing

one or more lines.

Each data set in Fig. 1.1 contains either one model or two, and either no

outliers or one. We first created the ground-truth models, or the underlying models

that represent the “actual” parameters of the lines, and then placed points on

each line; the points falling on these lines, and thus matching the models, are

called inliers. We then perturbed the points using zero-mean Gaussian noise with
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moderate magnitude (σ = 1%), and in two cases, added an outlier. We show the

ground-truth models in blue, and the model that PCA finds in red. Evaluating

PCA’s performance here is simple: if the red model matches a blue model, then it

has succeeded; if not, it has failed.

PCA succeeds at detecting a model when there is only one model and no outlier,

as in Fig. 1.1(a), and fails in every other case. The underlying cause is that PCA,

like every other least-squares technique, finds a model that minimizes the squared

residuals for every data point. When the data points arise from only one process

or underlying model, this is a satisfactory goal and PCA succeeds; however, when

points not arising from the same process are introduced, in either the form of

another model or outliers, PCA may fail: in Fig. 1.1(b), 1.1(c), and 1.1(d), the

line has to satisfy the mutually conflicting goals of minimizing the inliers’ residuals

and minimizing the residuals of an outlier, the residuals of the inliers of a second

model, or both. The natural question, which is the central question of this thesis,

is then the following: can an algorithm be formulated for detecting multiple models

in noisy and outlier contaminated data?

Two observations about the data we have just presented drive our presentation

of the answer to this question.

The first is that the similarity in failure of both the multiple model and outlier

cases suggests a natural intermediate step to the end goal: inliers to one model

are (unless the models intersect) outliers to another model. Stewart, recognizing

this in [28], referred to such points as pseudo-outliers, points that do not match

a model because they belong to another model. Traditional outliers, or points

that do not match any model, are referred to as gross outliers. An algorithm

that is capable of correctly detecting models in the presence of outliers of either

kind would have a better chance of leading to a solution to our overarching goal:

3



Table 1.1: The data points of Fig. 1.1(d) presented in tabular form.

X, Y X, Y X, Y
(0.17, 0.29) (0.14, 0.31) (0.49, 0.53)
(0.10, 0.82) (0.17, 0.08) (0.94, 0.69)
(0.85, 0.66) (0.52, 0.55) (0.14, 0.65)
(0.15, 0.45) (0.96, 0.02) (0.29, 0.50)
(0.26, 0.48) (0.71, 0.61) (0.10, 0.96)
(0.17, 0.29) (0.89, 0.68) (0.98, 0.69)
(0.11, 0.83) (0.09, 0.91) (0.67, 0.61)

finding a ground-truth model correctly is much better than finding a model that

fits neither ground-truth model. Thus, an outlier-robust single-model estimation

technique is a crucial first step.

The second observation becomes apparent when one compares Table 1.1 with

Fig. 1.1(d). The models are immediately apparent when looking at the plot; how-

ever, when presented with pairs of numbers, it is exceedingly difficult to recognize

anything. The ease with which humans can see the models in the plots suggests

a connection to computer vision, the study of making automated inferences about

visual data. The structure in the data is immediately obvious without the math-

ematical notion of a line or the precise measurements of the locations of the data

points; the detection is handled immediately and effortlessly by the human visual

system. How the visual system accomplishes this is not the subject of this thesis.

Instead, that it is accomplished not only gives us hope that algorithms exist but

also a cue that they have applications for understanding visual data.

In this thesis, we describe the development of contemporary solutions to the

task of estimating multiple models from noisy and outlier-contaminated data and

their role in computer vision. To limit our scope, we focus our discussion on gen-

eral algorithms, which may be readily applied to multiple domains with minimal

adjustment, rather than model-specific estimation techniques. Accordingly, tech-
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niques that are not generally applicable are not included. For instance, although

there is much work on plane detection as a particular instance of multi-model es-

timation, plane-specific algorithms are not discussed. Similarly, since algorithms

based on the Hough Transform (e.g., [42, 14]) are intractable for models with more

than a few parameters, they are not included.

Our presentation begins with a discussion of techniques for estimating single

models in outlier-free data in Chapter 2. Although they are not robust to out-

liers, such techniques serve as the building blocks for outlier-robust techniques and

provide a way to introduce the model classes that we will discuss later in this

thesis. In Chapter 3, we discuss a classic outlier-robust single-model estimation

algorithm, Random Sample Consensus (RANSAC) (1981) [15]. RANSAC is used

in or inspires a number of early multi-model estimation techniques, including Se-

quential RANSAC and MultiRANSAC (2005) [44]; other techniques, such as Mean

Shift (2002) [11], Residual Histogram Analysis (RHA) (2006) [43], J-Linkage (2008)

[32], Kernel Fitting (2009) [9], and PEARL (2010) [13] formulate their approach

to multi-model estimation in alternative ways. We discuss both the RANSAC-

oriented and some of the non-RANSAC-oriented techniques in Chapter 4.

Throughout the process, we will discuss a number of contexts in which the task

of estimating multiple models from outlier-contaminated data appears. In particu-

lar, we will focus on the detection of geometric figures (e.g., lines and circles) from

data sets of 2D points and the estimation of planar surfaces from correspondences,

or pairs of 2D points from pairs of images of a scene seen at two different views

that represent the same physical 3D location. A great number of other applica-

tions exist. For instance, in motion segmentation, motions (e.g., of a car and a

person) must be estimated from the movement of individual points; since the data

contains noise and may contain outliers, a multi-model estimation algorithm is a

5



sensible approach [29, 8]. Similarly, just as one can estimate lines from 2D point

sets, planar surfaces may be estimated from 3D point clouds [32, 34] as well as the

ones implicitly present in stereo depth maps [17].

The myriad of approaches and applications naturally leads to the question

of how we can compare the performance of multi-model estimation techniques,

perhaps to select the best one for a particular application, and what conclusions

we can draw about some of the approaches described? We introduce an approach

for multi-model estimation performance evaluation, and describe some results in

Chapter 5. Finally, in Chapter 6, we draw conclusions regarding the present state

and future directions of multi-model estimation algorithms.

6



CHAPTER 2

OUTLIER-FREE SINGLE MODEL ESTIMATION

Although we are interested in techniques capable of estimating models in the

presence of outliers, these outlier-robust techniques make use of past techniques

for estimation that are not robust. In general, these earlier techniques fall into two

categories: exact solutions, which fit the data points with no error, and estimates

that minimize an error metric. Included in the latter category is what is commonly

referred to as a least-squares estimate. As both are used in outlier-robust estima-

tion, we will naturally present both kinds of estimators for a number of classes of

models, although we will focus primarily on the estimates as they are more difficult

to derive.

We begin with the linear regression model commonly used to introduce and

motivate the least-squares approach in linear algebra classes. We then move on to

models more common in vision-related tasks, such as lines and circles, which we

fit with least squares solutions as well. We finish with a discussion of the least-

squares fitting of homographies, linear transformations that describe the change

in appearance of a planar surface under a viewpoint shift.

Throughout this chapter, we will make heavy use of basic linear algebra. Read-

ers having familiarity with matrices as systems of linear equations and basic op-

erations on them, along with vectors, including their addition and lengths, should

be comfortable. As is usually the case, mentally performing the operations in the

equations presented is enormously helpful in understanding them. We will denote

matrices in upper case bold (e.g., X), and vectors in lower case bold (e.g., u), and

the ith entry of a vector u as ui. We primarily use column-vectors; in the text,

where the typesetting of a column vector would be awkward, we denote the 3× 1

vector with entries x, y and z as [ x y z ]T , or the row-vector transposed.
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2.1 Linear Regression

Suppose we have data points, as in the introduction, X = {(x1, y1), . . . , (xn, yn)} ⊂

R2, and we wish to fit a linear function y = ax+ b to them. For instance, adapting

an example from [1], we might wish to find a model for how rapidly crickets chirp

as a linear function of temperature. Our data might then consist of temperatures

as x values and chirps per second as y values. If we only have two data points, we

can find an exact model using only middle-school mathematics: the slope, a, of

the line is given by

a =
y2 − y1

x2 − x1

(2.1)

and its y-intercept, b, is given by

b = y1 − ax1. (2.2)

If we have more than two data points, although it is possible that a solution will

fit every data point exactly, it is overwhelmingly likely that it will be impossible

to find such an exact solution. For instance, consider the data in Fig. 2.1: no line

goes through every data point, although a linear trend is apparent in the data.

Instead of finding a perfect fit (which is impossible), we must then seek the next

best option, a line that is the best, or least-“bad” fit according to some metric.

We must define what “bad” is. In our case, as we want a model to predict

the number of cricket chirps per second given the temperature, we want something

that quantifies how far off the prediction is. The natural approach is the y-residual:

given a data point (xi, yi) and a linear model y(x) = ax+ b, the y-residual is

|yi − y(xi)| = |yi − axi + b|. (2.3)

For mathematical convenience that will become apparent later on, we will take the

square of this, or (yi − axi + b)2 [22]. To extend this residual over all of our data

8



Figure 2.1: Cricket chirps vs. temperature (F) data

points, we simply take the sum, yielding the sum of squared residuals

SSR =
n∑
i=1

(yi − axi + b)2. (2.4)

A best-fitting model, if we use the y-residual, is then given by the model parameters

a and b such that Equation 2.4 is minimized.

It turns out that we can find such a model using linear algebra, but that we

must first express our problem in a satisfactory way; in particular, we must pose

our data fitting problem as finding a solution to a system of linear equations. If

we construct a n× 2 matrix X and n-dimensional vector y,

X =



x1 1

x2 1

...
...

xn 1


y =



y1

y2

...

yn


(2.5)

we can then express a model y = ax+ b as a parameter vector p = [ a b ]T . The

predictions of the model p on the data points X are then given by the product of

9



X and p

Xp =



x1a+ 1b

x2a+ 1b

...

xna+ 1b


. (2.6)

The ith row in Xp is the value y(xi); each row, or linear equation (when considered

with y), corresponds to one data point. Under ideal conditions (if the data fit the

model perfectly), we would have no y-residuals and yi = yi would equal y(xi) =

(Xp)i. Each row would be an exact equality, and we could find an exact solution.

However, we do not have such luck, but must instead use both X and y to find a

best p. An initial guess, which is correct, is to take y and Xp as vectors in Rn

and examine the distance between them, or the length of ||Xp− y||. The squared

Euclidean length of ||Xp− y|| is given by:√√√√ n∑
i=1

(yi − (Xp)i)2

2

=

√√√√ n∑
i=1

(yi − axi + b)2

2

=
n∑
i=1

(yi−axi+b)2. (2.7)

The square of the distance between the vectors (Equation 2.7) is the sum of squared

residuals (Equation 2.4). Therefore, if we can then find the p that minimizes the

squared distance between Xp and y, then we have the p that minimizes the sum

of squared residuals. Thus, our original problem is then reduced to finding this p.

Having posed our problem in terms of a system of linear equations, we can then

move onto the task of solving it using a result from linear algebra: given a system

of linear equations Xp = y for which there is no exact solution, one can find a

solution p̂ such that ||y −Xp̂|| is minimized.

As vector lengths are non-negative, and f(x) = x2 is always increasing over all

non-negative real numbers, any p̂ that minimizes ||y −Xp̂|| must also minimize

||y − Xp̂||2. Accordingly, the minimizing p̂ is the p that minimizes the sum of

10



Figure 2.2: Cricket chirp data with fitted line and residuals

squared residuals. This p̂ is given concisely by

p̂ = (XTX)−1XTy. (2.8)

For practical reasons, this is often solved in an alternative way [1, 22], but for our

purposes, it will suffice. Plugging in our cricket data into the definitions of X and

y and then using Equation 2.8, we find that p̂ = [0.1318 14.2311]T , or that the

best fitting linear function is y = 0.1318x+ 14.2311. This line, and the y-residuals

are plotted in Fig. 2.2.

Our derivation suggests the future utility of this approach. As Equation 2.8

nowhere makes use of our starting linear function, it seems reasonable that we

should be able to pose different problems in the form Xp = y and use least-

squares to find a squared residual-minimizing solution. By filling X and y with

values for which ||y−Xp|| represents an error metric that we want to minimize, we

can find similar best fits [1, 22]. Immediately, this means that we can extend our

approach, for instance, to a degree 2 polynomial y = ax2 + bx+ c or sine function

11



y = a sin(x) + b, which can be produced by keeping y as before and setting

X =


x2

1 x1 1

...
...

...

x2
n xn 1

 or X =


sin(x1) 1

...
...

sin(xn) 1

 (2.9)

respectively. Later in this chapter, we will examine more complex formulations.

Despite this apparent power, there is a potential drawback: acute readers may

have noticed that both Equations 2.1 and 2.8 are not defined for all possible values.

In particular, Equation 2.1 is undefined if x1 = x2, and in Equation 2.8, XTX is

not invertible if the columns of X are not linearly independent [22]. One pair of

points causing both conditions to fail is is (0, 0), (0, 1), a vertical line1. Generally,

any exactly vertical line cannot be fitted with least-squares linear regression. Since

our model is a linear function which cannot have an infinite slope. Nonetheless,

while {(1,−1), (1, 0), (1, 1), (1, 2)}, for instance, is unsuitable for producing a linear

function, it still defines a line. Further, consideration of even near-vertical lines

casts doubt on the wisdom of using the y-residual: we should really be seeking

to minimize the line-point, or orthogonal, distance. If we are to consider lines as

geometric objects in a principled way, we must then use a different approach that

works for all lines and which minimizes orthogonal distances.

2.2 PCA

To find an approach that works for all lines, we must turn to Principal Components

Analysis (PCA). For purposes of space and clarity, we will present it with only an

explanation of its computation and one property that is relevant to our application.

We will not present a justification of its correctness or an explicit demonstration of

1Any line passing through (0, 0.5) is in fact a linear function that minimizes the sum of squared
residuals.
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its application to the construction of a lower-dimensional representation of data,

but both may be found in [1, 3].

Given a set of data points X = {x1, . . . ,xn} ⊂ Rd, PCA is computed as follows.

1. Center X: compute the mean

µ =
1

n

n∑
i=1

xi (2.10)

and then subtract µ from each vector xi, yielding X ′ = {x1−µ, . . . ,xn−µ}

= {x′1, . . . ,x′n}. This is illustrated by the translation from Fig. 2.3(a) to

Fig. 2.3(b).

2. Compute the sample covariance: since X ′ has zero mean, this is simplified

to:

S =
1

n− 1

n∑
i=1

x′ix
′T
i , (2.11)

or a sum of column vectors multiplied by row vectors. For zero-mean two-

dimensional data X ′2 = {(x1, y1), . . . , (xn, yn)}, the sample covariance matrix

is

S =
1

n− 1

 ∑n
i=1 x

2
i

∑n
i=1 xiyi∑n

i=1 xiyi
∑n

i=1 y
2
i

 . (2.12)

3. Extract eigenvalues and eigenvectors: Compute the eigenvectors u1, . . . ,un

of S and their corresponding eigenvalues λ1, . . . , λn, sorted in descending

order of eigenvalues. For a given m < n, the m principal components of X

are given by {u1, . . . ,um}. The span of the first principal component, u1 is

drawn in Fig. 2.3(c).

It turns out thatH = Span{u1, . . . ,um} is them-dimensional hyperplane which

the members of X ′ best fit with respect to orthogonal distance: if projA(x′i) is the

orthogonal projection of x′i onto A, then H is the hyperplane that minimizes the
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sum of squared orthogonal distances between the points in X ′ and their orthogonal

projections onto H, or
n∑
i=1

||projH(x′i)− x′i||2. (2.13)

Since data points can be translated without affecting distance, we can translate H

and X ′ by µ to get the hyperplane that minimizes the sum of squared orthogonal

distances between the hyperplane and X, our original collection of points.

As a one-dimensional hyperplane is a line, this is of great interest to us for

line fitting: u1 translated by µ (the line between µ and µ + u1) is the line that

minimizes the sum of squared orthogonal distances (or residuals for generalized

line fitting); it is plotted in Fig. 2.3(d) along with the orthogonal residuals. As

a sanity check, we can examine its parameters if we take it as a linear function:

y = 0.1323x + 14.1920. The values are close to those for the least-squares linear

regression estimate, which is expected since the line is nearly horizontal (so the

distances of the orthogonal residuals are mainly in the y dimension).

We now show for the sake of completeness that PCA works for the vertical

line case for which Least-Squares linear regression fails. Let us take the points

X = {(1,−1), (1, 0), (1, 1), (1, 2)}. Their mean is µ = [1 0.5]T , which we subtract

from each of the points, yielding X ′ = {(0,−1.5), (0,−0.5), (0, 0.5), (0, 1.5)}. We

then compute the sample covariance matrix

S =

 0 0

0 5/3

 . (2.14)

S has only one eigenvector, u1 = [ 0 1 ]T , and its eigenvalue is 1. We finally

translate u1 with µ to get the final line, which is between µ + u1 = [ 1 1.5 ]T and

µ = [ 1 0.5 ]T . This is a vertical line, which is the desired result.
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(a) Crickets data (b) Centered crickets data

(c) Centered crickets data with span of principal
component

(d) Crickets data, principal component trans-
lated, and orthogonal residuals plotted

Figure 2.3: Illustration of PCA for cricket chirp line fitting

2.3 Circle Fitting

We now present approaches for fitting a circle to data. An exact fit for the three

points that define a circle may be found by constructing the circumcircle of the

triangle formed by the three points. However, it is not immediately clear how to

construct a sensible error-minimizing solution for more than three points.

Again, as was the case in previous fitting tasks, we are given a set of data

points X = {(x1, y1), . . . , (xn, yn)}, and we wish to find a solution that minimizes

an error metric. Conventionally, we parametrize a circle as its center and radius

(cx, cy, r); the points on it are defined as all (x, y) ∈ R2 satisfying

(x− cx)2 + (y − cy)2 = r2. (2.15)

The residual for a data point (xi, yi) and circle (cx, cy, r) is then naturally defined
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as the geometric distance between the point and the circle√
(xi − cx)2 + (yi − cy)2 − r. (2.16)

The correctness of Equation 2.16 becomes apparent when considered along with a

series of transformations which do not affect distance: first, center the coordinate

system at (cx, cy) and then rotate the coordinate system so that (xi, yi) lies on an

axis. Neither of these change distances; however, the distance between a point on

an axis and a circle with radius r at the origin is the distance to the center minus

the radius.

It turns out that there is no closed-form solution of the kind we found for linear

functions in Section 2.1 that minimizes the sum of squared residuals defined by

Equation 2.16; instead, the solution must be found with a closed-form solution for

an alternative error metric or using a numerical iterative approach [5]. Given the

theme of the chapter, we opt to present an alternative error metric that performs

well in practice even if it is not the ideal solution. Other approaches and their

relative advantages may be found in the work of Chernov, in particular [5].

The approach that we present is conventionally ascribed to Kasa [20], although

Chernov notes that the approach has been rediscovered by a large number of

subsequent authors. It makes use of the seemingly more complex parametrization

of a circle (cx, cy, r) as (a, b, c), where

a = 2cx

b = 2cy

c = r2 − (c2x + c2y).

(2.17)

As before in linear regression, we place the x values in a matrix X; however, we

also place the y values in X. Further, the vector we denoted y last time is filled
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with more complicated data, the squared distances of the points from the origin:

X =



x1 y1 1

x2 y2 1

...
...

...

xn yn 1


y =



x2
1 + y2

1

x2
2 + y2

2

...

x2
n + y2

n


. (2.18)

If we then introduce a vector containing our parameters p = [ a b c ]T , the

advantage of our alternative parameters becomes clear. Recall that given a system

of linear equations Xp = y, we can find a p̂ that minimizes ||Xp − y||, which is

simply
n∑
i=1

(yi − (Xp)i)
2. (2.19)

We now compute the value of (yi − (Xp)i) to see the form of each term ti of the

minimized sum. Fairly obviously, we start with

ti = x2
i + y2

i − (axi + byi + c)

= x2
i + y2

i − axi − byi − c.
(2.20)

Substituting in the more conventional parameters using the identities introduced

by Equation 2.17, we get

ti = x2
i + y2

i − 2cxxi − 2cyyi − (r2 − c2x − c2y). (2.21)

Readers may notice the two quadratic equations present in the resulting symbol

soup, tipped off by −2cxxi and −2cyyi; we may more sensibly arrange the ti as

ti =
[
(xi − cx)2 + (yi − cy)2

]
− r2. (2.22)

The portion in brackets is the squared distance to the center of the circle, or the

squared radius according to the data point, and the r2 is simply the squared radius

of the circle according to the model. Thus, if r′i is the radius according to point

(xi, yi), the model p found by the least-squares fit is the model that minimizes the
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(a) 40% Arc Coverage (b) 10% Arc Coverage

Figure 2.4: The circle giving the generative model is shown in blue; the estimated
circle is drawn in red.

sum of differences r′2i − r2. This is similar to, but not equal to the squared error

measurement of Equation 2.16, which was (r′i − r)2.

Although the error metric that we minimize is not the one we originally wanted

to minimize, it turns out that the results are sufficient for our purposes. The pri-

mary shortcoming noted by Chernov in [5] is that the Kasa fit tends to underes-

timate the radius of the circle if an insufficient portion of the circle is covered by

the data. Two fits to incomplete arcs (40% and 10%) are plotted in Fig. 2.4. In

each, the points have been subjected to zero-mean Gaussian noise with σ = 1%.

