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Abstract—We present a new method for the robust detection
and matching of multiple planes in pairs of images. Such
planes can serve as stable landmarks for vision-based urban
navigation. Our approach starts from SIFT matches and
generates multiple local homography hypotheses using the
recent J-linkage technique by Toldo and Fusiello, a robust ran-
domized multi-model estimation algorithm. These hypotheses
are then globally merged, spatially analyzed, robustly fitted,
and checked for stability. When tested on more than 30,000
image pairs taken from panoramic views of a college campus,
our method yields no false positives and recovers 72% of
the matchable building walls identified by a human, despite
significant occlusions and viewpoint changes.
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I. INTRODUCTION AND RELATED WORK

Given two images of a scene containing planar surfaces,
the points in each pair of corresponding planar regions are
related by a homography, a linear projective transformation
with 8 parameters. Detecting such homographies—and thus
the underlying 3D planes—has many applications, includ-
ing camera calibration, 3D architectural reconstruction, and
robot navigation. In this paper we consider the use of
the detected planes for visual navigation [1] and location
recognition [2] from a set of panoramic reference views (see
Fig. 1).

While visual features such as SIFT [3] can be used for
localization [4], such features are unstable in the presence of
repetitive structures such as windows in building facades and
often yield false positives. Instead, we propose using entire
planar surfaces as visual features. We thus need a robust way
of extracting and matching multiple planes from image pairs,
even in the presence of significant viewpoint changes and
occlusion. Our approach is to establish multiple homography
hypotheses starting from matched SIFT features.

There is much existing work on estimating homographies
from matched features. The standard approach for model
estimation in the presence of outliers is Random Sample
Consensus (RANSAC); however, it cannot detect multiple
models. Both Vincent and Laganiere [5] and Kanazawa and
Kawakami [6] use sequential approaches to overcome this
problem. Zuliani et al. [7] compare sequential RANSAC
with multiRANSAC. All of these approaches commit to

Figure 1. Corresponding planar surfaces detected by our method between
two multi-image panoramas. Each planar surface is modeled by a homogra-
phy relating a collection of matched SIFT features. The detected planes can
serve as stable landmarks for location recognition and visual navigation.

plane hypotheses sequentially or require specifying the num-
ber of models a priori. Similar non-randomized methods
commit to initial seed regions that are then grown while
updating the models [8], [9].

Like several of the above methods, our approach performs
randomized model estimation on feature correspondences;
in contrast to existing work, however, it does not sequen-
tially commit to hypotheses. Instead we use the J-linkage
technique by Toldo and Fusiello [10], a robust randomized
multi-model estimation algorithm, followed by a number of
steps to ensure high accuracy while avoiding false positives.

II. APPROACH

Given an image pair, our method extracts feature cor-
respondences, establishes initial plane hypotheses using J-
linkage, and globally merges them. The resulting hypotheses
are then refined using spatial analysis and stability checks.
Each step is discussed in detail below.

A. Feature correspondence extraction

To generate feature correspondences we use the SIFT
detector and matching procedure [3]. The feature detector is
applied to the two grayscale images, producing collections of
features I1 and I2. Correspondences between these features
are established using a nearest-neighbor search in the feature
descriptor space. For each feature p ∈ I1 we find its nearest



and second-nearest neighbor q, q′ ∈ I2 respectively. The
correspondence between p and q is accepted if the Euclidean
distance ratio |p−q|/|p−q′| is below a constant bound. For
a correspondence c = (p, q), we denote its feature locations
in the two images as xc

1 and xc
2 respectively.

B. Initial hypotheses using J-linkage

Randomized model estimation techniques such as
RANSAC provide an effective and efficient way to generate
models from outlier-contaminated data. In order to detect
multiple models we adopt the recent J-linkage technique
[10], which is robust to gross outliers and noise and does
not require prior specification of the number of models.

We use it here to detect perspective transformations (ho-
mographies) that map planar surfaces from one image to
the other. Like RANSAC, J-linkage starts with k randomly
chosen minimum sample sets (MSS). In our case each MSS
contains 4 correspondences, which uniquely specify a ho-
mography. In order to increase the likelihood of choosing an
MSS comprised of inliers, we draw the first correspondence
uniformly, and the remaining three with higher probability
in the vicinity of the first [10].