Despite having samples of only 40% of the arc, in Fig. 2.4(a), the Kasa fit achieves

an estimate scarcely indistinguishable from ground-truth. The observation about

underestimating the radius is still true, as can be seen in Fig. 2.4(b), where only

10% of the arc is sampled and the estimate is poor. However, it is not clear to what

extent the challenge of estimating such a circle is relevant to practical computer

vision tasks. Further, if such situations do arise, a combined Levenberg-Marquardt

iterative minimization with an algebraic initialization is capable of successfully fit-

ting the points with overwhelming probability, even at arc lengths as small as 1.5%

[5].
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(a) (b)

(c) (d)

Figure 2.5: A depiction of image transformations: (a) original image; (b) transla-
tion; (c) perspective; (d) Euclidean.

2.4 Homography Fitting

We examine one final model-fitting task before we introduce the problem of outliers.

Unlike the previous three models (linear functions, lines, and circles), our last

model does not correspond with any high-school level mathematics, but instead

gives us our first glimpse at a model with immediately apparent applications to

vision.

Consider any pair of the images depicted in Fig. 2.5. We can describe our view

of each of these images by, intuitively speaking, changing our viewing location

with respect to the original image: imagine looking at the mosaic in a museum.

Equivalently, we can describe how the original image itself is “transformed” into

the other image by describing the destination in the second image of each point

in the first image. Effectively, if x = [ x y ]T and x′ = [ x′ y′ ]T are points in
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the first image and second image corresponding to one another, for instance any

two endpoints of the red lines in Fig. 2.5, then the transformation between the two

images is described by some function T : R2 → R2 such that T ([ x b ]T ) = [ x′ y′ ]T .

Intuitively, that the image in Fig. 2.5 remains a quadrilateral under the trans-

formation suggests an estimate for how many parameters this function should have:

all we have to do to describe the change in x and y of each corner of the quadrilat-

eral, and so the transformation should have 8 parameters. This assessment turns

out to be correct: we can describe each of the four transformations in Fig. 2.5 with

the equation Hx = x′, where H is a 3 × 3 matrix, called a homography or planar

homography, containing the parameters of the transformation2. Such an equation

is presented below; note the 1 in the lower-right entry, giving us our 8 parameters.


a b c

d e f

g h 1



x

y

1

 =


x′w

y′w

w

 (2.23)

Throughout our discussion of homographies, we will use the term homography

to refer to the matrix H, the associated function T ([ x y ]T ) = H[ x y 1]T , and

the notion of the transformation in the abstract sense.

Unfortunately, to use a homography, we have to work with an alternate rep-

resentation of our data points. Specifically, [ x y ]T becomes [ x y 1 ]T , and

the result that we get, [ x′w y′w w ]T , must be divided by the parameter w to

yield the point that we actually want [ x′ y′ ]T . These vectors are referred to

as homogeneous coordinates, where the two vectors are equal if and only if they

differ only by scale [30]. One converts regular coordinates to homogeneous ones by

adding a 1 to the end and one converts homogeneous coordinates to conventional

2Mathematically, not every homography may be represented in this form with 8 parameters.
There are failure cases when the bottom-right entry in the matrix is 0. However, for the types
of transformations encountered in practice, setting the bottom-right element to 1 suffices.
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ones by dividing x′w and y′w by the final element of the homogeneous coordinate,

w. Homogeneous coordinates may have non-zero values in the first two entries and

a zero-valued third entry; these have no representation in conventional (x, y) form

[30]. In addition to being useful for computing things like the intersection of lines

(see Szeliski [30]), homogeneous coordinates permit us to use Equation 2.23: by

including the 1 in the vector, we can translate every point by a constant amount

in both the x and y dimension.

We now present one of the homographies used to create Fig. 2.5 to illustrate

how the parameters work3. Consider the transformation Fig. 2.5b, referred to as

translation, which may be written as (x′, y′) = (x+ tx, y+ ty). Using this, we may

derive two equations which help us derive a homography:

x′ = x+ tx = 1 · x+ 0 · y + tx · 1

y′ = y + ty = 0 · x+ 1 · y + tx · 1.
(2.24)

We still have the w to manage in the resulting homogeneous coordinate, but we

can simply fix it to 1 with:

1 = 0 · x+ 0 · y + 1 · 1. (2.25)

Plugging in, we get that the following satisfies our above constraints on:
1 0 tx

0 1 ty

0 0 1



x

y

1

 =


x′w

y′w

w

 =


x′

y′

1

 . (2.26)

Examining how w is calculated suggests that any transformation with a bottom

row of [ 0 0 1 ] is more “well-behaved” with regards to w than ones with non-zero

entries. Such transformations are referred to as affine transformations and have

3Note that in both Szeliski [30] and Hartley and Zisserman [18], the homographies are
parametrized differently from this way. We are following the notation from Wren’s document
[41] to accompany [12].
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special properties: for instance, one may represent the affine transformation with

a 2 × 3 matrix. These transformations are discussed in Szeliski [30] and in depth

by Hartley and Zisserman [18].

In general, however, we cannot simply write a clear explicit formula for (x′, y′)

in terms of (x, y) if we have something as complicated as the perspective trans-

formation in Fig. 2.5. However, our approach for guessing the parameter count

of the transformation suggests an alternate approach. If we have corresponding

points in each image, then we should be able to find the underlying homography.

We further hope that our approach should be able to find the best fit if there is

localization noise in the data.

Again, we start out with a collection of data points X = {(x1, y1, x
′
1, y
′
1), . . .,

(xn, yn, x
′
n, y

′
n)}; in this case, (x1, y1) in image 1 corresponds with (x′1, y

′
1) in image

2. We want to find a homography that best captures this transformation; how

we might obtain these correspondences will be discussed in a later chapter. If H

is the homography implicitly under consideration, then for each correspondence

i, we write the predicted locations of the points under the homography using the

following equations

H


xi

yi

1

 =


a b c

d e f

g h 1



xi

yi

1

 =


x̂iwi

ŷiwi

wi

 . (2.27)

If the points can be exactly modeled with a perspective transformation, then x̂i =

x′i and ŷi = y′i. Note for later that there is a wi for each point.

Before we write out a solution for finding an estimate for H, we summarize our

notation: (xi, yi) and (x′i, y
′
i) are the corresponding points in image 1 and 2 for the

ith correspondence. With respect to an implicit H, (x̂i, ŷi) is the mapped location

of (xi, yi) under the transformation H and wi is the associated scale parameter

that we remove to get (x̂i, ŷi).
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In the previous minimization setups, we have aimed at minimizing a single value

for each data point: in linear regression, we minimized the y-residual, and in the

Kasa circle fit, we minimized the difference between the squared radius according

to the point and the squared radius of the model. Here, we seek something more

subtle. Ideally, we would like to minimize the squared residuals:

n∑
i=1

(√
(x̂i − x′i)2 + (ŷi − y′i)2

)2

=
n∑
i=1

(x̂i − x′i)2 + (ŷi − y′i)2. (2.28)

In all of the setups that we have presented so far, each term of our target function

has generally corresponded with one row of the matrix X and vector y; however,

we can easily index the sum differently and there is no particular reason why the

x and y terms need to be produced in the same row. If, in the end, Equation 2.28

can be written as ||Xp− y||, that is all that matters. We will use a setup due to

Wren [41], which comes from a document to accompany the work of Criminisi et

al. [12]. We reshape our homography into an 8×1 vector, and, for each data point,

introduce a row for x and y values, resulting in a 2N × 8 matrix X and 2N × 1

vector y:

Xp =



x1 y1 1 0 0 0 −x′1x1 −x′1y1

0 0 0 x1 y1 1 −y′1x1 −y′1y1

...

xn yn 1 0 0 0 −x′nx1 −x′nyn

0 0 0 xn yn 1 −y′nxn −y′nyn





a

b

c

d

e

f

g

h



=



x′1

y′1
...

x′n

y′n


= y. (2.29)

We can see what value is minimized by a least-squares solution to this equation

by dissecting the 2ith row of ||Xp − y||. Note that y2i = x′i. Expanding out, we
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get

(Xp)2i − y2i = (axi + byi + c+ 0d+ 0e+ 0f − gx′ixi − hx′iyi)− x′i

= axi + byi + c− gx′ixi − hx′iyi − x′i

= axi + byi + c− x′i(gxi + hyi + 1).

(2.30)

Note that we have two of the entries from [ x′iwi y
′
iwi wi]

T in the above equation:

wi = gxi + hyi + 1 and x̂′iwi = axi + byi + c. Therefore Equation 2.30 is equal to:

(Xp)2i − y2i = axi + byi + c+ x′i(gxi + hyi + 1)

= x̂iwi − x′iwi

= wi(x̂i − x′i).

(2.31)

This is the x-residual multiplied by wi. Similarly, we find that

(Xp)2i+1 − y2i+1 = ŷiwi − y′iwi

= wi(ŷi − y′i).
(2.32)

Accordingly, the minimizing p minimizes

∑2n
j=1(Xp)j − yj)

2 =
∑n

i=1w
2
i (x̂i − x′i)2 + w2

i (ŷi − y′i)2

=
∑n

i=1w
2
i ((x̂i − x′i)2 + (ŷi − y′i)2),

(2.33)

or the squared distance between the predicted points and actual points weighted by

the square of the scaling parameter wi. This is not what we want since our residuals

are weighted by parameters that we do not have control over. Nonetheless, as we

may find an exact solution to the system of equations with 4 correspondences (i.e.,

where Equation 2.33 is zero), this setup provides our exact solution: the weightings

come into play only when the x and y residuals are not zero, and if the x and y

residuals are not zero, then we do not have an exact solution.

It turns out that there is no closed form solution to minimize the residuals.

Szeliski [30] articulates this and advocates an iterative method. One of the benefits

of an iterative approach is that with an initial estimate of the parameters p, one
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(a) No outliers (b) One Outlier

Figure 2.6: Difference images for a least-squares fit: Fig. 2.6(a) with no outliers;
Fit. 2.6(b) with one outlier. Black regions indicate perfect alignment.

can attempt to compensate for the resulting wi by using the current estimate of wi

and dividing through. The most principled approach, according to Szeliski, takes

this slightly further, and formulates the minimization so that it can be solved using

the iterative Gauss-Newton algorithm. On the other hand, Hartley and Zisserman

[18] do not advocate for iterative approaches, but instead present a more complex,

closed form equation. Nonetheless, although not theoretically perfect, the system

in Equation 2.29 performs well enough in practice. An example transformation

is given in Fig. 2.6(a): we compute the per-channel absolute difference between

the image transformed by the ground-truth homography used to generate Fig. 2.5

with the one transformed by the homography fitted to the red line correspondences.

The darker the image, the better the fit; in this case, apart from a very slight edge

from the white background where the image edges do not line up pixel-perfectly,

the resulting homography is well fitted.
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2.5 Conclusions

We have outlined the process of estimation for four classes of models: linear func-

tions, lines as geometric objects, circles, and homographies. In the first two cases,

we were able to obtain a closed-form solution to minimize our desired residual

function. In the other two cases, no such closed-form solutions exist and we used

alternative error metrics that perform sufficiently well in practice; however, in

each of these cases, we could also find an approximate minimum with an iterative

approach.

However, in each of these estimations, we implicitly assumed that there were

no outliers. We have already demonstrated in the introduction that PCA fails

in their presence. We might similarly insert an outlier data point into our linear

function fitting data set, for instance of a cricket chirping at 500 chirps per second

at temperature 80◦ F, and produce an incorrect fit. Further, the outlier need

not be so dramatic or apparent: to generate Fig. 2.6(b), we introduced an outlier

produced by taking a single point in image 1, transforming it using the correct

homography, and simply translating it by tx = −10, ty = 10 (less than 3% of the

width and height). Although there is only a single outlier, which is wrong by only

about 15 pixels, as can be seen, the fitted homography is significantly incorrect.

To handle such an outlier, we will have to turn to an entirely different paradigm;

this is the topic of the next chapter.
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CHAPTER 3

OUTLIER-ROBUST SINGLE MODEL ESTIMATION

The spectacular failure of least-squares techniques in the presence of outliers

suggests that we will have to take a different approach when estimating models

in outlier-contaminated data. In particular, we must abandon our sole criterion

of minimizing the residuals of every data point with respect to the model: as

we articulated earlier, this leads to issues where we must satisfy two mutually

conflicting goals (e.g., two models). In its place, we must adopt a different criterion

for measuring the quality of a model and a method for achieving this criterion.

To elicit some requirements for our new criterion and to preemptively demon-

strate that more standard robust estimators will not suffice in the context of vi-

sion, we present an analysis of Least Median of Squares (LMedS) fitting due to

Rousseeuw [26].

Rousseeuw argued that the median rather than sum or mean of the squared

residuals should be minimized. Intuitively, this makes sense: if the data has 25%

outliers, a model accurately describing the inliers will have low residuals for 75% of

the data. In fact, LMedS can be proved to correctly estimate models in data con-

taining up to 50% outliers so long as certain assumptions about data composition

hold.

It turns out that the practical calculation of LMedS renders such guarantees

invalid and that even if they held that they would be insufficient for the tasks in

computer vision. It is not immediately apparent how the minimizing model can be

achieved in closed form; implementations instead generally find an approximation

by generating a random sampling of models and then choosing the sampled model

that minimizes the median of squared residuals [28, 40]. Wang and Suter point out

in [40] that this is problematic: although we can argue that the approximations
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should perform sufficiently well, using an approximation eliminates any guarantee

of correctness. Further, Wang and Suter argue that even if we can implement the

exact solution to minimize the median of squares, LMedS is still inappropriate in

vision: the correctness proofs of LMedS assume a uniform distribution of outliers,

which fails to hold when there are pseudo-outliers belonging to another structure.

Finally, in computer vision, outlier compositions greater than 50% are common,

especially in the presence of multiple structures [40]. As an example, if there are

three structures in data with 50 data points each, each model sees 100/150 = 66%

outliers, even without any gross outliers.

Our purpose for introducing LMedS is not to denigrate it, but instead to elicit

some requirements for a satisfactory model estimation algorithm. One primary

concern is that the algorithm should be able to estimate models in the presence of

both gross outliers and pseudo-outliers: we are not presently concerned with the

estimation of multiple models, but if we are to analyze or even tolerate multiple

models, then our single-model techniques should provide one of the models rather

than an incoherent estimate. Further, our approach should be able to function

with a very high outlier composition, even if we cannot prove it: the assumptions

necessary for proofs and proof-invalidating approximations in practical calculations

for LMedS suggest that proofs of correctness have limited utility for this problem.

In this chapter, we introduce Fischler and Bolle’s celebrated Random Sample

Consensus (RANSAC) algorithm [15] for outlier-robust single model estimation,

which satisfies the above requirements. In the process, we also provide a domain

in computer vision in which robust model estimation is useful, the detection of

planar surfaces.
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3.1 RANSAC

We motivate RANSAC by reusing the data points from the introduction with a

slight modification to how we plot the data. Again, data points were generated

on lines, and then perturbed with zero-mean isotropic (independent and with the

same variance in each dimension) Gaussian noise with magnitude σ. As before,

red lines represent the model found by the technique and blue lines represent the

ground-truth data. However, we have added additional, thinner, lines representing

the region of points 3σ away from each model. This distance is chosen for its

customary use with the 1 dimensional Gaussian distribution, in which 99.7% of

the distribution falls within 3σ. In the two-dimensional case, a similar portion

of the distribution (about 98.9%) is within 3σ from the mean. Assuming that

we know the magnitude, or scale, of the noise of the data, 3σ functions as a

reasonable cutoff for determining whether a point belongs to a model: we will, in

the long run, reject only about 1.1% of points actually generated by the model

while maintaining a fairly tight bound on what we accept. These points and lines

are plotted in Fig. 3.1.

We can use these boundary lines to motivate a dramatically different goal than

either Least Squares or Least Median of Squares. Examining Fig. 3.1 suggests that

we can answer the question “how well does a model fit the data” by looking at

how many points fall near enough to the model. RANSAC uses this intuition that

strong models should fit a large number of data points to formulate a new criterion

for model selection: we want to find the model that fits the largest number of data

points.

Just as we did for least squares, we must similarly define a notion of how badly

points fit. However, as we do not want to re-derive RANSAC for each model class,

we do this in an abstract way. If we have a model µ and a collection of data points
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(a) PCA: One Model, No Outliers (b) RANSAC: One Model, No Out-
liers

(c) PCA: Two Models, One Outlier (d) RANSAC: Two Models, One
Outlier

Figure 3.1: Comparing RANSAC with PCA

D = {p1, . . . , pn}, we first define an error function R(µ, p) that maps a model

and point to a non-negative real number. In the case of lines, R is the line-point

distance, for circles, it is the circle-point distance, etc.

The points that fit to within a threshold are known as the model’s consensus

set; this threshold is commonly known as an inlier threshold, as it describes how

closely points must fit a model have to be to be considered its inliers. Formally,

we might define the consensus set of a model µ with respect to a data set D and

inlier threshold ε as

CS(µ,D, ε) = {p ∈ D : R(µ, p) < ε}. (3.1)
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Our goal can now be articulated formally as follows: given the data set D and inlier

threshold ε, find the µ that will maximize the size of the consensus set; formally,

find the µ̂ such that the cardinality CS(µ̂, D, ε) is maximized.

It is crucial to note that this goal has no formal mathematical basis or justifi-

cation, but is instead a heuristic. In contrast, one may derive that minimizing the

sum-of-squared errors, as in least-squares linear regression, is equivalent to find-

ing the maximum-likelihood solution under an assumption of Gaussian noise [3].

Due to the Central Limit Theorem, which asserts that the mean of a collection of

samples from most probability distributions converges to a Gaussian as the sample

size goes to infinity [21], this assumption might make sense in a large number of

contexts; thus, the goal of least-squares linear regression might be, in some cases,

the only sensible goal. We do not have such connections for the consensus-set

size heuristic, and in Chapter 5 we will see how this function may contradict our

notions of correctness.

The idea of implementing this goal should be met with skepticism: we are

proposing the search of an infinite multi-dimensional search space (the parameter

space) to maximize a complicated function. Recall that we were only able to solve

least-squares problems by posing them as solutions to systems of linear equations

and, in many cases, accepting alternative error metrics; in comparison to our goal

of maximizing the cardinality of the consensus set, the least-square problems look

trivial.

If we have only a few parameters, we could discretize our search space into a

finite number of bins and search those. This is more or less what the Hough Trans-

form does: roughly speaking, in the Hough Transform, each data point “votes” once

for the models that it matches, and models in the discrete search space which have

the most “votes” are the likely hypotheses (for more see Szeliski [30], Xu et al. [42],
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and Duda and Hart [14]). However, a näıve discretization approach of partitioning

each parameter’s space into a finite number of bins becomes intractable for models

with many degrees of freedom: for instance, discretizing the space for homogra-

phies into 64 bins in each dimension would require managing 648 = 2.81 × 1014

bins; if we only use 4 bytes per bin, this is an astounding 2048 terabytes. Even if

we turn to sparse methods for accumulating the votes, this seems insurmountable,

even to just find the bin with the maximum votes.

It turns out that there is a way to search such a large space effectively if

we are willing to accept the possibility of failing to detect the model. The critical

observation is that we do not start out with complete ignorance of what models are

likely to have strong consensus sets. In fact, the cues for which models are likely to

be strong are latent in the data we are provided. Consider Fig. 3.1: we could take

all the pairs of points in the data and compute exact models for them. This would

inevitably generate a very large number of models similar to our ground-truth

models (and thus with large consensus sets). Generalizing to arbitrary models, we

can take all of the subsets of the data with the minimum number of points required

to estimate a model, termed minimum sample sets, and search through these. We

also refer to a model generated by a minimum sample set as a minimum sample

model. We are searching a finite discretized subset of the model space just like

in the binning approach; however, we compute a data-dependent, and, we hope,

more informative discretization. If we denote the number of data points as N and

the minimum number of points required to estimate a model as MSS , then there

are only
(
N

MSS

)
models. For instance, if we have 1000 correspondences, we then

only wish to search through
(
1000

4

)
= 9.94× 1011 models.

Although this is 0.3% the size of our binned search space, it is still far too

large. To overcome this, we reiterate the observation that a very large number of
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the minimum sample models correspond to ground-truth models. If this is true,

then we can presumably look at M �
(
N

MSS

)
minimum sample sets: although it is

not guaranteed to succeed, we can be confident that if we use a sufficiently large

M , then we will probably find at least one corresponding to a ground truth model.

We will be able to distinguish such a model by its large consensus set. We can now

tersely describe RANSAC’s approach: approximately maximize the consensus set

size by searching through M models determined by randomly sampling minimum

sample sets from the provided data set.

Having now introduced its primary components (consensus set size as a model-

validity indicator and random sampling of the model space with minimum sample

sets), we present the RANSAC algorithm. Let D be the space of data points

(e.g., R2 for points) and M be the space of models (e.g., R3 for lines and R8 for

homographies); suppose we have the following functions and values:

1. the minimum number of points required to estimate a model, MSS ;

2. an inlier threshold ε;

3. an error function R :M×D → R+ ∪ {0};

4. a model estimation function E : DMSS →M;

5. a sampling procedure S : P (D) → DMSS, where P (·) is the power set func-

tion.

These define any particular domain (e.g., line fitting) sufficiently well that we

can describe RANSAC for any problem instance, which we present in Fig. 3.2.

As a note, we might apply an additional check on the size of the consensus set

of the resulting model. This procedure will always return some model; if we are

not are not sure whether any model is present in the data, it might behoove us to

ensure that we are not accepting a poorly-supported model.
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RANSAC(DataPoints ⊂ D,M ∈ N, ε ∈ R+)

1 // Keep track of the best model ranked by consensus set size
2 BestModel, MaxCSSize = None, −1
3 for i = 1 to M
4 // Sample a model and compute its consensus set
5 MSSPoints = S(DataPoints)
6 MSSModel = E(MSSPoints)
7 MSSModelCS = {d ∈ DataPoints : R(MSSModel, d) < ε}
8 if |MSSModelCS| > MaxCSSize
9 BestModel, MaxCSSize = MSSModel, |MSSModelCS|

10 return BestModel

Figure 3.2: The RANSAC algorithm

3.1.1 How many samples?

Note that RANSAC not only takes a data set, but also a number of samples to

draw. Intuitively, it seems that the number of samples would impact the prob-

ability of succeeding at our task. How the two are related is, in fact, crucial to

RANSAC’s justification. If finding the model with overwhelming probability takes

1011 iterations, then we have not improved at all, but in fact regressed.

We can evaluate the probability of RANSAC succeeding as a function of the

outlier composition and number of minimum sample sets. Let us assume that we

select the data points for the minimum sample set by simply sampling MSS data

points at random. If the probability of drawing an inlier to a particular model is p,

then the probability of picking a minimum sample set corresponding to this model

is pMSS since we have to get exclusively inliers to succeed1. The probability of us

drawing a minimum sample set that contains a non-inlier to the model in question

(gross outlier or pseudo-outlier) is then 1 − pMSS . Since an outlier will make the

1Technically, one should write this as sampling data points without replacement rather than
with replacement. However, for large enough N , whether or not we replace has a negligible
impact on the probability of drawing inliers and introduces notation that is more difficult to
manage. If one wants to be pedantic, we can set p to the smallest probability of picking an inlier,
and thus provide a lower bound on the probability.
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model inaccurate, this is the probability of failing to draw a coherent model in one

iteration of RANSAC. Now, suppose we draw M such minimum sample models:

the probability of getting one or more inlier-only minimum sample sets is simply

one minus the probability of getting no inlier-only minimum sample sets, or:

1− (1− pMSS )M . (3.2)

as is described in [30]: each drawing is independent and has (1−PMSS) probability

of failure. Szeliski gives a convenient identity to provide a number of “trials”

or minimum samplings to perform given the probability of drawing an inlier p,

minimum sample size MSS , and desired probability of success P :

M =

⌈
log(1− P )

log(1− pMSS )

⌉
(3.3)

where we use d·e to ensure that we have a whole number of samples.

Suppose we want to find a correct homography from 1000 correspondence data

points with 99% probability. If we have one model with 250 points, and 75%

outliers, then we set p = 250/100 = 0.25, MSS = 4, and P = 0.99. M is then

log(1− 0.99)/ log(1− (0.25)4) = 1176. This is significantly better than any of our

previous search spaces (9.94×1011 and 2.81×1014). Nonetheless, given the subject

of this thesis and our previous observation that pseudo-outliers dramatically boost

the effective outlier composition of a data set, it seems inappropriate to assume a

single model. Suppose instead that we have 75% gross outliers and 5 models with

50 data points each. The number of samples required is given by the application

of Equation 3.3 with an updated value of p, 50/1000 = 0.05. Plugging in, we get

736, 825; although this is much better than our previous values, it is way too large

for RANSAC to be tractable.

One fault with the previous analysis is that this is not the value that we ac-

tually want to compute for the case of detecting a single model out of many: we
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only want to find a coherent model, not one particular model. We provide an al-

ternative version of Equation 3.3 for the detection of any of the present models by

simply revising the probability of failure at any trial; the remaining mathematical

machinery remains correct.

Suppose we have W models with m points each and a total of n points (and

thus n−mW outliers). We will again view the main loop of RANSAC as a series

of trials. We succeed in any sampling round if we sample a coherent model, or

points entirely from any one model. We can therefore partition the event space

of each round into the following disjoint events: we sample entirely from model i,

which we denote as Mi, for each value of i; and we produce an incoherent sample

and thus fail the trial, which we denote as F . Since we have partitioned the event

space, 1 = P (F )+
∑W

i=1 P (Mi). For every i we define P (Mi) as uniformly selecting

points:

P (Mi) =
(mi

N

)MSS

. (3.4)

The probability of producing an incoherent model P (F ), and thus failing, is just

one minus the other parts of the partition of the event space:

P (F ) = 1−
W∑
i=1

P (Mi) = 1−
W∑
i=1

(m
N

)MSS

= 1−W
(m
N

)MSS

. (3.5)

The rest of Szeliski’s setup remains as before, and we find that

M = log(1− P )/ log

(
1−W

(m
N

)MSS
)
. (3.6)

We can see how many samples we must draw for the example that motivated

our original analysis of the multiple model equation: 5 models of 50 points each

(m = 50, W = 5), 75% gross outliers (N = 1000), 4 data points to a minimum

sample set (MSS), and a desired success probability of 0.99. Plugging in, we get a

disappointing 147, 364 models to sample2.

2Note that the seeming closeness to exact division by s = 5 to get this from the previous value
is a misleading; adjusting the values of MSS, W , and m results in ratios further from exactly 5.
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(a) A data set containing 5 models with 50
inliers each and 80% gross outliers

(b) PDFs of P (C | r,D) for each r

Figure 3.3: Geometric distance as a cue: Fig. 3.3(b) depicts the PDFs, marginal-
izing over all data points, of P (C) for a variety of radii

Although this new estimate produces satisfactory values for classes requiring

fewer points to estimate a model (for instance, if in the previous example we

require only two points, enabling 0.99 probability requires only 574 samples), this

approach is will not work for homographies: despite the seemingly surmountable

p = m/N = 50/1000, it is easy to forget that the total probability of Mi is further

weighted by pMSS−1, which is enormously small. Although RANSAC will work for

some models, if we want to succeed at high-parameter-count model estimation in

data with large numbers of outliers with high probability, we will have to improve

P (Mi).

3.1.2 Non-uniform sampling

The insight into improving our probability of sampling a coherent model is that

selecting each point independently and uniformly is not the best sampling strategy.

Once we have selected one point, to minimize the number of iterations, we want a
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sampling strategy for the remaining points that maximizes P (Mi). Let us denote

as C (for coherence) the event that after picking our first point, we pick a point

that permits the formation of a coherent model (i.e., a point sharing a model with

the first point). Under uniform sampling, P (C) is merely the proportion of points

in the data that match the given model, and so P (C) = p. P (Mi) can then be

written as follows:

P (Mi) = pP (C)MSS−1

The question then becomes: how can we get a better P (C) than just p?

Consider Fig. 3.3(a), which depicts a data set bounded in the unit square with

multiple models (5 with 50 inliers each with different colors) and 80% gross outliers.

Suppose we picked the point at the center of the concentric rings as our first point;

if we were to limit our uniform selection of the subsequent points to the innermost

ring, our probability of picking a coherent model would be dramatically improved:

compare the distribution of models within this ring with that of the entire image.

We can verify our intuition by computing the empirical distributions of the

proportion of points that belong to the same model in the circle of radius r centered

at an inlier point. Note that if we sample uniformly from within this region, the

proportion of points that belong to the same model gives the probability that the

next sampled point will permit the formation of a coherent model. Thus, the

proportion of points inside the ring centered at each p with models matching p’s

model gives P (C). We take a simple frequentist approach and, for a given radius

r using the data D from Fig. 3.3(a) we compute for every data point p ∈ D

P (C | p,D, r) =
|{q ∈ D : Dist(p, q) < r,Model(p) = Model(q)}|

|{q ∈ D : Dist(p, q) < r}|
, (3.7)

where Dist(·, ·) is the standard Euclidean distance and Model(·) maps data points

to their ground-truth models. We compute a density function estimate (more or

less giving a sense of the underlying distribution using a histogram of points) using
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a Gaussian kernel (with bandwidth auto-selected by R) to produce an estimate of

the PDF of the value of P (C | r,D). As can be seen, if we include every point

(r = ∞), then we get a sharp peak close to 0 (corresponding to P (c) = p):

if we sample uniformly, it is likely that P (C) = p. On the other hand, if we

set r = 0.1 (the size of the smallest ring in the image), P (C) is much more

favorably distributed; the median and mean are at about 0.34 (which is about

6 times more likely than p): if we sample within a 0.1 radius, we are likely to find

P (C) = 0.34. Running this procedure on correspondence data (considering the

geometric locations in only one image) produces similar results.

How much better is P (C) ≈ 0.34 for estimating homographies with many

outliers? We can plug P (C) into our updated version of P (Mi) and then plug that

into Equation 3.6:

M = log(1− P )/ log
(
1−W

(
p · 0.34MSS−1

))
. (3.8)

Setting P = 0.99 as before, W = 5, MSS = 4, and p = m/N = 50/1000, we

get an astonishing M = 467 samples. Let us now compare this with the previous

estimates: our uniform discretization of homographies had 2.81 × 1014 bins; our

initial discretization via minimum sample sets was 9.94 × 1011 models; and our

subset using repeated-uniform sampling required 147, 364 models to have a success

probability of 0.99. Needing only 467 samples for a 0.99 success probability is a

terrific improvement. We present the number of iterations necessary to achieve a

99% success probability as a function of P (C) in Table 3.1.

Although it provides insight into our problem, simply uniformly sampling

within a radius is problematic. If there is noise and if we exclusively sample

points that are close to each other, it will be difficult to accurately assess the true

parameters of the model; further, the approach will not work if an insufficient

number of points are within the radius. Nonetheless, the insight that closer points
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Table 3.1: Number of iterations required to have 0.99 probability of success as a
function of P (C)

P (C) M P (C) M
0.05 147364 0.25 1177
0.15 5456 0.3 680
0.2 2301 0.35 428

are likely to share the same class proves useful in practical problems.

Kanazawa et al. first introduced this concept in [19] for the purpose of plane

detection with a RANSAC-style procedure. Given a set of correspondences D =

{(x1, y1, x
′
1, y
′
1), . . . , (xn, yn, x

′
n, y

′
n)}, an initial correspondence (xi, yi, x

′
i, y
′
i) is se-

lected uniformly. Then, the remainder of the minimum sample set is drawn so that

a point (xj, yj, x
′
j, y
′
j) is chosen with probability determined by a distribution simi-

lar to a Gaussian over the squared distance between (xj, yj) and (xi, yi) (i.e., using

the locations in only the first image). Following the parametrization of [32, 44],

the probability of picking point pj = (xj, yj) having picked point pi = (xi, ji) is

given by:

P (pj | pi) =
1

Z
exp

(
−(xj − xi)2 + (yj − yi)2

σ2

)
(3.9)

where the value of Z, the normalization factor, is set to
∑n

j=1 P (pj | pi) to make

P (pj | pi) a valid probability mass function.

This is short-hand for a 2-dimensional isotropic Gaussian. Suppose we have a

joint density function P ′ for (xj, yj) with mean µ = [ xi yi ]T and covariance

Σ = σ2I2x2. As the x and y dimensions are independent, we can rewrite P ′(pj | pi)

as the product of two 1-dimensional Gaussians:

P ′(pj | pi) =
1√

2πσ2
exp

(
−(xj − xi)2

2σ2

)
1√

2πσ2
exp

(
−(yj − yi)2

2σ2

)
(3.10)
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which can naturally be combined to:

P ′(pj | pi) =
1

2πσ2
exp

(
−(xj − xi)2 − (yj − yi)2

2σ2

)
=

1

2πσ2
exp

(
−(xj − xi)2 + (yj − yi)2

2σ2

)
.

(3.11)

This is equation 3.9 up to the normalization factor and with a slightly adjusted

σ. However, when sampling, we can multiply each of the selection probabilities

with a constant since each probability retains the same proportion of the total

probability.

The only parameter to be chosen is σ, which controls the scale of the sampling:

if it is set too high, then the sampling strategy becomes effectively uniform; if

it is set too low, then only the very nearest neighbors of the first point sampled

are likely to be included. Various schemes have been proposed, ranging from

heuristic settings [32] to satisfying an identity relating the average distance with

the probabilities of selection [19, 44].

Kanazawa sampling can be applied in non-homography model estimation do-

mains as well. Toldo and Fusiello recognized its utility for the detection of geomet-

ric objects from 2D points [32], and in general, if model membership and proximity

are correlated, then Kanazawa sampling may be beneficial. In tasks where there is

salient information about model membership in the image, it may be possible to

further refine sampling or even supplant the standard distance function entirely:

in [24], a segmentation of medical image data provides an alternative distance

function for sampling that encodes the underlying dense data.

The more complicated distribution used in Kanazawa sampling necessitates

a different estimate for the number of models to sample. An estimate may be

found in [32], using the average inlier-inlier distance and inlier-outlier distance.

In the end, however, only the approximate value of the estimates is important in

any application: one cannot provide the actual inlier-inlier distance in a practical

41



problem, but rather an approximation, as doing so would necessitate solving the

problem itself.

3.1.3 Conclusions about RANSAC

Before moving on to an application of robust model estimation, we pause to sum-

marize our presentation of RANSAC.

Given a set of data points, we have exchanged the goal of minimizing squared

residuals for the goal of maximizing the size of the consensus set: the former works

well when there are no outliers but fails in their presence; the latter works well in

both cases. In exchange for a tractable approach, which requires on the order of

a few hundred to a few thousand iterations, we have to provide some additional

information: an inlier threshold ε, which defines the consensus set, and in some

cases, a method of sampling points that performs better than uniform selection.

The method is not guaranteed to work and is based on a heuristic, but as was

argued in the analysis of Least-Median-of-Squares regression at the beginning,

guarantees of performance are often of limited use if they come with inapplicable

assumptions about the composition of the data.

RANSAC is not, however, the only robust single model estimation algorithm.

A number of variants, mainly aimed at increasing efficiency are discussed in Szeliski

[30]. Other authors have focused on improving performance, including approaches

such as the Maximum Density Power Estimator [40], Adaptive Scale Kernel Con-

sensus [39], and the pbM-Estimator [4]. Surveys and limited evaluations of the

single-model case may be found in [40, 39], and [10] provides a full evaluation of a

number of the single-model approaches.
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(a) Image 0 (b) Image 1

Figure 3.4: Two views of a scene

3.2 RANSAC-based Plane Detection

We now provide an application of RANSAC to the detection of planar surfaces:

given a set of noisy and outlier-contaminated correspondences between two images,

we can detect planar surfaces by detecting a homography with RANSAC. In this

Section, we briefly discuss the detection of both the correspondences that form the

data points for the model-estimation task and the planar surfaces that form the

output.

Consider the two images in Fig. 3.4. A human is able to very rapidly recognize

that both images depict the same scene and determine which parts of one image

correspond with which parts of the other. Accomplishing this in the way a human

does is exceedingly difficult for a computer: to a computer, an image is nothing

more than a matrix of light intensities and thus a computer cannot make use of the

intuitive understanding of a human. Codifying this intuition would be so difficult

a task that it would make the subject of this thesis appear as easy as arithmetic.

We instead choose a more mechanical approach that can be easily performed by

computers.

We use the following approach. Suppose we could find a class of features re-
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peatedly, even under a variety of transformations of the image (e.g., a viewpoint

shift). Matching similar parts of two images might then be as simple as finding

the overlap in features in both images: if the same features can be found in images

regardless of transformations, then if two images share common data, we will find

some common features. As an unrealistic analogy, if one could extract enough

information about stars from images of the night sky to reliably distinguish indi-

vidual stars (e.g., Betelgeuse and Eta Carinae), then one could, subject to some

conditions, use the overlap in stars between two images to compute information

about the relationship between the two views.

We summarize a few qualities that we want in our features. We should be able

to detect features if they are present in the image: if we cannot reliably detect the

same features, then we cannot reliably find overlap. Further the features should

be easily localized: if we do not have accurate data about the location of a feature,

then it will be difficult to extract any meaningful information from the overlapping

features. Finally, it should be easy to figure out when features extracted from two

different images are the same, or probably the same.

As should be expected, we cannot satisfy these constraints perfectly but must

instead settle for doing a satisfactory job, which can be accomplished with a class

of features known as keypoints [30]. Szeliski and other authors naturally divide

the feature extraction task into two parts: detection, when feature locations are

detected, and description, when the image at these locations is encoded. Our qual-

ities then naturally map to these two steps: our detector should detect the same

features at precise locations and our descriptor should encode them in a way where

equality can be rapidly and effectively determined. A variety of techniques exist

for both steps; one early successful approach is Lowe’s Scale-Invariant Transform

(SIFT) [23]; a higher-level survey is contained in [30]. There are two commonly
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used end-to-end techniques which package a feature detector and descriptor to-

gether, namely the aforementioned SIFT due to Lowe [23] and Speeded Up Robust

Features (SURF) due to Bay, et al. [2]. Although the diagrams throughout this

section are generated using SIFT, there is enough similarity between SIFT and

SURF at the higher conceptual level that most of the discussion applies to SURF

as well.

A comprehensive description of how SIFT detects and encodes features is be-

yond the scope of this thesis. We instead seek to provide an intuitive high-level

overview of each step. We highly recommend [23] to the interested reader, as it

provides a well-written and remarkably accessible and enjoyable description. We

begin our presentation with the notion of image scale, which is integral to both

SIFT’s detection of keypoints and its encoding of their descriptors in a way that

permits the matching of keypoints, even if the scene’s overall scale changes dra-

matically.

Suppose one took a picture of a car at a distance of 1 meter, 20 meters, and 100

meters from the same angle (i.e., the photographer walked directly backwards). If

we look at the 25 × 25 pixel patch of each image depicting the same portion of

the car, there will be dramatically different data in the box. At 1 meter, we may

have a portion of a letter; at 20 meters, we may have the license plate box and

a quarter of the back of the vehicle; and at 100 meters, we may have the vehicle

itself. Different scales of an object will then pose significant problems to detecting

the same features.

To permit the matching of images at different scales, both SIFT and SURF

examine the image at different scales. These intuitively correspond with the ap-

parent scale of objects in the real world. Given an image, we cannot fill in details

to imitate a closer view (i.e., a lower scale). We can, however, imitate the effect of
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viewing the scene from further away (i.e., a higher scale) by repeatedly smoothing

and downsampling: a series of images, termed an octave, is computed by repeat-

edly smoothing an image but not downsampling; after the requisite number of

increasingly smoothed images are computed, the image is downsampled, and a

new octave is started. Smoothing is achieved by convolution with a Gaussian with

a given scale (for more on convolutions and image filters, see Szeliski [30]).

A number of images from different octaves appear in Fig. 3.5. For visualization

purposes, the images are equally sized; however, to communicate the relative size in

terms of pixels, a square (with 4 bins inside) with constant width of 20 pixels with

respect to pixels has been placed in the image. If we can come up with a feature

detector and descriptor that will function effectively at different scales, all we have

to do is search across a variety of scales to readily handle the aforementioned

problem of different image data.

Given a collection of scale-space representations of an image, SIFT computes

the difference between the images in each octave with adjacent smoothing param-

eters. Thus, if one visualizes an octave as a stack of o images with increasing

smoothness, SIFT computes the difference between images in the stack. This pro-

duces o − 1 difference images. The keypoints detected by SIFT are extrema in

these difference images: if we index the difference images of an octave as Di, then

x, y is a keypoint in image Di if it is the minimum or maximum of the pixels in

the 3x3 square centered at x, y in Di, Di−1, and Di+1. After a number of filtering

steps, for instance, to ensure that the keypoint is sufficiently larger or smaller than

its neighbors, these scale-space extrema are the keypoints provided by the detector

portion of SIFT.

The locations of SIFT features in our example image pair is presented in

Fig. 3.6. Note the tendency of keypoints to appear where there is lots of tex-
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(a) Original (b) Scale 1

(c) Scale 2 (d) Scale 3

Figure 3.5: A visualization of the scale-space: for visualization purposes, the im-
ages have been made the same size and to communicate the relative sizes in pixels,
a square with fixed width in pixels has been placed in the center of each image.

ture, and for keypoints to be virtually missing where there is little to no texture

(e.g., the sky or roof).

Given a feature location and scale, SIFT encodes the surrounding region of the

image by constructing a histogram of the gradient orientations at that particular

scale in a region whose size is fixed across scales; this binning system is roughly

represented by the squares in Fig. 3.5. As we argued earlier, the use of scale-space

representations surmounts the problem of the different scales, thus enabling SIFT

to be scale-invariant (i.e., its features can be detected in two images regardless of

scale). Rotational invariance is accomplished by detecting an orientation of the

patch at the given feature location; the square in Fig. 3.5 is then rotated in a

way such that the rotation relative to the underlying image data is identical if the

image is rotated.

The histogram computed by SIFT is turned into a vector in a high-dimensional

space, (R128) by concatenating the bins of the histogram. Intuitively, keypoints
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(a) Image 0 (b) Image 1

Figure 3.6: Two views of a scene: SIFT keypoint locations are drawn with crosses
having size proportional to keypoint scale

representing the same location in the real world will have very similar histograms,

and thus descriptor vectors. However, we cannot guarantee that a strict equality

will hold, and if we demand strict equality, we will erroneously misclassify many

good matches as not being equal. Consider then the Euclidean distance metric

between two vectors which, given x,x′ ∈ Rn, is defined as

ED(x,x′) =

√√√√ n∑
i=1

(xi − x′i)
2 . (3.12)

It seems sensible to compute the Euclidean distance between two vectors to get a

dissimilarity metric: large dissimilarity in histogram bins is penalized more heavily

on account of the squares, which roughly corresponds with what might be desirable.

Thus, although we cannot simply check equality in each entry, we have a way of

representing how similar two features are.

We now turn to the problem of matching the two images presented in Fig. 3.6

using the displayed keypoints.

Having run SIFT (or SURF) on two images, we have a collection of keypoints.