Let H1, . . . ,Hk denote the homographies specified by
each MSS. For each correspondence c, we then compute
its preference set Pc, the subset of models that fit c well
enough:

Pc = {Hj : errHj
(c) < ε, 1 ≤ j ≤ k, }, (1)

where errH(c) = |H(xc
1) − xc

2| is the reprojection error
of correspondence c under transformation H , and ε is a
constant error threshold (we use ε = 1.5 pixels). The
preference set of a set of correspondences is defined as the
intersection of their individual preference sets.

Next, J-linkage performs agglomerative clustering: begin-
ning with singleton sets of the detected correspondences, a
pair of sets with minimum Jaccard distance dJ between their
preference sets is merged, where

dJ(X,Y ) = (|X ∪ Y | − |X ∩ Y |)/|X ∪ Y |. (2)

Merging proceeds until the minimum distance is 1, i.e., all
preference sets are disjoint. At every stage of the method, a
set of supporting correspondences represents a plane hypoth-
esis. It is easy to see that each cluster of correspondences
must always contain at least one model that fits all of them.

Many outliers will remain in small sets, and are discarded
at this stage; throughout the method, we require at least 6
supporting correspondences for a valid model. The remain-
ing disjoint sets of sufficient cardinality are treated as the
initial plane hypotheses. Fig. 2a illustrates the results of this
step.

C. Global merging

Since most of the initial hypotheses are generated from
groups of nearby points, globally visible aspects of the

(a) Plane hypotheses after J-linkage

(b) Plane hypotheses after global merging

(c) Plane hypotheses after spatial analysis

Figure 2. Illustration of the individual steps of our method. Feature
locations are marked with dots; plane hypotheses are visualized using color
and convex hulls. (a) J-linkage output; note that single planes often result
in multiple models. (b) Global merging reduces the number of models but
does not eliminate “rogue” correspondences that fit a model by chance. (c)
Spatial analysis retains only compact feature sets.

perspective transformation, such as foreshortening, may be
effectively underdetermined. J-linkage only merges corre-
spondences that share a common model, so a large planar
surface in the scene may result in several plane hypotheses
that cannot be merged, as can be observed in Fig. 2a. We
therefore continue the agglomerative clustering, but use a
different distance function dF that measures the average er-
ror for the model that best fits the union of correspondences:

dF (X,Y ) =
1

|X ∪ Y |
∑

c∈X∪Y

errĤ(c), (3)

where Ĥ is the least-squares solution to the perspective
transformation for X ∪ Y . Clustering is stopped when the
minimum distance exceeds the threshold ε used in the J-
linkage step. Fig. 2b illustrates the results. The reason
that the green triangle on the left is not merged with
the dominant red hypothesis is that the green hypothesis
represents a plane different from the main building wall due



Figure 3. Spatial analysis. The red points initially belong to a single plane
hypothesis; they are triangulated and long edges are removed. The resulting
disjoint graphs are then split into separate hypotheses; the one on the left
is rejected due to an insufficient number of supporting points.

to erroneous matches, which is a common problem with
repetitive features such as windows of a building. Thus,
the two hypotheses are not matched, and in fact the green
hypothesis is later removed due its insufficient number of
supporting matches.

D. Spatial analysis

The plane hypotheses computed at this point accurately
capture the planar surfaces present in the 3D scene, but
may also contain additional “rogue” correspondences that
match the underlying transformations by chance (see for
instance the yellow correspondence on the far right in
Fig. 2b). This is because analysis so far has considered only
the feature descriptor and homography spaces, but not the
feature location space. Such outliers with respect to feature
locations are problematic if we want to estimate the extent
of the plane, for instance using the convex hull of the feature
points.

We detect and eliminate “rogue” correspondences by com-
puting for each plane hypothesis the Delaunay triangulation
of its feature locations in image 1, and removing all edges
whose length is more than one standard deviation over the
mean (see Fig. 3). We then treat the disconnected subgraphs
as separate hypotheses and reject those that are insufficiently
supported (i.e., have fewer than 6 correspondences). The
remaining hypotheses are passed on to the final step. See
Fig. 2c for illustration.

E. Robust fitting and stability checks

Since the distance function dF used in global merging
measures the average (rather than maximum) error, we
perform a final robust fitting step for each model C to
improve its accuracy and remove remaining outliers. We
repeatedly compute the best-fit (least-squares) homography
Ĥ for C, and remove correspondences c from C for which
errĤ(c) > εi, using a sequence of decreasing error thresh-
olds {εi}. We start with a large threshold and gradually lower
it to the original threshold ε. If C becomes insufficiently
supported during this process, it is rejected.