It is helpful to think of each of these as a 2-tuple in L×D, where L is the location

space (R2) and D is the descriptor space (R128). Let us denote I0 ⊂ L×D as the set
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of keypoints in image 0, and similarly I1 as the set of keypoints in image 1. We now

wish to, as we stated in the beginning, find their overlap. Although the location

component of the keypoints will be critical for making sense of the images, the

locations of the keypoints do not help us match keypoints without prior knowledge

of the scene. Instead, we must restrict our search to the descriptor space. The

problem is that we do not have an equality function, but instead a dissimilarity

measurement. To find the matching keypoints, we must transform this dissimilarity

into a notion more like equality.

It is tempting to either geometrically partition the descriptor space into equiv-

alence classes, or to define a strict cutoff on distance for equality. The first is

problematic simply because it requires drawing boundaries: if we partition the de-

scriptor space into non-singleton equivalence classes, then there will be keypoints

on either side of borders that are as close or closer to each other that other points

within their respective equivalence classes. The second will not work for more

subtle reasons; Lowe [23] says that this is empirically ineffective, since “some de-

scriptors are much more discriminative than others”: in effect, while descriptor

distance corresponds roughly to feature similarity, the same distance corresponds

to different degrees of dissimilarity for different pairs of keypoints.

The solution presented in [23] relies on the idea of distance, but uses a data-

dependent threshold. In short, for every keypoint in one image, we match it

with the keypoint in the other image that is closest with respect to the descriptor

distance, and accept the match if the next nearest keypoint in the second image is

far enough away (described as a ratio dr). The algorithm is presented in Fig. 3.7.

Here, DD(·, ·) is the descriptor distance between two keypoints. Intuitively, if

a keypoint in the other image is a really the match, then it will be the best match

by a large margin since it will be very similar; if a keypoints is not a particularly
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SIFTMatch(I0, I1, dr)

1 // Return the matches in I1 of the keypoints in I0
2 // Go through I0 and find the matching elements of I1
3 Matches = ∅
4 for k ∈ I0
5 // Search for the nearest and second-nearest neighbors
6 NN = arg min

k′∈I1
DD(k, k′)

7 NN2 = arg min
k′∈I1−{NN}

D(k, k′)

8 if DD(k,NN)/DD(k,NN2) < dr
9 // If the best-match is distinctive enough, accept the match

10 Matches = Matches ∪ {(k,NN)}
11 return Matches

Figure 3.7: The SIFT keypoint-matching procedure

good match (and probably incorrect), then other features will be similarly close.

The value of dr can be tuned to a value between 0 and 1. Lowe suggests a value of

0.8 in [23] as effective, although depending on how many outliers can be accepted

and how many true correspondences must be present, another value may be better.

A lower setting will reject more incorrect matches, but while also rejecting more

correct matches; a higher setting will reject fewer correct matches while rejecting

fewer incorrect matches. As dr approaches 1, every potential match is accepted.

This algorithm produces a collection of matches, or corresponding parts be-

tween the images. These matches are visualized in Fig. 3.8. As can be seen in

the structure of the lines, the SIFT matches include many actual matches that re-

flect the underlying structure of the scene; however, it is also immediately obvious

that some false matches are included as well: look for lines that disagree with the

general trend.

As we articulated in Chapter 2, we can fit a homography to describe the trans-

formation of a planar surface. We asserted that RANSAC was capable of detecting

a model, even in the presence of outliers and pseudo-outliers, and thus Fig. 3.8
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Figure 3.8: SIFT matches between images

seems to be a good test data set for RANSAC: it has outliers and multiple planar

surfaces.

As a review, recall that we repeatedly sample minimum sample sets to which

we exactly fit models; we keep track of the model that has the largest consensus

set (points that match the model within a given bound) seen so far. When we

have performed this a given number of times, we return the largest consensus

set we have seen and its model. Since we are applying RANSAC to a particular

problem domain, we also need to fill in the details of the requisite functions. Our

sampling function, S, is Kanazawa sampling in one image; our estimation function,

E is given by the exact solution to the system of equations in Equation 2.29; the

error function, R is given by the Euclidean distance between the projection of the

location in image 1 under the homography and the location in image 2. We set

the number of iterations to 1000 and the inlier threshold, ε, to 2 pixels.

As can be seen in Fig. 3.9, the results are quite good: the correspondences

selected by RANSAC overwhelmingly belong to one of the dominant planar sur-

faces. A few correspondences selected do not fit the intuitive interpretation of the

plane. However, note that the homography does not incorporate any knowledge

about the underlying dense scene information. Thus, although from the point of

view of homographies, the points represent a coherent model, in our particular ap-
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Figure 3.9: RANSAC results

Figure 3.10: SIFT matches, less the RANSAC results

plication of model estimation, homographic coherency is strongly correlated, but

not equivalent to planar coherency.

As an aside, in the particular case of planar surface detection from correspon-

dences, outliers with respect to location may be eliminated. In [16], (also used

in [25]) a triangulation of the points was used to eliminate such spurious outliers

by location: given a group of points that fit a homography, the Delaunay trian-

gulation of the correspondences’ locations in one image is computed; edges with

length more than one standard deviation above the mean are removed, and the one

or more resulting disconnected subgraphs are treated as separate planar surfaces

(with insufficiently large clusters being discarded).

We conclude this chapter with the presentation of our original figure depicting

SIFT matches with one adjustment: we subtract the correspondences detected
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by RANSAC. This is shown in Fig. 3.10. The removal of the initial matches

has significantly thinned the density of correspondences on one of the surfaces,

but (as the result of RANSAC matches a single plane), the remaining planes’

correspondences are retained.

The presentation of the remaining correspondences may motivate an observa-

tion: if we were able to detect a structure from data with W structures, should we

then not be able to detect a structure from data with W−1 structures? This obser-

vation motivates the first algorithm that we present in the next chapter, Sequential

RANSAC.
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CHAPTER 4

OUTLIER-ROBUST MULTIPLE MODEL ESTIMATION

As was suggested at the end of the last chapter, we should be able to repeatedly

apply RANSAC to extend RANSAC to the multiple model case. This is conven-

tionally referred to as Sequential RANSAC [44, 43, 32, 9], and is such a simple

concept that no particular author is given credit for its invention.

Starting in 2005, considerable interest arose in whether this approach could

be improved upon1. Zuliani et al. noticed a shortcoming of Sequential RANSAC

and introduced a data set that illustrated it and an algorithm, MultiRANSAC

[44], that they claimed corrected it. Although it makes a number of important

changes, MultiRANSAC remains fundamentally tied to RANSAC’s view of the

model-estimation problem as it uses criteria defined by consensus sets to find its

models.

More recent authors have moved away from searching using consensus sets, in

favor of other criteria. In this chapter, as we introduce later algorithms, we discuss

shortcomings of formulating model estimation with consensus sets. The approach

of sampling models with minimum sample sets is retained in these algorithms;

however, later developments use the models as a method of making approximate

inferences about the model space (akin to Monte Carlo methods) rather than as

candidate models; Kanazawa sampling then becomes akin to a data-driven prior

on models.

Zhang and Kosecká proposed Residual Histogram Analysis [43] in 2006, which

searches for models using histograms of residuals. Although their method has been

1Mean Shift [11], and a number of robust single model techniques, such as MDPE [40] or
MLESAC [35] which may be applied in sequence, were proposed before 2005. Nonetheless, Mean
Shift was not originally applied to model estimation, and MDPE and MLESAC are single-model
estimation algorithms. Thus the focus on general multi-model estimation algorithms effectively
began with Multi-RANSAC.
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superceded by other algorithms with respect to performance, as we will see in

Chapter 5, the concepts behind it are crucial in the development of later methods,

and the attempt to minimize reliance on a-priori knowledge about that data set

has been duplicated in later methods. Toldo and Fusiello introduced J-linkage [32]

in 2008; the conventional approach of RANSAC is inverted, and models are found

by clustering points bottom-up according to which points they match. In recent

years, multi-model estimation techniques have become even more removed from

the original approach of RANSAC: Chin et al.’s Kernel Fitting [9] (2009) performs

model estimation with a variety of linear algebra techniques applied to the output

of a kernel function. In this chapter, we discuss each of these algorithms in turn.

Although they are not covered in this thesis for space considerations, there are a

number of other methods that deserve mention. Comaniciu and Meer’s mean shift

technique [11], which has applied to tasks such as filtering and segmentation, can

also be used for multi-model estimation. Delong et al. recently posed multi-model

estimation as an energy fitting problem in [13]. Finally, any other outlier-robust

model estimation technique mentioned in Chapter 3 may be used in sequence for

multi-model estimation.

Two strong themes in multi-model estimation will be ubiquitous in our pre-

sentation of these techniques. The first, as was hinted at before, is that there is

a focus on finding a space to search that is both effective and convenient. Recall

that although we were able to provide a closed-form solution for outlier-free prob-

lems, we had to resort to a technique that amounted to educated guessing when

we introduced outliers and thus no longer had a mathematically convenient func-

tion to optimize. Although consensus sets and model-parameter spaces are easy to

comprehend, we will see that many newer approaches seek solutions in alternative

ways and in fundamentally different spaces.
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The second is that there will be a focus not only on how well approaches

perform, but also on how many parameters need to be supplied. The motivation

for this is mundane: if a technique requires a parameter which cannot be provided

in a particular application, then the technique cannot be used. These techniques

often need to operate in an unsupervised fashion, in which poor performance due to

incorrect assumptions or guesses about the data cannot be corrected by a human.

For instance, in [16], the authors decided to use J-linkage instead of MultiRANSAC

since in their particular problem of finding planar surfaces, the number of planes

could not be specified a priori as required in MultiRANSAC.

Although it seems tempting to simply count the number of parameters required

by an algorithm to assess how much prior information or tuning it will need, such

logic is fundamentally flawed. If the algorithm does not require a data set statistic,

for instance the inlier threshold ε, but instead has some internal parameter that

controls the same mechanisms, using the algorithm becomes more difficult: rather

than requiring a straight-forward data set that can often by provided a-priori by

manually looking at the range of input data, one has a complicated parameter

whose impact on the output is difficult to assess. In short: although requiring

less prior knowledge is useful, it is not helpful if it makes it more difficult to use

an algorithm. We thus not only report the input parameters (such as the inlier

threshold and number of iterations), but also any internal parameters that need

to be set and which might affect performance.

Table 4.1 gives the notation of the various parameters that are used by the

algorithms. To whatever degree possible, the notation is consistent with existing

literature; this is inevitably not always possible, and there may be conflicts. An

internally consistent notation has then been chosen to facilitate comparison rather

than mimic the notation of each.
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Table 4.1: Notation for algorithm parameters

Symbol Meaning
ε The inlier threshold; determines if a point is in a consensus set
W The number of models in a data set
T A lower bound on the size of a consensus set
N The number of data points
M The number of randomly sampled minimum sample sets

SequentialRANSAC(DataPoints ⊂ D,M ∈ N, ε ∈ R+, W ∈ N, T ∈ N)

1 // Keep track of the models we have found
2 Models = {}
3 while (!StoppingCondition)
4 // Get a good model with RANSAC
5 BestCS = RANSAC(Data, M , ε)
6 if SatisfactoryModel(BestCS)
7 Data = Data− BestCS
8 Models = Models ∪ {BestCS }
9 return Models

Figure 4.1: The SequentialRANSAC algorithm

We begin the material by continuing where we left at the end of the last chapter,

the sequential application of RANSAC.

4.1 Sequential RANSAC

As was discussed earlier, we can apply RANSAC sequentially to yield a collection

of models. Since there is no one clear originator of Sequential RANSAC, there are

naturally a number of different approaches. We will attempt to capture some of

the varieties in our presentation while maintaining the domain-independence of the

approach, and suggest reasons why each might be superior in any given situation.

We begin with the algorithm itself, which we present in Fig. 4.1. In addition

to the usual bold-face for keywords (e.g., if, while), we have indicated portions

of the code where authors differ with boldface. We present a sample of various
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implementations, and how they correspond to the above algorithm. In [19], al-

though the RANSAC step is slightly modified from the usual form of RANSAC,

the model-acceptance test is a simple consensus set threshold, and the algorithm

terminates when a model has been rejected; this consensus-set-size threshold is

implicitly adopted in the implementation used in the evaluation section of [32]. In

[38], there is no acceptance test, and the algorithm’s termination is not explicitly

given. In [44, 9], no acceptance test is similarly given, but from other parts of

the paper, it may be deduced that the algorithm terminates when W models have

been found.

Thus, one can formulate the stopping and acceptance conditions as a function

of either W or T . Depending on the proposed usage and available parameters,

either parametrization may make more sense. We note briefly that if T is the

minimum ground-truth consensus set size, then the threshold should be set to αT

for some α with 0 < α < 1: RANSAC may not find precisely the same data points

as the ground-truth, and requiring it to achieve this will result in the improper

rejection of nearly perfect models.

Zuliani, Kenney and Manjunath recognized a shortcoming of this sequential

approach: poor model estimates in one round may degrade estimates in a later

round [44]. To demonstrate this, they produced a data set, known as the stairs,

which is potentially ambiguous in interpretation. An instance of this data set

with 5 stairs (Zuliani et al. originally used 4), and two possible interpretations are

presented in Fig. 4.2. In Fig. 4.2(a), the underlying data is presented; each point’s

ground-truth label is represented with a color. The interpretation that is obvious

to a human is presented in Fig. 4.2(b) in which the estimated models correspond

with only one ground-truth model. The “incorrect” interpretation is presented

in Fig. 4.2(c): each of the estimated models lies across each ground-truth model.
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(a) Data (b) Correct Interpretation (c) Incorrect Interpretation

Figure 4.2: The stairs data set and two interpretations

Sequential RANSAC, Zuliani et al. observed, tended to produce results falling into

the “incorrect” category.

One of the primary causes of this behavior is RANSAC’s sole criterion of max-

imizing the consensus set2. Although we suggested earlier that consensus set size

was a good measure of model validity, using this as the only criterion seems short-

sighted. Consider Fig. 4.3, in which we present 50 models generated via Kanazawa

sampling with σ = 0.05. If geometric distance is correlated with model member-

ship, then it perhaps might make sense to consider not only the size of a model’s

consensus set, but also, in some sense, how likely the points in the consensus set

are to share a model. The points in the consensus sets of the correct models in the

stairs data set, informally speaking, share a larger number of models in common

than the points in the consensus set of the incorrect models. We will later formally

capture some of this intuition in our discussion of J-linkage in Section 4.4, which

moves away from consensus-set-oriented approaches.

This problematic behavior is further exacerbated by the sequential approach,

as observed by Zuliani et al. in [44]. The initial selection of an incorrect model,

such as an incorrect stairs model, contributes heavily to later failure in model

2[40] provides an interesting discussion of the two approaches of either maximizing the con-
sensus set (i.e., RANSAC) or the goodness of fit (i.e., Least Squares) and its proposed algorithm
purports to do both.
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Figure 4.3: 50 models sampled with Kanazawa sampling (σ = 0.05)

estimation. As an illustration, suppose we have a stairs data set with 5 stairs with

50 points per model. Then, suppose that our initial model estimate from RANSAC

spans the stairs, including 15 points from each stair step. Then, when we update

our data set by removing the consensus set of the model, we have five models with

35 points each. Now, suppose we are considering either a “correct” or “incorrect”

interpretation. The correct interpretation of each model will have only 35 points;

thus, if one can find a stair-spanning model that has, on average, more than 7

points per stair, then the “incorrect” interpretation will be selected for a larger

consensus set again. This further reinforces the incorrect interpretation.

4.2 MultiRANSAC

Zuliani, Kenney, and Manjunath argued that Sequential RANSAC’s failure was

rooted in its sequential nature and that a parallel approach, which they termed

MultiRANSAC [44], was superior. Intuitively, MultiRANSAC searches for the best

collection of W models by iteratively updating a collection of W models with W

new minimum sample models using a fusion procedure that merges collections of

consensus sets. Crucially, MultiRANSAC enforces that the W models have disjoint
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consensus sets as a way of ensuring that W distinct models are captured. To see

how this might be necessary, consider the stairs data set, but where one model has

twice the number of points. One might be able to find two models that capture 60%

of the large ground-truth model with two different models which capture slightly

different subsets. Then, if there are 5 models to be estimated, one might get larger

consensus sets by selecting two of these models, followed by three models from the

remaining 4 ground-truth lines. If we require disjoint consensus sets, then this can

be avoided entirely: having selected the larger of the two models fitting the largest

ground-truth model, we are unable to select another model that corresponds with

the same ground-truth model as it would share points with our initially selected

model.

We now fill in the lower-level details of MultiRANSAC. We first describe the

procedure by which two collections of W consensus sets may be combined. The

merged set of consensus sets is constructed by taking the current 2W consensus

sets in descending order of cardinality, subject to the constraint that the final set

must be disjoint. This algorithm is depicted in Fig. 4.4.

There are two points of divergence between the above and the description found

in [44]; we address them here to assuage the reader. Line five of UpdateCS, as

described in [44] should read every consensus set, rather than any, as described by

the preceding paragraph. Further, the description of UpdateCS does not address

what should be done if no disjoint fusion can be achieved; here, we have elected

to simply return the consensus set that we are updating. In practice, while the

fusion failure case is by no means common, it is common enough that it needs to

be acknowledged.

The main body of MultiRANSAC is similarly straightforward, and detailed in

Fig. 4.5. W minimum sample sets are repeatedly drawn disjointly, and UpdateCS
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UpdateCS(CurrentCSS ⊂ D, ProposedCSS ⊂ D, W ∈ N)

1 // Update the set of W current consensus sets, CurrentCSS , using
2 // a new set of W consensus sets, ProposedCSS
3 NextCSS = ∅
4 for CS ∈ (CurrentCSS ∪ ProposedCSS ) in decreasing cardinality
5 // Stop when we have W models
6 if |NextCSS | == W
7 break
8 // If we can add CS while maintaining pairwise disjointness, add it
9 if CS ∩ CS ′ == ∅ ∀ CS ′ ∈ NextCSS

10 NextCSS = NextCSS ∪ {CS}
11 // If we fail, return the best-so-far set
12 if |NextCSS | < W
13 return CurrentCSS
14 return NextCSS

Figure 4.4: The UpdateCS subroutine

is used to fuse a “running-best” consensus set collection with the newly drawn set.

A bound on the number of iterations is computed using the collection of consensus

sets.

MultiRANSAC requires prior knowledge of the number of models, W , in order

to function; however, in exchange, it is also able to automatically estimate the

number of iterations required for a given probability of success. To do this, it uses

the size of the current consensus sets NI,1, NI,2, . . . , NI,W to estimate the size of the

ground truth consensus sets. The probability, according to [44], is then a function

of the current consensus sets, number of models W , and number of data points N ,

q =

(
NI,1

MSS

)(
NI,2

MSS

)
· · ·
(
NI,W

MSS

)(
N

MSS

)(
N−NI,1

MSS

)
· · ·
(
N−

PW−1
w=1 NI,W

MSS

) . (4.1)

The key to understanding Equation 4.1 is recognizing that NI,j here gives an

estimate of the ground-truth model j. The numerator is then the number of ways

to pick W minimum sample sets from the ground-truth models. The denominator

is approximately the number of ways to pick a collection of W minimum sample
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MultiRANSAC(DataPoints ⊂ D, W ∈ N, ε ∈ R+)

1 h = 0; Iters = ∞
2 CurrentCSS = ∅
3 while h ≤ Iters
4 h = h+ 1
5 // Build a consensus set collection in ProposedCSS, a set of W sets
6 ValidDataPoints = DataPoints ; ProposedCSS = ∅
7 for w ∈ 1, . . . ,W
8 MSSModel = E(S(DataPoints))
9 MSSCS = {d ∈ ValidDataPoints : R(MSSModel , d) < ε}

10 // This ensures disjointness
11 ValidDataPoints = ValidDataPoints −MSSCS
12 ProposedCSS = ProposedCSS ∪ {MSSCS}
13 if CurrentCSS 6= ∅
14 CurrentCSS = UpdateCS(CurrentCSS ,ProposedCSS ,W )
15 else
16 CurrentCSS = ProposedCSS
17 Iters = UpdateIter(CurrentCSS )
18 return CurrentCSS

Figure 4.5: The MultiRANSAC algorithm

sets in sequence, removing their consensus sets, as is done in the main loop. This

is then the probability of drawing a correct collection of W ground-truth models

in sequence. One then takes q, and a desired bound on the probability of failure,

εFail, and computes

UpdateIter(CSS ,W ) =

⌈
log εFail

log(1− q)

⌉
. (4.2)

N may be lowered if Kanazawa Sampling is used: the effective number of points

one is selecting from at any given time is not N , but some N̂ < N since certain

points are so improbable for selection that they will not be chosen for practical

purposes. However, we found that the method for computing N̂ given in [44]

sometimes produced impossibly low values. Since the use of N̂ can only increase

the estimated probability of success on any given round, it can only decrease the

number of iterations expected before a successful drawing. If time is not of a
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concern, using N should suffice.

The themes discussed earlier – the difficulty of choosing an appropriate space

and the problem of necessary a-priori knowledge about the data – reappear in the

analysis of MultiRANSAC.

MultiRANSAC’s use of consensus sets reveals a fundamental shortcoming of

consensus-set-oriented approaches, the difficulty of disambiguation of models. Be-

cause multiple minimum sample models are drawn in both Sequential and Mul-

tiRANSAC, and each will inevitably have slightly different parameters, we might

draw a model redundantly (e.g., Fig. 4.6(a)). Both Sequential RANSAC and mul-

tiRANSAC aim to prevent this by enforcing a disjointness constraint. Sequential

RANSAC does this by removing inliers after each model has been discovered; Mul-

tiRANSAC does this in UpdateCS. Unfortunately, as can be seen in Fig. 4.6(b),

ground-truth models may not be disjoint, and a large number of the points may

belong to two ground-truth models. One might wish to propose some sort of

disjointness-measurement that distinguishes different models intersecting (e.g., see

Fig. 4.6(b)) from two instances of the same model with different parameters (e.g.,

Fig. 4.6(a)). If we are to only use the consensus sets, however, this seems unlikely

to succeed: the genuinely different models of Fig. 4.6(b) intersect at more points

than the redundant models of Fig. 4.6(a) (6 vs. 3). We will show in a the final

section how this disjointness criterion ends up causing MultiRANSAC to fail on

the stairs example, illustrating the difficulties of model estimation with consensus

sets. If we cannot distinguish two models in the point space, then it might makes

sense to work elsewhere; later authors have noted these sorts of issues, and have

overwhelmingly moved away from consensus sets.

More mundanely, MultiRANSAC requires a-priori knowledge of the number of

models in the data. As was mentioned earlier, in many unsupervised situations,
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(a) Two Stairs Models (b) Two Star Models

Figure 4.6: Two manually selected non-disjoint models. Left: intersection of 3
points; right: intersection of 6 points.

this is inappropriate. Nonetheless, in other situations, especially in constrained

environments or tasks, this may not be an issue.

4.3 Residual Histogram Analysis

Residual Histogram Analysis (RHA) [43] reformulates the model-estimation task

in an alternative space, avoiding both the problematic consensus-set-oriented ap-

proach and the requirement of knowledge of data set statistics. Instead of searching

for strong models as models with large numbers of points in their consensus sets,

RHA finds strong models using peaks in histograms of the residuals of points with

respect to a collection of models. The intuition is that the modes in histograms

are generated by models corresponding to ground-truth structures.

M minimum sample sets are drawn, and the residuals between each pair of

model and points are computed. Histograms are computed for each point’s resid-

uals with respect to all the models and smoothed, and modes are sought in each

histogram. The number of models is determined by the median number of modes

found over all data points. Finally, the actual models are selected from the mode
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RHA(DataPoints ⊂ D, M ∈ N, Tτ ∈ R+)

1 Generate M minimum sample models Models
2 RS [i] = {R(DataPoints [i],m) : m ∈ Models}
3 Set Histograms [i] as the smoothed histogram of RS [i]
4 Modes [i] = FindModes(Histograms [i], Tτ )
5 ModelCount = median mode count in Modes [1..N ].
6 // Get the data points that correctly determined the model count
7 Valid = {i : |Modes [i]| = ModelCount}
8 // Get a data point whose histogram bins determines the models
9 Strongest = arg max

s∈V alid
PeakStrength(s)

10 // and another data point from S
11 Arbitrary = RandomlySelect(V alid)
12 return ModelDetect(Strongest, Arbitrary)

Figure 4.7: The main RHA Algorithm

bins of two selected data points. The approach is detailed in Fig. 4.7. This process

requires no knowledge of ε, W , or T ; in exchange, however, it requires seeking

modes in a noisy histogram, which is accomplished using a mode-distinctiveness

measure.

We now present the details of the RHA algorithm. Generating the smoothed

histogram is relatively straight-forward and we instead present an overview of

the two complicated steps, the RHA mode-detection algorithm and the model

estimation step. We present the mode detection scheme at a fairly high level,

since the low-level details render presentation cumbersome and are not conducive

to understanding.

We begin with the mode finding algorithm, whose code appears in Fig. 4.8. The

1D-histogram mode finding approach begins with the actual peaks and valleys

of the smoothed histogram (i.e., any bin whose neighbors are both smaller or

larger), and examines the modes (i.e., peaks) in increasing distinctiveness. The

distinctiveness of a mode is defined as the ratio between it, and the shallower (and

thus higher) adjacent valley. So, if there is a mode in a histogram H [1..B] (with B
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FindModes(H [1..B], Tτ )

1 AcceptedModes = ∅; Extrema = [ ]
2 for i = 1, . . . , B
3 if H [i] is an extrema (mode or valley)
4 Extrema = Extrema + [i]
5 Update Extrema by removing repeated modes and valleys
6 while there is at least one mode in Extrema
7 l = the least distinctive mode
8 // Check if the mode is distinctive enough
9 if τ(l) > Tτ

10 AcceptedModes = AcceptedModes ∪ {l}
11 delete l from Extrema
12 Update Extrema by removing repeated modes and valleys
13 return AcceptedModes

Figure 4.8: RHA’s mode finding algorithm

for bins) at j, and the adjacent minima (which are probably not in adjacent bins)

are in bins i and k, then the distinctiveness measurement τ(j) is:

τ(j) = H[j]/max{H[i], H[k]}. (4.3)

If a mode is distinctive enough, it is added to an accepted mode list; regardless of its

distinctiveness, it is deleted after consideration. Following deletion, the collection

of extrema is updated so that modes and valleys alternate: the current extrema

are iterated in order and when repeated valleys or modes are encountered in a row,

only the strongest (i.e., lower or higher respectively) is retained.

Note that there is a parameter Tτ which controls how many modes are accepted

as valid (and thus how many models we estimate). This, in effect, plays the role

of T .

Having computed histograms, RHA selects one point from the set of points that

correctly estimated the number of models by choosing the one that maximizes a

peak distinctiveness measure. Specifically it chooses the point that maximizes the

product of the histogram mode bins (thus ensuring a point with many points in
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ModelDetect(distinctive,Arbitrary)

1 Models = ∅
2 for i = 1, . . . ,Mode Count
3 CandidateModels = Models in to mode i in Histograms [Distinctive]
4 Sort CandidateModels by residual with respect to Arbitrary .
5 Models = Models ∪ {Middle(CandidateModels)}
6 return Models

Figure 4.9: RHA’s model detection algorithm

each bin). This point and another arbitrarily selected one are used to select the

estimated models.

We now present how to detect models from two of these histograms. The mode

bins in the histogram of the “strongest” data point provide candidates for the

models: recall that the mode histogram bins correspond to ground-truth models

and bins contain estimated models. An arbitrary data point that also correctly

estimated the number of models is used to select which candidate is used from each

of the distinctive point’s mode bins: the mode with the median residual among the

candidates with respect to the arbitrary data points is selected. This is formally

presented in code in Fig. 4.9. The intuition is that a model that the other point

fits moderately well with respect to all the other points in the bin is likely to be

similar to most of the models in the bin (i.e., the ground-truth model sought).

Residual Histogram Analysis is a fundamental turning-point in the development

of multi-model estimation algorithms. In addition to formulating model estimation

in a way that avoids explicit consideration of consensus sets, RHA avoids the use

of a-priori knowledge about the data set. Nonetheless, the Tτ parameter arguably

needs tuning, and different parameters for the construction of the histograms pro-

duce different estimates of the number of models. For instance, consider Fig. 4.10,

which shows the smoothed histogram bins of the strongest histogram for a variety

of histogram bin counts, and the detected modes with red lines. The number of
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(a) 100 Bins, 4 Modes (b) 125 Bins, 5 Modes

(c) 150 Bins, 7 Modes (d) 200 Bins, 5 Modes

Figure 4.10: Residual histogram with strongest peaks for different histogram bin
counts

modes, and thus estimated model count, varies from 4 to 7. As is suggested by

the figure and corroborated by Toldo and Fusiello in [32], the mode-finding step

of RHA is its weakness. In practice, this means that RHA is not competitive

with other methods, which is demonstrated in [43] itself. Nonetheless, it achieves

impressive results given that it requires no knowledge of the data.

4.4 J-Linkage

J-linkage [32] takes a cue from RHA, and avoids a consensus-set oriented approach

in favor of working in the preference space. Recall that the preference set is like the

consensus set, but with the roles of data points and models reversed. Specifically,

PS(d,Models , ε) = {m ∈ Models : R(m, d) < ε}. (4.4)
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(a) Data and Minimum Sam-
ple Models

(b) The J-linkage Clustering Scheme: supporting points are on
the left, and the preference set is represented in the box on the
right. Clustering proceeds from bottom up.

Figure 4.11: An illustration of the J-linkage clustering scheme

Toldo and Fusiello further define the preference set of a set of data points as the

intersection of their individual preference sets, and thus the models that all of them

fit.

PS(D,Models , ε) =
⋂
d∈D

PS(d,Models , ε)

= {m ∈ Models : R(m, d) < ε ∀ d ∈ D} .
(4.5)

Rather than take models and see what points match them, J-linkage uses what

models each point matches to determine which points probably belong together.

If we have M minimum sample sets, each point d may then be represented by a

M -dimensional vector v in the high-dimensional binary space {0, 1}M , which Toldo

and Fusiello term the conceptual space, such that vi is 1 if and only if model i is

in d’s preference set. While this way of looking at preference sets is not useful in

the practical computation of J-linkage, the understanding of the preference set of

a point as an alternative representation is enormously helpful for understanding

the model-estimation problem. Further, the understanding of the notion of rep-

resenting a point in an alternative form will be helpful in understanding Kernel

Fitting.

Consider the contrived line fitting example in Fig. 4.11(a), in which three min-
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J-linkage(DataPoints ⊂ D,M ∈ N, ε ∈ R+, T ∈ N)

1 Clusters = {{d} : d ∈ DataPoints}
2 Compute M minimum sample models Models
3 while True
4 // Select the pair of clusters with minimum distance
5 A,B = arg min

A,B∈Pairs(Clusters)

DJ(PS(A,Models , ε), PS(B,Models , ε))

6 minDist = DJ(PS(A,Models , ε), PS(B,Models , ε))
7 // If minDist is 1, then all clusters have disjoint preference sets
8 if minDist == 1
9 break

10 Clusters = (Clusters − {A,B}) ∪ {A ∪B}
11 return {c ∈ Clusters : |c| ≥ T}

Figure 4.12: The J-linkage algorithm

imum sample models have been drawn. Points matching the same collection of

models are likely to belong to the same ground truth model, as we observed in

our discussion of the shortcomings of the consensus set approach with regards to

sequential RANSAC. J-linkage uses this intuition to develop a clustering approach:

beginning with singleton clusters (i.e., each point in its own cluster), clusters are

merged together in decreasing order of similarity of model preference. This is

depicted graphically in Fig. 4.11(b), and in code in Fig. 4.12.

Although we have a large number of points with identical preference sets in our

contrived example, if we were to draw 1000 models, we would find very few points

sharing identical preference sets, and therefore we need a way of measuring how

similar two sets are. Toldo and Fusiello propose the Jaccard distance

DJ(A,B) =
|A ∪B| − |A ∩B|

|A ∪B|
(4.6)

which gives the algorithm its name (Jaccard Linkage). The Jaccard distance

evaluates to 0 for identical sets (as A∪B = A∩B = A = B) and to 1 for disjoint

sets (as |A∩B| = 0); in general, the Jaccard distance is between 0 and 1, inclusive.

When the clustering stops, each cluster has at least one model that fits all of

71



the points. Further, points corresponding to ground truth models are in larger

clusters and points that are outliers are in smaller clusters (as no models fit large

numbers of outliers). These clusters are similar to consensus sets; however, con-

sensus sets are formed by taking an actual model and finding points that match it,

whereas the clusters are points that fit a group of models (or, in the abstract, of

a particular class of models). The smaller outlier clusters may be removed either

with a predefined threshold [9] or by removing smaller clusters until the number

of removed points equals the expected number of outliers [32]; our presentation

takes the former approach. We provide a graphical illustration of the clustering

in Fig. 4.11(b): note that points with identical preference sets are always merged

first.

Since the preference space is defined by the sampled models, special care must

be taken when using J-linkage. In particular, the models that are sampled have

an impact on which points are likely to be clustered by changing their preference

sets and thus their representation in the conceptual space. In Fig. 4.13, we use

different sampling strategies on a data set, and compute the Jaccard distance

between each the preference sets of pairs of data points. These are represented as

images, where the pixel at row i and column j is colored according to the Jaccard

distance between the preference sets of points i and j, using the coloring scheme

depicted in Fig. 4.13(f). Note that for both model selection strategies, the distance

between a point and itself (the pixels on the main diagonal) is 0; note further that

the perceived artifact, the visible rectangle is merely the result of listing inliers

before outliers in the data input: inliers are likely to have similar preference sets

to each other. For the uniform strategy, the Jaccard distance between points

tends to evaluate to a higher value, but leads to few pairs of disjoint preference

sets (as seen by the absence of the dark red pixels). In the Kanazawa strategy
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(a) Models drawn
with Kanazawa
sampling

(b) Models drawn
uniformly

(c) Data Points

(d) Kanazawa
Jaccard Matrix

(e) Uniform Jaccard
Matrix

(f) Jet Coloring Leg-
end

Figure 4.13: Different sampling strategies lead to different distances between pref-
erence sets: (a,b) Models sampled with Kanazawa and Uniform strategies; (c) The
underlying data points; (d,e) A visualization of the Jaccard distance between pref-
erence sets of a selection of data points according to the sampled models. (f) the
legend for (d,e).

visualization, there are more sets with significant overlap, as well as more that are

nearly disjoint. Essentially, Kanazawa sampling sharpens the contrast between

points that belong together and background noise. In practice, we observed that

J-linkage performs worse in geometric figure fitting if uniform sampling is used.

This seems unsurprising, since it was assumed that Kanazawa sampling was to be

used in [32].

Despite these issues, J-linkage remains an overall formidable model estimation

technique. By avoiding the use of the consensus set representation, it avoids the

drawbacks of RANSAC-based techniques. This, however, comes at the cost of a

clustering approach, which requires a consensus-set size threshold to distinguish

valid models from outlier clusters: if this is set too low, spurious models are re-

73



ported; if this is set too high, actual models are rejected. Further, it demonstrates

O(N2M) time and space complexity, where N is the number of data points and

M is the number of sampled models: each time we merge clusters, we only need

to update N inter-cluster distances.

4.5 Merging J-Linkage

J-linkage’s requirement that the data points of a cluster have at least one preferred

model in common may lead to the fragmentation of models: if no one minimum

sample model fits a ground-truth model correctly, then the ground-truth model

may be found as two or more separate clusters. For instance, if Kanazawa sam-

pling is used in plane detection, it may be unlikely to find a minimum sample

model that both contains only inliers from one model and covers a sufficiently

large portion of the support region of the plane to give an accurate estimation of

aspects of the perspective transformation3. This tendency was noted in [31] where

J-linkage was used for the detection of vanishing points from detected edges, and

[16] presented a solution to the problem of fragmentation in the context of the

detection of planar surfaces from image pairs. In the former, a model-specific

merging scheme is formulated with Expectation-Maximization, and in the latter,

a model-independent scheme is proposed. We discuss the latter, as it is defined in

general.

After J-linkage stops clustering the data points, clustering is restarted with

a new distance between clusters: given two clusters A and B of points, a best-

fit solution m̂ to A ∪ B is computed and the average µ is taken of the error of

the points, {R(d, m̂) : d ∈ A ∪ B}. The pair of clusters with the least error is

3The information necessary to estimate foreshortening in closely grouped points may be
masked by noise; however, on a local scale, incorrect foreshortening estimates will have limited
impact on the accuracy of the models.
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merged until the minimum average merging error exceeds ε. This permits clusters

of points that have no common model amongst the ones sampled, but for which

there is a common model to be merged. Note that there is either no filtering done

by consensus set size, or one with a very low threshold; in [16], a consensus set size

of 6, barely above the minimum sample size of 4, was required. If a high threshold

is used, then one risks the removal of parts of the valid clusters.

We present results of this merging scheme in Fig. 4.14. J-linkage’s initial results

are displayed in Fig. 4.14(a); note that the red and yellow clusters belong to the

same ground-truth plane, but J-linkage cannot find a model that accurately fits all

the points in both. The results of the merging scheme are presented in Fig. 4.14(b):

points belonging to the same planar surface have been merged together. Note that

the yellow points in the merged image function as a planar surface, even though

they are multiple physical planes, due to limitations on the viewing angle between

the image and the other image in the pair.

We refer to this approach as Merging J-linkage in Chapter 5, when we discuss

the evaluation of multi-model estimation algorithms. Since it is defined with the

same functions that are used in all the other approaches and requires no more

information about the data set than J-linkage, it can be applied to all the tasks

that J-linkage can be used on, at least in theory. Nonetheless, in Chapter 5, we

find that in practice, its applications outside of plane detection are limited.

4.6 Kernel Fitting

We conclude with Chin, Wang, and Suter’s Kernel Fitting [9], which works well,

like J-linkage, while requiring no knowledge of the data set parameters, like RHA.

This comes at a cost: unlike all the algorithms up to this point, Kernel Fitting relies

on sophisticated mathematical techniques, and its implementation without the aid
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(a) Initial J-linkage detection (b) Clustering after J-linkage

Figure 4.14: (a) Plane detection results with J-linkage (b) after the merging scheme
proposed in [16]. In each, the points belonging to each cluster are rendered in
different colors and their convex hulls are depicted as well.

of a numerical linear algebra library would be ill-advised. This mathematical

sophistication seems inevitable: Kernel Fitting must estimate the models without

knowledge of the noise scale, outlier count, or model sizes.

Central to Kernel Fitting is Chin et al.’s Ordered Residual Kernel (ORK),

a function satisfying criteria which enable the use of a variety of mathematical

techniques. The full details of kernel methods are unimportant to an understanding

of how Kernel Fitting is performed and we will introduce all concepts necessary;

interested readers may wish to consult Chapter 6 of [3]4. A kernel (in [9], a Mercer

Kernel) is a symmetric function k(x,y) = k(y,x), which is paired with another

function φ(x), which maps x into a feature space F , in which x is represented in

a more salient fashion. If Mercer’s Condition holds, the two functions are related

by the following identity:

k(x,y) = φ(x)Tφ(y). (4.7)

Thus, if Mercer’s condition holds, the actual nature of φ and F can be ignored,

and we can work entirely using k. In particular, if we let A be the matrix of the

4As a whole, the chapter primarily discusses kernels for use with Radial Basis Function Net-
works and Gaussian Processes; sections 1 and 2 might prove helpful for following [9].
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data points d1, . . . , dN mapped under φ into F , or

A = [φ(d1) φ(d2) · · · φ(dN)] (4.8)

then we may compute ATA as

ATA =



φ(d1)
Tφ(d1) φ(d1)

Tφ(d2) · · · φ(d1)
Tφ(dn)

φ(d2)
Tφ(d1) φ(d2)

Tφ(d2) · · · φ(d2)
Tφ(dn)

...
...

. . .
...

φ(dn)Tφ(d1) φ(dn)Tφ(d2) · · · φ(dn)Tφ(dn)


. (4.9)

Using Equation 4.7, this is the kernel matrix K, such that

K = ATA =



k(d1, d1) k(d1, d2) · · · k(d1, dn)

k(d2, d1) k(d2, d2) · · · k(d2, dn)

...
...

. . .
...

k(dn, d1) k(dn, d2) · · · k(dn, dn)


. (4.10)

Therefore, we can work with the feature space representation of the data, A, in-

directly via the kernel matrix, K, which we can compute with the kernel function

k(·, ·). We now discuss the particular kernel of Kernel Fitting, and how it is used

to perform multi-model estimation.

Before we begin, we give a roadmap of Kernel Fitting, and thus our presenta-

tion. Beginning with N points and M minimum sample sets, a kernel matrix K is

computed. A technique is applied to transform the data points into a space which

permits the detection of outliers; these outliers are removed, yielding a reduced

kernel matrix K ′. K ′ is then used to oversegment the remaining inliers, and a

merging scheme is used to reassemble these models into the final model estimates.

We note further that, unlike previous sections, we will not provide much detail.

The full treatment of Kernel Fitting requires a lot of notation and we instead pro-

vide a detailed overview that captures the overall effect of the approach. Interested

readers may wish to consult not only [9], but also [6].
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4.6.1 The ordered residual kernel and its computation

Like the other methods, Kernel Fitting samples M minimum sample models, and

similarly to J-linkage and RHA, it uses the approach of analyzing data points via

their relationship to these models; further, like J-linkage, it uses these models to

represent the data points in a more salient way. However, its formulation of the

representation fundamentally departs from previous approaches. In J-linkage, an

inlier threshold was used to create a binary representation (the preference set, or

the vector in the conceptual space); in RHA, the actual residuals were retained,

but only in the aggregate in the form of a histogram. In Kernel Fitting, the order

in which models are preferred, (i.e., the order of their residuals) is used: points

belonging to the same ground-truth models should have similar orders of preferred

models. The ORK quantifies similarity in model preference, but does so in a way

that satisfies Equation 4.7 and does not, unlike J-linkage, require ε: whether a

model matches a point according to a particular cutoff is not important; instead,

one is concerned with its preference relative to the other models.

Before defining the ORK, we define the Difference of Intersection Kernel (DOIK),

from which the ORK is formed. Suppose we have lists defining the order in which

two data points di and dj prefer models, Li and Lj; this is the representation of

a data point in Kernel Fitting. For clarity note that Li[k] is a natural number

giving the index into the sampled models of the model that point i fits kth best.

We can then consider a series of adjacent and disjoint windows of size h over the

ordered collection of residuals, beginning with the most strongly preferred models.

At window number t, we introduce the models with residuals (t− 1)h+ 1 to th in

order of preference. Given step size h, which Chin et al. assume without loss of
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generality5 divides M , and window number t, the DOIK kt∩ is defined as:

kt∩(Li,Lj) =
1

h

(∣∣∣∣Lth
i ∩ Lth

j

∣∣∣∣− ∣∣∣∣L(t−1)h
i ∩ L

(t−1)h
j

∣∣∣∣) (4.11)

where Lk
i denotes the elements of Li up to the kth. Intuitively speaking, kt∩ is the

number of models preferred by both points i and j in the first th models for each,

less those preferred in common in the first (t− 1)h models.