A different problem is that some of the transformations
may be effectively underdetermined, for instance, if all

points in a model are more or less collinear. In this case,
slight perturbations in feature locations would result in
large changes in the underlying models. Since our goal is
to use the detected planes as stable visual landmarks, we
want to eliminate such unstable models. We use a simple
perturbation test to detect them.

Specifically, we repeatedly disturb the feature locations in
both images using normally-distributed noise proportional to
the size of their bounding box, compute the best-fit model,
and project the corners of the bounding box under this
model. For a stable model based on well-distributed features,
the standard deviations of the bounding box corners will be
of the same magnitude as the perturbation noise; if they
are significantly higher, we reject the model. The plane
hypotheses that pass this test are the final output of our
method. The result of the approach when run on image pairs
between two multi-image panoramas is shown in Fig. 1.

III. RESULTS

We tested our method using panoramic sequences taken
from 31 different viewpoints on Middlebury’s campus. Each
sequence spans 360 degrees and contains 8 or 9 images, for
a total of 259 images. Each image is corrected for radial
distortion, scaled to a width of 1500 pixels, and converted
to grayscale for SIFT processing. We evaluated our plane-
detection method by running it on all 32,455 inter-viewpoint
image pairs. Since the viewpoints are spread out over a
fairly wide area, most of these pairs do not contain common
planes.

We manually analyzed the images in order to enable a
quantitative performance evaluation. Overall, we found 330
instances of planes that are commonly visible in pairs of
images. In 108 of them, however, the SIFT detector fails to
find any features, due to the lack of texture (for instance, on
building roofs). Another 87 of the plane pairs we identified
are too small or undergo too severe a viewpoint shift for
SIFT to establish a sufficient number of correspondences.
Since the SIFT features are the input to our method, we
cannot expect these planes to be found. The remaining
135 “detectable” planes still contain formidable challenges,
including illumination changes, reflections (e.g., windows),
significant occlusion (e.g., by trees), and significant view-
point and scale changes. Our method finds 97 of these
planes, about 72%. Impressively, despite a data set con-
taining large numbers of similar planes, not a single plane
is erroneously detected, indicating the effectiveness of our
spatial analysis and stability checks.

Figure 4 illustrates the accuracy of our method on a
challenging example: two views of a building facade with
a significant viewpoint shift, a scale change of more than
300%, and many unmatchable areas (doorway and win-
dows). Despite these challenges our method accurately de-
tects and aligns the building wall.



Figure 4. Alignment performance in the presence of significant scale
and viewpoint changes. Top row: Cropped regions of a matched image
pair. Yellow dots mark features belonging to the model; magenta crosses
mark other features. Bottom left: The second image warped by the aligning
homography. Bottom right: The difference image visualizing the quality of
the alignment (dark regions indicate low differences). Note that the building
wall is perfectly aligned.

We also performed experiments assessing the effective-
ness and necessity of the individual steps of our method.
We used a fixed set of image pairs and ran the method,
selectively removing one of the post-initial estimation steps
at a time. In all cases, the performance decreased, resulting
in planes that were detected in pieces, poorly localized,
poorly registered, or missed altogether,

Finally, we want to point out that distinct 3D surfaces do
not always result in separate detected planes. For instance,
in Fig. 2c, the three visible faces of the octagonal tower
are detected as a single plane. This is not a flaw of the
algorithm but rather a limitation of the problem formulation:
if the viewpoint does not change significantly, there is
insufficient parallax to detect objects at different depths and
orientations, and thus a single plane hypothesis, even with a
tight threshold ε, accurately describes the visual motion of
multiple surfaces.

IV. CONCLUSION

We have presented a new method for multiple plane
detection in image pairs. We use the J-linkage algorithm
to generate hypotheses from SIFT feature correspondences,
followed by global merging in order to account for global
effects such as foreshortening. To eliminate erroneously
matched points, we perform a spatial analysis based on

the Delaunay triangulation of feature locations. Finally, to
ensure the quality of the resulting planes, we perform robust
fitting and a stability check. Our experimental results on a
large number of images demonstrate the effectiveness of our
method in sufficiently textured environments.
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