The ORK is defined as a weighted sum of DOIKs over all values of t. Specifi-

cally, the ORK places greater weight on the most preferred models: if points belong

to the same ground-truth model, then the points they best fit should be similar,

but we cannot say the same about the least-preferred models. The ORK is defined

as

kr(i, j) =
1

Z

M/h∑
t=1

zt · kt∩(Li,Lj) (4.12)

where Z =
∑M/h

t=1 zt and zt provide the weightings to each DOIK evaluation. In [9],

zt = 1/t, but in the accompanying code, a more complicated weighting approach

is included as well.

Direct computation of the ORK from Equation 4.12 is computationally inten-

sive for even moderately sized data sets; however, a clever approach enables its

computation in linear time with respect to the number of models (and thus resid-

uals) and provides the additional benefit of offering insight into the workings of

the ORK. Specifically, we can view the ORK as evaluating the DOIK in rounds,

where each round increases the number of models a point “accepts”. The DOIK

kt∩ examines a window of models ((t − 1)h + 1 through th) to see how many new

models are accepted by both data points in comparison to the past rounds when

we add the window to “accepted” models. In other words, kt∩ is the number of

models that are newly accepted in round t. Note crucially that this is not a fixed

number, as can be seen in the following contrived example: suppose L1 = [1, 2, 3, 4]

5Note that M and h are user-controlled and so ensuring this condition is trivial
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ORK(Li,Lj,W,M, h)

1 Allocate tables Ti[1..M ], Tj[1..M ] and set all entries in both to −1
2 Allocate accumulator A[1..(M/h)] and set all entries to 0
3 for k = 1, . . . ,M
4 t = k/h
5 // Ignore low-weight DOIKs;
6 // models k accepted after this will have Ti[k] = −1
7 if W [t] < 0.01 break
8 Ti[Li[k]] = Tj[Lj[k]] = t
9 for k = 1, . . . ,M

10 if Ti[k] == −1 or Tj[k] == −1 continue
11 // t is the round in which model k is accepted
12 t = max(Ti[k],Tj[k])
13 A[t] = A[t] + 1
14 // Multiply by zt = 1/t and 1/h
15 for t = 0, . . . ,M/h− 1
16 A[t] = A[t]/((t+ 1)h)

17 return
∑M/h

t=1 W[t] ·A[t]

Figure 4.15: The code to calculate the Ordered Residual Kernel

and L2 = [3, 4, 1, 2] with step size h = 2. Then k1
∩ = 0 since {1, 2} ∩ {3, 4} = 0;

however, k2
∩ = 1

2
(4− 0) = 2.

We can then examine each model, and determine in which window it is accepted

to compute the DOIK. Specifically, we create tables T1[1..M ] and T2[1..M ]; T1[k]

holds the round t in which model k is accepted for L1. We then compute the ORK

using the procedure depicted in Fig. 4.15, where W contains additional normalized

weights for the DOIK.

Thus, intuitively, the ORK examines how many models the points can “agree

upon”, giving more weight to the ones that the points prefer the most. If two

points agree upon a model they both prefer a lot (i.e., have low residual with

respect to), then Kernel Fitting puts a lot of weight on the intersection, which

contributes highly to the sum.

Note that although this might seem simpler to compute than the sum of ker-
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nels definition, the sum of kernels definition permits rapid verification of Mercer’s

condition. Specifically, it can be shown that if k1, k2 are kernels satisfying Mercer’s

condition and c is a positive constant, both ck1 and k1 + k2 are Mercer kernels.

The DOIK may be written as a positive fraction of another kernel, the intersec-

tion kernel, making it a valid kernel; the ORK may also be written as the sum of

DOIKs weighted by positive constants (as can the approximation presented), thus

also making it satisfy Mercer’s condition.

We then compute K for a set of data points as follows. First, we sample M

minimum sample models, and compute the order, Li in which each point di prefers

the models. Then we set Ki,j = kr(Li,Lj) for all i and j between 1 and N .

In practice, the ORK is also combined with a Gaussian Kernel to incorporate

the observation that nearby points frequently share model assignments. Thus,

rather than use compute the ORK by itself, we compute

k′r(xi,xj) = kr(Li,Lj) + kG(xi,xj) (4.13)

where kG is the Gaussian kernel, which resembles the probability distribution with

the same name, apart from some constants:

kG(xi,xj) = exp(−||xi − xj||2/2σ2). (4.14)

Note that kG(·, ·) evaluates to a higher value for closer points and that the rate at

which increasing distance causes kG(·, · · · )’s value to decrease is a function of the

scale parameter σ. Chin et al. set the scale of the kernel to the average Euclidean

distance between a vector and its nearest-neighbor.

As a way of illustrating the output of the Ordered Residual Kernel with and

without the addition of the Gaussian kernel, both have been computed and thenn

visualized in Fig. 4.16 as was done for the Jaccard distance matrices. We first

ordered the data points so that each data point matching a ground-truth model
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(a) The data (b) The ORK visualized (c) The ORK+Gaussian
Kernel visualized

Figure 4.16: A visualization of the kernel matrix used in Kernel Fitting

appears consecutively, with the outliers appearing last. The color runs from 0

(darkest blue) to 1/3 of the maximum entry in either matrix (darkest red), where

higher values saturate (i.e., are bounded to fit within the range) and lower (i.e.,

negative) values are impossible. The pixel at row i and column j represents the

kernel evaluated for points i and j. It should be readily observable that kr evalu-

ates to high values for points belonging to the same ground-truth model, given the

squares on the main diagonal. Further, the symmetry of the image along the di-

agonal confirms the symmetric property kr(Li,Lj) = kr(Lj,Li) mentioned earlier.

As can be seen in the images, adding the Gaussian kernel produces a similar matrix

to the one produced using just the ORK. In practice we observed that including

the Gaussian kernel produces stronger results.

4.6.2 Kernel-based outlier removal

The Kernel Matrix can then be used to work with the data points in the feature

space F indirectly through the identity K = ATA. Since the feature space for a

Gaussian Kernel has an infinite number of dimensions [3], this is an impressive

approach: we can work with N data points in a space with infinite dimensions

with a N × N matrix. Specifically, similar to PCA from Section 2.2, the first n
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eigenvectors of K sorted by their eigenvalues provide a basis for the n-dimensional

principal subspace of A. Further, Chin et al. note that since kr evaluates to

high values for points belonging to the same ground-truth model, the dominant

directions of the principal subspaces of A are determined by the inliers; accordingly,

when the data in the feature space is projected onto the principal subspace, inliers

have high norms and outliers have low norms. This may be observed in Fig. 4.17(a),

in which the norms of the points have been plotted in order: there is a significant

drop off when the data reaches the outliers. Thus, by thresholding the data points

with respect to the norms of their projections, the outliers may be removed from

the data set.

Chin et al. propose two methods for determining a threshold for discriminating

outliers from inliers. The first is to use the empirically justified threshold of 3/10

of the square of the maximum norm. The second, and somewhat more principled

and interesting approach is to fit a Gaussian Mixture Model (GMM) to the norm

data. A discussion of how to do this with Expectation-Maximization (EM) may

be found in [3]6. In general, mixture models may be tricky: various information

criteria (e.g., Akaike or Bayesian) using the log-likelihood of the data and number

of parameters must be used to determine how many mixtures are present, and

initializing the parameters is tricky. However, we expect only two mixtures in our

data, and Chin et al.’s code provides a clever way to initialize parameters: one

mixture’s mean starts at 0 and the other’s at the maximum norm; both are given

reasonable variance and responsibilities (or priors). As the EM algorithm proceeds,

these converge towards sensible means, variances, and responsibilities. Once the

6See Section 9.2, in particular pages 438-439, for a recipe for the general case. Do not panic
at the apparent complexity; the 1-dimensional case may be derived from the general case and
is simple enough to be easily implemented without a linear algebra package. Further note that
fitting a GMM with EM is frequently and incorrectly conflated with EM itself; [3], Sections 9.3
- 9.4 contain a more general explanation, as does [1], Section 11.2 (although the latter is a much
more challenging read).
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GMM has been fitted, [9] suggests a number of ways to find the threshold. For

instance, so long as there are two valid clusters (if there is one, then this indicates

that there might not be many outliers), the average of the two means might be

taken. We draw the result of both thresholdings in Fig. 4.17(b), in which we have

imitated the style of a figure from [9]: as can be seen, both produce similar results.

Once a threshold has been determined, one may remove many outliers by re-

moving all data points with norms below the threshold. The kernel matrix K is

then reduced to an inlier-only matrix K ′ by removing the rows and columns corre-

sponding to outlier data points, and the outliers are not used later in the algorithm.

Examining Fig. 4.17(d), which depicts the output of max-norm thresholding, we

find that the threshold has removed all of the outliers, while retaining almost of

all of the inliers.

4.6.3 Model detection and merging

Once the outliers have been removed, Kernel Fitting works with the inlier-only

kernel matrix K ′ to detect the structures in the inliers. Rather than attempting

to estimate the models in one step, it takes the approach of deliberately overseg-

menting the data, and then merging it.

To oversegment the data, Kernel Fitting first constructs an effective represen-

tation of the data, and then clusters it with k-means. The representation it uses

comes from a variant on PCA, Kernel PCA, which is discussed in [3]. Specifically,

K ′ is transformed into its centered equivalent: if we denote A with the outlier

points removed as C, we wish to consider C centered in the feature space F , which

we denote as C̃. Just as K = ATA and K ′ = CTC, Kernel Fitting constructs

K̃ = C̃T C̃, which enables the computation of the principal components of the

inlier data in the feature space, as it centers the feature space representation. The
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(a) Norms for data points in or-
der

(b) Histogram of norms

(c) The data points before
thresholding

(d) The data points following
thresholding

Figure 4.17: A visualization of the data points’ norms when projected onto a prin-
cipal subspace; note the tendency of outliers to have low norms. Lines indicating
the threshold, as determined by maximum norm and GMM, are drawn in red and
blue respectively.

projection of the inliers onto these principal components produces a space that

is salient for the clustering of inliers into models with k-means. Two approaches

may be used to produce this space: [9] advocates the use of Normalized Cuts

on the data projected onto the principal components to determine the number of

clusters and produce an effective space to perform the clustering; the accompany-

ing code [6], however, uses Normalized Cuts to reveal the number of clusters, but

performs k-means on the data projected onto the principal components unmodi-

fied. We present the result of oversegmentation on the unmodified projections in

Fig. 4.18(a); different clusters have different colors.

Finally, the oversegmented inliers are clustered back into the final models.
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(a) Oversegmentation of the data
less points labeled as outliers.
Model assignments are shown in
color.

(b) Final model assignments and
lines fitted to the consensus sets

Figure 4.18: The result of model selection

Again, a number of approaches are possible due to discrepancies between the code

and publication. In [9] a scheme is proposed in which clusters are merged so long

as their merger permits the satisfactory explanation of the data by the resulting

structures. A suitable inlier threshold is automatically estimated from the resid-

uals of the inliers and of the outliers, and models are fitted onto models with

LMedS [26]; since the data points are virtually outlier free, and since the clusters

contain only one model, LMedS is appropriate here. The accompanying code uses

an information-criterion-based model selection scheme, along with LMedS. In the

code, the Geometrically Robust Information Criterion [36] is used to select the

number of models that minimize the criterion. Finally, a later work [7] by Chin et

al. develops an alternative approach to model selection that uses support vector

machines. In practice, we found that the information-criterion approach systemat-

ically failed on some data sets, merging all points together, but performed better

than the iterative approach on other data sets.

We now summarize and present some observations about Kernel Fitting. To

reiterate, Kernel Fitting uses minimum sample models to represent each data point
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by the order in which it prefers models. By using kernel methods, it constructs

a more salient representation, A, of the data points in a feature space F , and

manipulates these more salient representations with the kernel matrix K = ATA.

First, outliers are removed, then the points are oversegmented into clusters, and

finally, the clusters are put together using a model selection scheme.

All of this is done without knowledge of any of the usual parameters, although

at the cost of few internal parameters that require minimal to no tuning. Specif-

ically, Kernel Fitting requires a number of models to generate, a step size h, and

the inlier/outlier thresholding scheme. However, M is an inherently necessary pa-

rameter, and h depends entirely on M according to [9]. Further, the empirically

justified 3/10 max-norm inlier/outlier thresholding scheme appears to be surpris-

ingly robust to different data set composition, and thus needs no adjustment for

different noise scales or outlier compositions. As we will see in the final section,

Kernel Fitting does have some failure modes; often in association with the model

selection scheme.

4.7 Conclusions

We now summarize the algorithms and their properties. Following [9], we summa-

rize the parameters used by each algorithm in Table 4.2. The algorithms fall into

three classes: ones that automatically estimate all parameters; ones that use ε, the

inlier threshold, and W , the number of ground-truth models; and ones that use ε

and T , a minimum acceptable consensus size. As was argued earlier, the W and T

parameters offer alternate ways of achieving the same task (distinguishing sensible

from non-sensible models), and so there are effectively two classes: automatic and

manual methods. The degree to which the automatic methods is debatable, as

they require the setting of internal parameters. Nonetheless, one can often find an
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Table 4.2: Parameters used by each algorithm: ε is an inlier threshold; T is a
minimum acceptable consensus set size; W is the number of ground-truth models

Seq. (1) Seq. (2) Multi J-L Merg. J-L RHA Kernel Fitting
ε X X X X X
T X X X
W X X

internal parameter that works on a very wide range of data sets (outliers, noise,

and model classes).

We may similarly separate the algorithms into classes: algorithms that use

consensus sets (Sequential RANSAC, MultiRANSAC); algorithms that form al-

ternative representations of data points using minimum sample models (J-linkage

variants, and Kernel Fitting); and RHA, which finds models using histograms of

residuals. Each approach has its disadvantages: the consensus set is a poor choice

for disambiguating multiple models; a data-point-centric approach often induces

a N2 term in the runtime (since every point may have to be compared with ev-

ery other point); and RHA’s formulation in terms of histograms introduces the

problematic task of finding modes in noisy histograms.

Given the diversity of approaches, it is difficult to pick an approach. One

can narrow down the list of algorithms by removing algorithms that require more

information than can be provided, but for any combination of parameters that

may be provided, multiple algorithms may be used. The only criteria left are then

performance (i.e., how effective is the approach?) and efficiency (i.e., how resource-

intensive is the approach?). Efficiency may be evaluated by either examining the

asymptotic efficiency of the algorithms or by running them for a series of data

sets of increasing size. Performance, on the other hand is a more challenging

problem. In the next chapter, we will discuss the challenges of evaluating multi-

model estimation algorithms and how they may be surmounted.
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CHAPTER 5

OUTLIER-ROBUST MULTI-MODEL EVALUATION

The final part of this thesis discusses the evaluation of the performance of

multi-model estimation algorithms. Despite an increase of interest in recent years,

there has been no comprehensive study of how to evaluate the performance of these

algorithms. There have been efforts in papers proposing new approaches; however,

these are limited in scope, and have been primarily focused on demonstrating

that the proposed algorithm performs competitively in comparison to the state-

of-the-art. There have been efforts for related problems: Choi et al. developed an

approach for single-model robust estimation in [10], and Tron and Vidal presented

a survey and evaluation of motion segmentation algorithms in [37]. Despite the

apparent similarity, we will argue in this chapter that evaluating the multiple-model

problem is a fundamentally different task than the single-model problem, and thus

that not only is the content of [10] inapplicable to the multi-model problem, but

also that the methodology itself is similarly inapplicable. To distinguish the task

from the one solved in [37], we note that motion segmentation is only one possible

task for the application of multi-model estimation algorithms, and that neither

outliers nor noise were varied in [37] to assess performance.

We present a novel quantitative evaluation of multi-model estimation algo-

rithms, and its application to the six algorithms presented in Chapter 4. We first

introduce the data sets used, including both synthetic ones for 2D figure-fitting

and real-world ones for plane detection that use a new technique to quantify the

localization noise induced by subsampling. We then discuss the challenges of eval-

uating multi-model algorithms, as well as our methodology and scoring techniques

for overcoming these challenges. Finally, we discuss our results, including many

insights into the effectiveness of contemporary multi-model estimation algorithms.
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(a) Stairs4 (b) Stairs5 (c) Circles5

(d) Star5 (e) Star7

Figure 5.1: Synthetic data sets: 30% outliers, 0.65% noise

5.1 Data Sets

We evaluated algorithms on the detection of three classes of models: lines, circles,

and planar homographies. The data sets used for each task are entirely synthetic in

the case of lines and circles (Stairs4, Stairs5, Star5, Star7, Circles5), and real-world

in origin in the case of plane-fitting (Planes2, Planes3).

We have presented examples of a number of the data sets earlier. However, for

the sake of completeness, we depict examples of each synthetic data set in Fig. 5.1.

We also present, for each plane-fitting data set, the source images and a depiction

of the planar surfaces present in the data in Fig. 5.2.

We will discuss each model-estimation task in turn. To fully describe a task,

we will need to describe the data sets used and three functions or procedures for

the manipulation of data points (from D) and models (fromM). As was the case
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in our formulation of RANSAC, these three functions are: E : P (D)→M, which

maps a set of points to a model; R : M×D → R+ ∪ {0}, which determines the

error of a point with respect to a model; and S : P (D) → DMSS, which selects a

random sample of data points with sufficient cardinality to estimate a data set. We

note that E’s role is slightly expanded from our earlier presentation in RANSAC:

previously, we limited it to an exact estimate (requiring MSS data points); for our

presentation below, we also require it to compute a best-fit estimate of the model

since some methods (e.g., Merging J-linkage) require it. In general, this is trivial

as the best-fit solution for the minimum sample set coincides with the exact-fit

solution. In the case of synthetic data, we will briefly discuss the generation of

data sets, and in the case of plane-detection data, we will introduce a novel method

for the control of data set parameters in real-world data. We will further discuss

the definition of ground-truth data. As we will discuss in Section 5.2, we use a

classification-based approach, and so our ground-truth consists of labels for data

points indicating which ground-truth models each point fits.

5.1.1 Geometric figure fitting

We use two classes of data sets for line-fitting. The first is stairs, in which W

horizontal line segments of width 1/W are placed across the unit square like steps.

The second is stars, in which a W point star is inscribed in the unit square. We

use one data set for circle-fitting, in which circles with different radii are placed in

the unit square; to challenge the algorithms, some of the circles intersect. For the

estimation and error functions for geometric figure fitting, we use the functions

defined in Chapter 2, specifically PCA and the Kasa least-squares circle fitting

procedure, and the line-point and circle-point distance respectively. For sampling,

we use Kanazawa sampling, as specified in Chapter 3.
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(a) Planes2, Image 0 (b) Planes2, Image 1 (c) Planes2 Labeled Corre-
spondences

(d) Planes3, Image 0 (e) Planes3, Image 1 (f) Planes3 Labeled Corre-
spondences

Figure 5.2: Plane fitting data sets. Left: image 0; center: image 1; right: depiction
of a processed data set with 20% outliers.

To generate synthetic data sets, we produce a probabilistic generative model

with the given ideal models. Given W ideal models, we produce a mixture model

where each ideal model has a 1/W chance of being selected for sampling. Once

a model has been selected, points are sampled on the model uniformly. For line

segments, one can do this by parametrizing the line segment l = {(x0, y0), (x1, y1)}

as

( (x1 − x0)t+ x0, (y1 − y0)t+ y0 )

where 0 ≤ t ≤ 1. We can then sample t uniformly to sample on l. For circles, we

sample over the unit circle, expand the unit circle’s radius and then translate the

circle by the center. Specifically, for a circle (cx, cy, r), we select t uniformly with

0 ≤ t < 2π. The point is then:

( cx + r cos(t), cy + r cos(t) )

Thus, we have a hierarchical model in which each model defines a probability
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distribution, where we select each model with uniform probability.

We can then create a test set, or particular instance of the data set with a given

noise level and outlier composition. We first sample I data points using our inlier

distribution, where we set I to 50W ; the expected number of points sampled from

each model is then 50. As a practical matter, we may sensibly sample the same

I inliers at each invocation without undesirable side-effects by saving the random

number generator state upon entry to the inlier sampling procedure, replacing it

with a fixed state, and then restoring it upon exit. We add noise sampled from the

appropriate isotropic Gaussian distribution to each inlier. Finally, we add outliers

uniformly sampled from the appropriate region; in all synthetic cases, this is the

unit square.

The range of noise scales and outlier fractions match or exceed other published

evaluations (apart from two extreme values) [9, 32, 43, 44]. Past noise levels (i.e.,

standard deviations) have included 0.375% and 0.75% [32, 44], 0.55% to 2.5% [9],

and 0.1% to 5% [43]. Past gross outlier fractions have ranged from 0% to 50% [32],

60% [44], 0% − 77% [9], and 20% − 50% [43]. Note the distinction between gross

outlier fractions (i.e., the number of points generated from the outlier process) and

the total outlier percentage (i.e., both gross and pseudo-outliers). Our evaluation

uses seven noise standard levels ranging from 0.45% to 1.05% in steps of 0.1%,

and nine outlier fractions ranging from 0% to 80% in steps of 10%. We thus have

5× 7× 9 = 315 synthetic test sets.

We conclude by discussing the setting of ground-truth labels for synthetic data.

We define the models that a point fits as its preference set with respect to the

generative models’ parameters with ε set to 3σ; equivalently, we may describe the

consensus set of each inlier model as the consensus set of the model. As discussed

before, this threshold corresponds to approximately 98.9% of the 2D isotropic
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Gaussian distribution. This approach more accurately captures the data that was

generated than simply tagging points as they are produced by the inlier models:

outliers that fit a model by chance are correctly labeled, and points fitting multiple

models (e.g., in the star or circle data sets) are similarly accurately labeled. Thus,

when evaluating an algorithm’s performance, the ground-truth data accurately

captures the nature of the data, rather than the process by which it was created.

5.1.2 The generation of plane fitting data sets

The plane-fitting task is similar to the geometric figure-fitting task, except with

respect to the data set’s origin. Algorithms use the least-squares procedure given in

Chapter 2 to compute homographies from correspondences, and use the magnitude

of the residual, ||H(p)−p′||, to compute the error of a correspondence (p,p′) with

respect to a homography H. Finally, as in geometric figure-fitting, Kanazawa

sampling is used.

Past evaluations have generally included the task of detecting planar homogra-

phies from collections of correspondences. Generally a feature detector is used on

a pair of real-world images, and the features are matched to produce correspon-

dences, as was done in Section 3.2. Following the detection of correspondences,

evaluations have typically either synthetically created noise and outliers, or not

attempted to quantify the noise and outlier processes. For instance, isotropic

Gaussian noise models with σ = 0.5 pixel [43] or 1 pixel [44] have been used,

or the original localization noise has been retained [9, 13]. To generate outliers,

generally a uniform outlier process [9, 43] has been used.

Although the use of real-world data seems to be an improvement in terms of

realism in contrast to the synthetic tasks, previous approaches to noise and outliers

undermine this realism. By using synthetic noise and outliers, one gains the ability
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to control the noise, but the resulting data is arguably no more reflective of real-

world conditions than the synthetic data sets; if this is true, then one is perhaps

better off using completely synthetic data sets, as was done in [19], enabling total

control over all the data parameters. On the other hand, by retaining the original

noise or outlier processes, one has no control over the data set parameters, making

it impossible to examine the impact of noise or outliers on the performance of

algorithms. Control over data parameters is unnecessary to demonstrate that

an algorithm performs satisfactorily; however, for an evaluation to analyze the

performance of an algorithm over a variety of conditions, such control is crucial.

Ideally, one would like to be able to control the noise and outlier processes (to

enable a range of test sets) but retain the real-world nature of the data.

We introduce an approach to accomplish these seemingly mutually exclusive

goals. For noise, we fall into neither extreme of synthesizing noise or ignoring

it. Instead, we use a common pre-processing step for image data, resizing or

subsampling, to induce localization noise, and then a novel technique to quantify

the noise produced. Thus, while we cannot generate noise matching a particular

scale, we can induce a range of noise that we can analyze and describe. For outliers,

we use manual labellings to detect feature mismatches.

We summarize our method before explaining each step. Beginning with a

source image pair, we resize the images to a series of decreasing dimensions or

scales. In our tests, we start with images at 3500 × 2625; our resized scales start

at 1750 × 1312, and the width is decreased by a factor of 0.95 until a dimension

is below 400. We resize the source image pairs to this series of scales, and run

SIFT [23] on each scale, including the source scale. We compute feature matches

for the resize scales, and then run an interscale resolution procedure between the

SIFT keypoints of the resized images and the keypoints from the source images.
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Figure 5.3: A graphical depiction of the interscale resolution procedure. Blue
lines depict matches between resized images. Red lines depict matches between
resize-scale images and source-scale images.

The source image’s keypoints approximate the actual location of the keypoints:

the keypoints in the source images are the keypoints from the resized images,

but detected at a different scale. This provides a way to analyze the localization

error for a particular resize scale. We then use manually determined outlines of

the planes and RANSAC to find inliers and outliers. Each resize scale provides

a particular noise scale; we then sample outliers from all noise scales and inliers

from a particular noise scale to synthesize specific noise and outlier combinations.

We now detail the interscale resolution procedure by which we find the source-

scale instances of a resized image’s keypoints. Here, unlike in the standard SIFT

matching procedure, we may use the keypoints’ locations to aid our search for a

match. Specifically, since the two images are the same image at different resolu-

tions, we may limit our search to the nearest keypoints. For practical purposes,

we convert the keypoint locations to a standard representation or coordinate sys-

tem in which the image is represented by a rectangle with corners at (0, 0) and

(1,min{h,w}/max{h,w}) (i.e., we inscribe the image in the unit square).

We first define some notation. Let R and R′ be the keypoints in resized images

0 and 1 and let S and S ′ be the keypoints in source images 0 and 1. Further, recall

that DD(·, ·) is the distance between two keypoints in the descriptor space and
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s ∈ S (SourceKey, Image0) s′ ∈ S ′ (SourceKey, Image1)

ISMatch

x ISMatch

x
r ∈ R (ResizeKey, Image0)

SIFTMatch−−−−−−→ r′ ∈ R′ (ResizeKey, Image1)

Figure 5.4: Keypoint diagram indicating the relationship between the source and
resize keypoints.

similarly, let ED(·, ·) be the distance between two keypoints in the image space.

A depiction of our goal may be found in Fig. 5.3, and a summary of our notation

may be found in Fig. 5.4.

We start with a set of correspondences C ∈ R×R′ between the resized image 0

and 1. For each correspondence (r, r′), we find an initial inter-scale correspondence

for r and r′. We set the search window of r to the 50 nearest elements of S to

r. We accept an initial match between r and the element of its search window

that minimizes the descriptor distance, so long as it is smaller than the average

descriptor distance between the correspondences between the resized images (i.e.,

{DD(r, r′) : (r, r′) ∈ C}). We then have an interscale mapping between R and

S that is not necessarily one-to-one. We then enforce a one-to-one mapping by

examining each s in S, and then each r1, . . . , rn that maps to s, and only final-

izing the match between ri and s that minimizes the descriptor distance. As an

algorithm, this is depicted in Fig. 5.5.

We repeat the single-image resolution procedure for each image independently,

and only retain correspondences where both keypoints are resolved at the source

scale, producing a collection of resolved correspondences C ′ ∈ R × R′ × S × S ′,

where each correspondence is a 4-tuple of keypoints, a keypoint r in resized image

0, its match r′ in image 1, and their source-scale matches s and s′ respectively.

We then verify the source-matches in the descriptor space by rejecting the resolved

correspondence if s′ is not the closest keypoint to s in the search window of r′ or if s

97



ResolveSingleImage(R,S,DDBound)

1 SToRMatch = New Dictionary()
2 for r ∈ R
3 SWindow = nClosest(50, S, r)
4 PotentialMatch = arg min

s∈SWindow
DD(r, s)

5 if DD(r,PotentialMatch) > DDBound continue
6 if PotentialMatch ∈ SToRMatch
7 SToRMatch[PotentialMatch] = SToRMatch[PotentialMatch] ∪ {r}
8 else
9 SToRMatch[PotentialMatch] = {r}

10 // Filter out the matches
11 for s ∈ SToRMatch
12 Candidates = SToRMatch[s]
13 FinalMatch = arg min

r∈Candidates
DD(r, s)

14 Link(FinalMatch, s)
15 return SToRMatch

Figure 5.5: The single image interscale resolution procedure

is not the closest keypoint to s′ in the search window of r. Finally, we eliminate any

remaining incorrect matches by removing the correspondences containing points in

the upper 1% of points with regards to distance between r and s and r′ and s′. This

tends to remove a handful of wildly incorrect matches. We present pseudo-code

for this in Fig. 5.6.

This produces, for each resized image, a collection of correspondences with ac-

curate matches between the resized images and the source images. The localization

error may then be estimated by the difference between s and r. We present a plot

of the localization residuals (i.e., r − s and r′ − s′) in Fig. 5.7. The distribution

is fairly compact, and off-center. The implicit zero-mean assumption in past noise

models is then incorrect. This is, however, irrelevant: any translation in the noise

distribution will merely be incorporated into the homography. Thus, we are princi-

pally interested in higher moments of the distribution. It turns out if we examine

each dimension independently (or more formally fit a Gaussian with a diagonal
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ISMatch(C ∈ R×R′,S,S ′)

1 // Compute descriptor-distance bound
2 DDBound = Mean({DD(r, r′) : (r, r′) ∈ C})
3 ResolveSingleImage(R, S,DDBound); ResolveSingleImage(R′, S ′,DDBound)
4 L = ∅
5 for (r, r′) ∈ C
6 if NotLinked(r) or NotLinked(r′)
7 continue
8 SWindowR = nClosest(50, S, r); SWindowR’ = nClosest(50, S ′, r′)
9 if s 6= arg min

s∈SWindowR′
DD(s, s′) or s′ 6= arg min

s′∈SWindowR
DD(s, s′)

10 continue
11 L = L ∪ {(r, r′, s, s′)}
12 // Get location errors for all keypoints under consideration
13 LocError = {ED(r, s) : (r, r′, s, s′) ∈ C ′} ∪ {ED(r′, s′) : (r, r′, s, s′) ∈ C ′}
14 EDBound = Percentile(99,LocError)
15 return {(r, r′, s, s′) ∈ L : max(ED(r, s),ED(r′, s′)) < EDBound}

Figure 5.6: The full interscale matching procedure

covariance matrix), then only 2% of the data in each dimension falls beyond 2σ,

which is half of what one would expect with a normal distribution. To confirm this

analysis, the residuals were tested with the Shapiro-Wilk multivariate normality

test [27], and failed with overwhelming probability. Although this indicates that

the empirical distribution is not normal, the analysis of the tails of the distribution

suggests that the Gaussian has heavier tails than the empirical distribution, and

is thus more challenging if it is at all different.

We conclude our description of plane-fitting data set generation with a dis-

cussion of how we produce data sets using the interscale matching procedure,

beginning with our detection of the homographies for each ground-truth model.

We run SIFT on source images 0 and 1, producing keypoint collections S and

S ′, and then on a series of rescalings of the source images as described ear-

lier, producing keypoint collections R1, . . . , Rn and R′1, . . . , R
′
n. At all of the re-

size scales, we generate a collection Li of localized SIFT correspondences with
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(a) Localization Residuals (b) Localization σ against resize
width

Figure 5.7: An analysis of localization noise: (a) the resulting distribution of
localization errors for one image rescale size; the mean is depicted in red, and
95% confidence intervals in each dimension are depicted in blue; (b) the standard
deviation of the errors for a range of image sizes

ISMatch(SIFTMatch(Ri, R
′
i), S, S

′). We then determine the model of the domi-

nant surfaces of the scene, using manually determined polygons that outline the

planes in both images. We make use of all the information gathered at every resize

scale, and form the union L of every Li. For each pair of polygons defining a planar

surface, we select the subset of L whose correspondences are consistent with the

polygons in each respective image. We detect the consensus set of the dominant

planar surface within the spatially-conforming points with RANSAC, and then

refit the homography with all of the source-scale locations of the consensus set.

These fitted homographies act as the equivalent of the ground-truth parameters

for the generative models in the synthetic data set.

We finish our discussion by explaining how these homographies and our collec-

tion of localized homographies L are used to generate data sets for a range of noise

levels and outlier compositions. We first restrict our attention by retaining only

the resize scales whose noise levels we wish to use. Then, at each resize scale i,

using the homographies H1, . . . , HW representing the ground-truth planar surfaces,

and the collection Li of localized SIFT correspondences, we find the consensus sets
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Pi,j of each Hj in each Li, and place the correspondences matching no model into a

global pool of outliers O; we then have a global outlier pool with mismatches from

every scale and, for each scale, a collection of inliers Pi,1, . . . , Pi,W for each planar

surface. We fix a single set of consensus set sizes from one of the scales to minimize

the number of independent variables, and then for each noise level i and outlier

level, sample the same number of inliers from the appropriate inlier collection Pi,j

for each model j and the appropriate number of outliers from the outlier pool.

Since our homographies are our inlier-models, the resulting collections of outliers

and inliers accurately reflect the data as will be perceived by a model; therefore,

the resulting collections of labeled inliers and outliers constitute our ground-truth

labellings. We need the global outlier pool since we want to be able to unnaturally

boost the outlier composition; sampling from multiple scales is not problematic as

we are unconcerned with the noise of the outliers.

Many image pairs were processed with this approach, and two were used to

produce Planes2 and Planes3. Four of them, including the two used in the eval-

uation, are presented in Fig. 5.8. Two were taken in Manhattan, and the other

two on Middlebury College’s campus. We used Pair 9 and 16 to produce Planes2

and Planes3 respectively since they had the strongest inlier sets and had enough

viewpoint disparity to reliably distinguish the planes. Planes2 contains 229 and

100 data points from each of the two dominant planar surfaces of the scene, and

has a natural outlier composition of 40 − 65% (depending on the size of the im-

age). Planes3 contains 68, 50, and 142 data points from each dominant planar

surface, and has a natural outlier composition of 30− 65%. However, in addition

to the building facades, it contains a number of smaller planar surfaces. We do

not want to penalize algorithms for detecting models that are present in the data,

and so we label these smaller surfaces, ensuring their inliers are withheld from the
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Pair 7 Pair 9 Pair 13 Pair 16
(Not Used) (Planes2) (Not Used) (Planes3)

Figure 5.8: Four image pairs, including the two data sets used in the evaluation

outlier pool, but do not emit them, giving a data set in which there are only three

surfaces. We chose 4 noise settings for each image pair, ranging from 0.22 pixels

to 0.42 pixels in one pair and 0.69 pixels to 0.80 pixels in another, and we varied

gross outlier fractions from 0% to 80% in steps of 10% as before. This produces

2× 4× 9 = 72 test sets for plane fitting.

5.2 Testing Methodology

Accurately quantifying the performance is a difficult task. Each algorithm in ques-

tion is randomized, and so its output on a particular data set is a random variable.

Accordingly, the performance of an algorithm is best characterized in the aggre-

gate rather than in a qualitative fashion as in [32, 43]. This is, however, a difficult

task: a performance metric must establish correspondences between estimated and

ground-truth models, even when there are discrepancies between their count, and

accurately assess not only roughly correct but also wildly degenerate configura-

tions.

Past quantitative approaches may be broken into ones using a similarity metric
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between estimated model parameters and ground-truth ones [9, 31] and those which

treat the task as a classification problem [19, 34, 37, 44], in which the percentage

of points “correctly” labeled is considered. Similarity metrics do not translate

between model fitting tasks, do not have intuitive interpretations, and are quite

tricky to accurately define. For instance, one might use the Euclidean distance to

define a similarity metric between homographies (by concatenating all of the free

parameters into a vector); however, a difference of 0.5 in an entry corresponding

to the change in scale is likely to be more of a concern than the same difference in

an entry corresponding to translation if the correspondence locations are in pixels

and range from 0 to 1000. Accordingly, we use a classification-based approach.

Although past work has included classification approaches, our metrics are fun-

damentally novel. In [34], only a binary inlier-outlier classification rate was used,

ignoring the distinctions between multiple models; in [37, 19], the error metric is

only described as the number of misclassified points; and in [44], the evaluated al-

gorithms were given the number of models, and so the evaluation approach did not

have to deal with mismatches in the number of models. In contrast to past work,

we rigorously define our metrics and not only use them to analyze performance,

but also analyze them themselves.

5.2.1 Scoring metrics

We describe our approach by giving a taxonomy of classification metrics. In any

classification scenario, an algorithm’s score is determined by

#Points Correctly Detected

#Total Points
(5.1)

and thus scores range from 0.0 (completely incorrect) to 1.0 (completely correct).

To automatically score an algorithm’s output, we must consider when a point is

103



considered correct (a correctness criterion) and which points are considered in the

classification score (the classification set). For our particular case, multi-model

estimation algorithms, we must also define how to determine a mapping, denoted

φ, between estimated and ground-truth models (a model mapping). Before we

begin, we introduce some notation. Let the ground-truth and estimated consensus

sets be denoted µ1, µ2, . . . , µW and µ′1, µ
′
2, . . . , µ

′
E respectively. Each µi or µ′i is a

subset of the data points, and µ1 ∪ · · · ∪ µW and DataPoints− (µ1 ∪ · · · ∪ µW ) are

the ground-truth inliers and outliers respectively.

Correctness Criteria: There are a number of approaches for determining whether

a point is correct or not. The most simple approach is to simply consider whether

a point was correctly determined as an inlier or outlier, as in [34]. This is per-

haps limited: the point of a multi-model estimation algorithm is its ability to

discern multiple models in data. Therefore, if one has a mapping φ from estimated

to ground-truth models, then one can use a model-aware criterion. A point is

counted as correct if and only if one of its estimated models maps to one of the

ground-truth models or if it is correctly identified as a ground-truth outlier. One

might take this a step further and use a more complex or restrictive notion of

correctness, but for now this definition suffices for considering multiple points.

Classification Sets: There are two probable options for the classification set.

The most immediately obvious one is to consider all data points. However, in-

cluding all data points leads to decreasing emphasis on accurate inlier assessment

as the percentage of outliers rises. For instance, with 80% outliers, an algorithm

can get a guaranteed score of 0.8 by not estimating any models. In practice, this

leads to an artifact in the resulting graphs: when an algorithm does poorly by not

estimating many models, its performance appears to improve as a function of out-

liers. One potential solution is to only consider the inliers for classification. When
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this is done, the opposite problem may occur and algorithms are not penalized for

including outliers.

Model Mappings: We conclude our taxonomy with methods for determining

a mapping from estimated to ground-truth models, beginning with Maximum-

Intersection. Specifically, we map the estimated model µ′j to the ground-truth

model µi that it shares the most points with, or

φ(µ′j) = arg max
i∈1,...,W

|µ′j ∩ µi|. (5.2)

While Maximum-Intersection does well when W = E, it can act as an optimal

model-fusion procedure and grossly distort performance when W > E. For in-

stance, if an algorithm can distinguish inliers from outliers but not individual mod-

els, it could give each inlier data point its own model, and Maximum-Intersection

would assign each estimated model (and thus inlier data point) to the correct

ground-truth model. If coupled with any correctness criterion and classification

set, the algorithm would achieve a perfect score, although its performance was

mainly artificially achieved during the scoring procedure (and thus not replicable

in a real-world scenario). In practice, this means that a scoring metric based upon

standard Maximum-Intersection model mapping will fail to penalize redundant

and extraneous models.

To correct this, we introduce another mapping procedure, Strongest-Intersection,

in which only the min(W,E) strongest inliers are considered. Weaker models do

not count as outliers, but may not contribute towards inlier detection. Although

it bears resemblance to the approaches used in [32, 9], it is distinct. In [32], W

was effectively provided to each algorithm during its execution in an attempt to

ensure that algorithms were evaluated on equal footing; this fundamentally alters

the algorithms. In [9], the W models were selected not by size, but instead in

such a fashion that the models minimized the error metric. Thus, the models best
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Table 5.1: The composition of classification metrics
Correctness Class. Set Model Map

Inl.-Outl. Model-Aware All Inliers Max-Isect. Str. Isect.
Inlier/Outlier X X

Many-to-1 X X X
N-str-to-1 X X X
N-str-to-1 X X X

corresponding to the data points are selected; this naturally requires a correction

factor to penalize algorithms for extraneous models. However, the correction factor

results in a metric that is not readily comprehensible.

Only a few of the possible metrics are useful. If we use a binary inlier-outlier

classification (and thus do not need to resolve models) over all points, we get

the Inlier/Outlier metric (which was used in [34]). The model-aware correctness

criterion and a Maximum-Intersection mapping over all points produces the Many-

to-1 scoring metric. Using the model-aware correctness criterion, the Strongest-

Intersection mapping, and all points and inliers respectively produces N-strongest-

to-1 and N-strongest-to-1-inliers. Finally, we include a non-classification score,

Model Count, which assess how well the algorithm detected the number of models

present in the data. In keeping with the bounds of the classification scores, it is

defined as min(W,E)/max(W,E) and is thus bounded to within 0.0 and 1.0.

We present some failure modes of the defined scoring approaches in Fig. 5.9. In

general: Inlier-Outlier and Model Count are ineffective; Many-to-1 fails to penalize

redundant detections; N-strongest-to-1, and all other all-data-point metrics have

issues balancing the importance of outliers; and N-strongest-to-1-inliers has severe

issues when large numbers of models are produced in addition to the correct ones.

We advocate the N-strongest-to-1 metric: its failure mode (that models are not

estimated) is easy to detect, and it produces significantly less inaccurate scores

in comparison to the only other credible alternative, N-strongest-to-1-inliers. We
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Sample results
by different
algorithms

Issues: wrong model redundant wrong models but missing extra
assignment models correct count models models

Inlier-outlier: 0.98a 0.93a 0.65 0.60d 0.65
Model count: 0.60 0.83 1.00b 0.40 0.17

Many-to-1: 0.27 0.93c 0.61 0.57d 0.63
N-strongest-to-1: 0.27 0.82 0.61 0.52d 0.61

N-str-to-1-inl.: 0.27 0.82 0.30 0.09 0.95e

Figure 5.9: Common failure modes of scoring functions on actual output: (a)
Inlier-outlier does not evaluate actual model assignments; (b) accurately estimating
the number of models does not imply accurately estimating them; (c) Many-to-
1 does not penalize redundant or extraneous detections; (d) an outlier-inclusive
classification set decreases the importance of accurately estimating inliers; (e) extra
models that include only inliers are not penalized under N-strongest-to-1-inliers.

could perhaps merge multiple scores to eliminate this artifact; however, we believe

that having a comprehensible score that occasionally needs explanation is better

than having a black-box score that is impossible to explain, but which seems to

produce the graphs we want.

5.2.2 Testing procedure

We conclude our description of the testing methodology by describing the testing

procedure. Even with a proper scoring metric and data sets, properly running

the tests is challenging. In particular, the needs for a-priori knowledge between

the algorithms poses issues: not only does one need to consider how to handle

MultiRANSAC’s need for the number of ground-truth models, but one also needs

to know how to set parameters such as ε and T , which do not have clear definitions.

We implemented each algorithm, except for Kernel Fitting, for which we used

the provided code [6]. Our evaluation framework (approx. 5000 lines of code)

was written in Python, although a few frequently-called mathematical primitives
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Table 5.2: Fraction of the volume of the isotropic 2D Gaussian PDF that falls
within given radii

Radius σ 1.5σ 2σ 2.5σ 3σ 3.5σ 4σ
Fraction 39.3% 67.5% 86.5% 95.6% 98.9% 99.8% 99.97%

(e.g., Gaussian PDF evaluations) were written in C and linked in with SWIG.

We additionally implemented Kernel Fitting ourselves, with the paper’s model-

selection scheme, using Numpy for the requisite linear algebra machinery. When

we found that the code’s model-selection scheme did not work, we tried the paper’s:

we discuss the performance of each scheme in the discussion of each data set.

We provide each algorithm all of the parameters it needs; although it may seem

to provide algorithms requiring more information an advantage in the evaluation,

the other alternatives are less appealing. In [32], the algorithms were all given W

to ensure an equal comparison with MultiRANSAC. This crucially occurs inside

the algorithms, rather than during an evaluation; thus, the scoring methodology

(in this case, the visual system), has no chance to integrate the remaining models

or their absence into the score. Further, this assumes that W is a different type

of a-priori knowledge than ε or T . Taking the approach of modifying algorithms

to use all of the parameters to the logical conclusion requires modifying all of the

algorithms to use all of the potential data parameters; this would, of course, defeat

the purpose of the study as the algorithms themselves would not be evaluated. In

the other extreme, one could classify the algorithms into groups that require the

same parameters; this is unsatisfactory as well: just because Kernel Fitting can

automatically estimate ε does not mean that one of its main “competitors” is J-

linkage and that it cannot be used in a scenario in which a suitable estimate of

the noise scale could not be obtained. Thus, although it seems unfair, we argue

that providing each algorithm all of the parameters it needs produces the most

informative and accurate evaluation.

108



Although W is an easy parameter to determine, both ε and T do not have

immediately apparent “ground-truth” values. As was the case in the generation of

ground-truth labels for points, we set ε to 3σ for synthetic data. The volume of the

Gaussian PDF falling within a series of radii is presented in Table 5.2. For plane-

fitting data, we set ε to 2 pixels at a resolution of 1750×1312. One could use [33] to

automatically determine the optimal ε value; however, when the noise is synthetic,

it makes more sense to use that knowledge in a straight-forward fashion rather

than introduce another algorithm, and in the case of plane-detection, we found 2

pixels to be empirically effective. Finally, we set T to 50, the expected size of the

consensus sets of each model for synthetic data, and to the minimum consensus set

size for plane-fitting. Algorithms such as J-linkage and Sequential RANSAC use a

fixed fraction of this to discriminate between legitimate and spurious models.

Each algorithm was tuned, and then optimized for the evaluation task. We

manually tuned parameter settings for each algorithm to a fixed number that

produced the best results. We then added a final post-processing step to every

algorithm, in which we refitted the algorithm’s consensus sets: we took the out-

putted consensus sets, found their best-fit models, and reestimated the consensus

sets using those models. In all cases, this improved the performance of the algo-

rithms. For instance, Kernel Fitting was designed to recover the underlying models

rather than their consensus sets, and so would be unfairly penalized without this

step by a classification-oriented evaluation scheme.

We ran each of the 6 algorithms on each of the 315 + 72 data sets 15 times for

a total of 34, 830 test runs. The tests were spread over a cluster of workstations

and took approximately 33 computer days. At each run, the algorithm’s output

and the CPU time taken were recorded.
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Table 5.3: Average rank of each algorithm on each data set over all noise and
outlier settings according to N-strongest-to-1 scoring. The method with minimum
average rank in each row is highlighted.

SeqRS MulRS JL MJL RHA KF
Stairs4 3.84 1.71 1.68 4.38 4.49 3.00
Stairs5 5.14 4.21 1.43 3.94 3.56 2.24
Star5 2.56 4.17 2.51 3.90 5.44 1.38
Star7 2.14 4.33 3.00 3.60 5.52 2.02
Circles5 3.06 3.38 3.49 3.63 4.29 3.10
Planes2 3.92 3.11 4.03 1.11 4.94 2.97
Planes3 3.64 1.92 3.14 1.47 5.36 5.28

5.3 Results

We now analyze the results of our evaluation study. In addition to manually ex-

amining all of the results to assess performance and prevent inaccurate automated

evaluation, we plotted average N-strongest-to-1 scores against outlier composition

and noise levels for each data set. When plotting against outliers, we limit the

outlier composition to 20%; when plotting against noise, we limit the noise level to

the second-smallest for geometric figure fitting and use all levels for plane fitting

(since the former’s noise range is significantly larger than the latter’s). To summa-

rize performance, we also present the average rank of each algorithm over all test

sets for each data set in Table 5.3. Note that the numbers are ranks, and thus are

not informative about an algorithm’s performance taken in isolation; for this, one

must consult the score graphs presented later in this section. We will discuss each

data set in turn, and then summarize our findings for each algorithm at the end.

To avoid clutter, we do not present RHA’s results: although it was critical for the

development of later algorithms and can often detect many models, as can be seen

in Table 5.3, RHA is not competitive.
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5.3.1 Lines

The lines data sets each pose a different challenge to algorithms. As mentioned

earlier, the stairs sets are ambiguous, and a line across every ground-truth model

may contain more data points than a line across a ground-truth model. This effect

is more pronounced in the 5-model case than 4-model case: in the 4 model case, the

ground-truth interpretation barely has more points than an incorrect one (36 vs.

35); in the 5 model case, a correct interpretation has significantly fewer points (40

vs. 49). In stars, although there is no ambiguity, models intersect cyclically, posing

issues for algorithms that assume disjointness. We plot average N-strongest-to-1

score against outlier and noise in Fig. 5.10 and 5.11 .

J-linkage performs consistently well on all line-fitting examples, and overall

outperforms the other algorithms on the stairs examples. This performance is

not emulated by Merging J-linkage, which quickly hallucinates models from the

outliers in all line-fitting examples (recall the mess of lines that was not correctly

penalized by N-strongest-to-1-inliers in Fig. 5.9). The merging step enables outlier

clusters to merge into seemingly valid models: the outliers can create best-fitting

models, which will produce more spurious models than in Sequential RANSAC, in

which a strongly-supported spurious model must be encountered by chance.

Kernel Fitting performs similarly well to J-linkage, although issues with select-

ing an appropriate model-selection scheme arise in the stairs example. The scheme

in the accompanying code performs significantly worse that the paper’s, and so we

used our own implementation, which results in competitive performance on both

stairs data sets. The code’s merging scheme performs very well on both stars data

sets, outperforming the other algorithms overall. We observed that when Kernel

Fitting failed on Star 7, it tended to under estimate the number of models by 1 or

2. We suspect that this is related to the dimensionality (6) of the spaces used for
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(a) Star5 (b) Star7

Figure 5.10: The performance of each algorithm on the star data set as a function
of outliers (top row) and noise (bottom row)

clustering and model-selection, which might not be able to accurately represent

data for 7 models. We further observed that Kernel Fitting tended to do poorly

in the presence of no outliers.

The consensus-set-oriented approaches have significant trouble on the stairs

data sets. This was observed for Sequential RANSAC in [44, 32]. However, our

use of Stairs5 reveals issues with MultiRANSAC: MultiRANSAC’s performance

dramatically drops (from an average rank of 1.71 to 4.21) when the number of

models is changed from 4 to 5 (and thus the consensus set size of a diagonal model

increases). One problem is the disjointness assumption used in UpdateCS: when

UpdateCS merges two collections of consensus sets, it takes the consensus sets in

decreasing order. Therefore, if there is a diagonal model in either consensus set
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(a) Stairs4 (b) Stairs5

Figure 5.11: The performance of each algorithm on the stairs data set as a function
of outliers (top row) and noise (bottom row)

collection, it is selected first; when the correct models are considered for inclusion,

they are rejected as they intersect the diagonal model. Thus, in addition to failing

in the presence of intersecting models, MultiRANSAC’s disjointness assumption

ensures that it does poorly on stairs as well. Further, as the performance of the

consensus-set-oriented algorithms depend on how many diagonal models are pro-

duced when sampling, increasing the noise (which induces more diagonal models)

dramatically affects performance, which may be observed by the “breaking points”

seen as a function of noise in Figs. 5.11a and 5.11b.

Sequential RANSAC does surprisingly well on Stars, and MultiRANSAC does

poorly since the models intersect. MultiRANSAC’s poor performance on the star

data sets was noted in [32]. This ability to cope with intersecting models sug-
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gests that although it is more simple, Sequential RANSAC’s method of enforcing

disjointness (removal of inliers) is perhaps more effective than MultiRANSAC’s (re-

jection of intersecting models): when models intersect, Sequential RANSAC must

overcome the challenge of detecting the second model without common points;

on the other hand, MultiRANSAC must estimate both models accurately while

not letting them intersect (an impossible challenge in many cases). Thus, Multi-

RANSAC tends to get the approximate idea of each model correct, while estimating

the parameters incorrectly to avoid intersection.

5.3.2 Circles

Circles5 is by far the most challenging of the data sets. Contributing to the diffi-

culties are our noise-levels: past evaluations have used 0.375% [32] and 0.1% [9],

well below our levels (as high as 1.05%. However, the difficulty is also intrinsic

to the task of circle-fitting: in short, in circle-fitting, finding a coherent model is

significantly more difficult than in line fitting, and coherent models are not very

distinctive compared to outlier models. The former is relatively easy to under-

stand: finding a coherent circle model requires finding one extra data point, and

is thus P (C) less likely than finding a coherent line model, using the notation

from our discussion of RANSAC. The latter is far more subtle, and is described

numerically in Table 5.4. We took three exemplar data sets with 40% outliers from

each model class. We sampled 2000 outlier-only and 2000 inlier-only models from

each data set and recorded their consensus set sizes (which approximately indi-

cates the strength of that model). We then examined what percentage of outlier

(i.e., spurious) models have consensus set sizes larger than a series of consensus-set

size percentiles of the inlier-models. For example, according to Table 5.4, if the

10th percentile of consensus set sizes for lines occurs at x (i.e. 10% of the inlier
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Table 5.4: An indication of the overlap in consensus set sizes between models
formed from outliers and models formed from inliers. We list what fraction of the
outlier-only models have consensus sets sizes bigger than the given percentile of
the inlier-only models.

10th 25th 50th 75th 90th
Lines 5.35% 0.05% 0% 0% 0%

Circles 51.25% 22.8% 3.85% 3.05% 2.75%
Planes 72.65% 2.7% 0.25% 0% 0%

models have consensus set sizes smaller than x), then 5.35% of the outlier models

have consensus sets with size larger than x. The difficulty of our circle-fitting data

set is revealed by the significant overlap of outlier models and inlier models with

respect to consensus set sizes: for the inlier models to be detectable, they have to

be distinguishable from outlier models.

Sequential RANSAC does the best of all the algorithms on Circles5, with Mul-

tiRANSAC a close second, despite the circles’ intersection. J-linkage will often fail

to form sufficiently strong clusters and detect the underlying models, and Merg-

ing J-linkage has the opposite problem, and quickly hallucinates circles from the

outliers. Kernel Fitting works best with the paper’s merging scheme, although its

performance is hit-or-miss and it often misgroups points; with the code’s merging

scheme, it frequently merges all points together.

5.3.3 Planes

Merging J-linkage, unsurprisingly, outperforms the other algorithms overall. As

predicted by the motivation for its merging scheme, it does particularly well

on Planes2. The large support regions of the planes in Planes2 challenge J-

linkage, Sequential RANSAC, and MultiRANSAC: as was argued in Section 4.5,

J-linkage’s requirement of one commonly accepted model becomes problematic

since Kanazawa sampling makes it difficult to find a minimum sample set that
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Figure 5.12: The performance of each algorithm on circle-fitting data as a function
of noise (left) and outliers (right). Note that the seeming increase in performance
as a function of outliers is an artifact of the algorithms failing to estimate many
models, and the increase in outliers.

is both coherent and capable of estimating the global aspects of the perspective

transformation. Sequential RANSAC and MultiRANSAC both fundamentally de-

pend on consensus sets of minimum sample models, and so they similarly have

issues finding an accurate model. Kernel-Fitting does very well on Planes2, apart

from poor behavior on outlier-free data, as similarly observed in line-fitting.

Although Merging J-linkage retains its lead in Planes3, a large number of al-

gorithms do significantly better with the smaller planar surfaces. MultiRANSAC

achieves nearly the same performance as Merging J-linkage, and J-linkage and

Sequential RANSAC perform much better as well. Mysteriously, Kernel Fitting

does worse on Planes3: with the code’s merging scheme (used for the graphs),

it struggles with disambiguating each planar surface, and with the paper’s merg-

ing scheme, it oversegments. The disparity in performance between Planes2 and

Planes3 indicates that future evaluations should include a range of plane-fitting

tasks, and that larger surfaces that cannot be modeled well by affine transforma-

tions may pose more of a challenge than having an additional model present in the

data.
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(a) Planes2 (b) Planes3

Figure 5.13: The performance of each algorithm on plane-fitting data as a func-
tion of outliers (top row) and noise (bottom row); note that the seeming increase
in performance on Planes2 as outliers increase is the aforementioned artifact of
increasing outlier levels.

5.3.4 Discussion

We now provide high-level observations about the algorithms evaluated. Average

runtimes for a series of data set sizes (number of data points) are presented in

Table 5.5. It would appear that RHA, Sequential RANSAC, and MultiRANSAC

are empirically linear in the number of input points, and that J-linkage variants

and Kernel Fitting are quadratic. This empirical assessment may be confirmed by

considering the approaches. The RANSAC methods and RHA scan through the

data points roughly once per minimum sample model, and both Kernel Fitting

and J-linkage construct a N2 matrix: J-linkage’s is the Jaccard distance matrix
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Table 5.5: Average runtime in seconds for each method for three dataset sizes,
which roughly double between rows.

# of points SeqRS MulRS JL MJL RHA KF
411 16.2 88.2 19.9 22.8 10.5 22.8
822 22.1 122.8 87.7 98.4 15.0 213.9
1645 37.3 202.2 559.7 616.3 24.5 529.0

between clusters (which is N × N initially), and Kernel Fitting’s is the kernel

matrix K. Thus, the RANSAC approaches and RHA are favored with respect to

time.

We now discuss the overall performance of each algorithm:

• Although Sequential RANSAC has been treated as a baseline method by

most evaluation studies, it is one of the clear winners in this evaluation: it is

capable of performing acceptably to strongly on most data sets (except for

stairs), and is both simple to implement and extremely fast. As articulated

earlier, its approach to disambiguating models in the consensus-set space is

superior to MultiRANSAC’s.

• MultiRANSAC’s disjoint consensus set assumption and parallelized ap-

proach consistently lead to problems. It does well on Stairs4 as well as

Planes3. However, its poor performance on Stairs5 suggests that its perfor-

mance on Stairs4 is not representative, and in the case of plane-detection,

it is outperformed on both data sets by Merging J-linkage, which is equally

easy to implement.

• J-linkage performs consistently across the data sets, although the setting of

an appropriate threshold for cluster size is tricky: if it is too low, spurious

models rapidly appear, and if it is too high, then J-linkage misses models.

Although it is relatively simple to implement, it has quadratic time complex-

ity with respect to the number of data points. This issue has recently been
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addressed by the authors in [34], with another J-linkage variant that trades

accuracy for computational efficiency.

• Merging J-linkage is highly effective for plane-fitting, but its tendency to

hallucinate models in geometric figure fitting effectively renders it a domain-

specific approach.

• Although RHA is historically important and often capable of detecting a

number of the models, its performance is not competitive in comparison to

the other algorithms.

• Kernel Fitting performs very well, and has the added benefit of requiring

no a-priori knowledge about the input data. However, it has a number of

drawbacks: like J-linkage, it is quadratic in the number of data points; its

implementation is difficult; it seems to perform poorly when there are no out-

liers present; and no one model selection scheme works best in any problem

domain. Future work in outlier detection and model selection, as in [7], might

enable Kernel Fitting to more consistently outperform the other algorithms.

Since it requires no a-priori knowledge, consistently effective outlier removal

and model selection schemes would be a crucial step in the development of

multi-model estimation algorithms.

Before we summarize the evaluation methodology and offer future research

directions, we offer concrete advice about the selection of an algorithm. Sequen-

tial RANSAC should be a first choice due to its speed and general effectiveness.

Although we anticipate that Sequential RANSAC will be sufficient in many appli-

cations, we expect that there will be situations in which it is inadequate for either

performance reasons or its need for a-priori knowledge of the data. In the case of

performance issues, either J-linkage or Kernel Fitting seem to be a suitable next

approach, and in the case of the latter, Kernel Fitting is the only effective option
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for the estimation of structures without a-priori knowledge. If neither algorithm’s

performance is satisfactory, then one can begin integrating domain knowledge into

the algorithm. For J-linkage, this will be somewhat difficult, but in some cases,

there may be a way to use domain-specific information to either introduce an alter-

native model-selection biasing scheme to Kanazawa sampling, or adjust or modify

the output. In Kernel Fitting, if one can encode information about the likelihood

of sharing a model as a kernel function (as is done with the Gaussian kernel), then

one can simply add some positive fraction of that kernel to the ORK and Gaussian

kernels.

In this chapter, we have introduced an evaluation methodology for multi-model

estimation algorithms and analyzed its application to a number of state-of-the-art

methods. In addition to the usual inclusion of more algorithms (in particular,

[7, 34, 13]), future studies should include motion segmentation, and real-world ge-

ometric figure-fitting data to assess the reality of the synthetic data sets commonly

in use. The former is frequently used in demonstrating the effectiveness of a new

algorithm, and its inclusion with a range of outliers and noise levels would augment

our overall understanding of the effectiveness of the algorithms. The latter would

ensure the applicability of the evaluation to real-world model estimation problems.
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CHAPTER 6

CONCLUSIONS

This thesis has presented an overview of contemporary solutions to the prob-

lem of estimating multiple models from outlier contaminated data in the context of

computer vision. After introducing earlier techniques that are effective only with-

out outliers, a classic probabilistic approach to handling outliers in the single-model

case, RANSAC, was introduced. In addition to describing the basic approach, we

described a sampling strategy that enables rapid detection, even of high parameter

models in data containing an overwhelming number of outliers. To motivate the

multi-model case, and to demonstrate a practical application of these techniques

in vision, we demonstrated the detection of planar surfaces in image pairs using

feature correspondences. After introducing the natural extension of RANSAC to

the multi-model case, we described five other contemporary multi-model estima-

tion algorithms: MultiRANSAC, J-linkage, Merging J-linkage, Residual Histogram

Analysis, and Kernel Fitting. The variety of approaches raises the practical ques-

tion of which algorithm is most effective. To answer this question, we introduced

a novel evaluation methodology and applied it to the algorithms described. We

now present a number of high-level concluding remarks about the multi-model

estimation task.

Although they were introduced as the inheritors of approaches such as least-

squares or LMedS, there is a significant disconnect between multi-model algorithms

for vision and their purported statistical heritage. This is perhaps best illustrated

by the stairs data set, and perhaps line-fitting in general. Immediately, our math-

ematical formulation is suspect as human vision is never concerned with finding

lines as mathematical objects, but instead with detecting line-segments. Putting

this aside, there seems to be no mathematically valid reason that the diagonal
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interpretation is incorrect: if we use consensus set size as a criterion, the diagonal

models (even as line-segments) in Stairs5 have far more points than the straight

ones; and if we use goodness of fit for inliers, neither interpretation of the stairs

data set is a clear winner. The argument that no human would possibly argue for

the diagonal interpretation only reinforces this point: our perception of the data

set is presumably not driven by lines as a mathematical entities, but instead by

the an interpretation of the entire scene, including the spatial relationship between

the dots. Looking for a line, we immediately rule out the diagonal interpretation

since it crosses enormous gaps of white space. Although this spatial information is

highly effective in vision – both Kanazawa sampling and Kernel Fitting’s inclusion

of the Gaussian improve the results of algorithms – it has no mathematical basis

if the model estimation task is thought of in the same fashion as least-squares.

This disconnect is driven by the nature of the problem, and perhaps of vision

in general. There is no mathematical basis for Kanazawa sampling or for deciding

which stairs model is correct because the problem is poorly posed, and thus the only

definitions of correctness are manufactured: unlike a travelling salesman problem,

we do not have an immediately accessible natural definition of what constitutes

optimal or correct; and unlike ordinary least-squares, our task may not be posed

as finding the maximum-likelihood solution to a problem that corresponds to real-

world processes. We can invent and describe any number of criteria (goodness-of-

fit, consensus size, etc.) to determine what constitutes correct, but in the end, one

can only argue for their suitability by invoking their empirical effectiveness; this is

in turn driven largely by how well the results agree with our visual system. If this is

the case, then it seems that manufactured criteria for determining correctness are

merely a heuristic that frequently agrees with our intuition, and that the poorly-

defined approach of whether the results agree with our visual system is perhaps, in
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the end, the best. The lack of mathematical justification and proofs of correctness

are then not an issue: if we cannot even determine or justify a mathematical

function to optimize, then one can have no hope of mathematically justifying the

algorithm. We should not, however, be disappointed at not having an elegant

mathematical foundation: the human visual system is similarly justified not by

mathematical formalism, but instead empirical effectiveness.
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