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Abstract

The Helioseismic and Magnetic Imager (HMI) on board NASA’s Solar Dynamics Observatory produces estimates
of the photospheric magnetic field, which are a critical input to many space weather modeling and forecasting
systems. The magnetogram products produced by HMI and its analysis pipeline are the result of a per-pixel
optimization that estimates solar atmospheric parameters and minimizes disagreement between a synthesized and
observed Stokes vector. In this paper, we introduce a deep-learning-based approach that can emulate the existing
HMI pipeline results two orders of magnitude faster than the current pipeline algorithms. Our system is a U-Net
trained on input Stokes vectors and their accompanying optimization-based Very Fast Inversion of the Stokes
Vector (VFISV) inversions. We demonstrate that our system, once trained, can produce high-fidelity estimates of
the magnetic field and kinematic and thermodynamic parameters while also producing meaningful confidence
intervals. We additionally show that despite penalizing only per-pixel loss terms, our system is able to faithfully
reproduce known systematic oscillations in full-disk statistics produced by the pipeline. This emulation system
could serve as an initialization for the full Stokes inversion or as an ultrafast proxy inversion. This work is part of
the NASA Heliophysics DRIVE Science Center (SOLSTICE) at the University of Michigan, under grant NASA
80NSSC20K0600E, and will be open sourced.

Unified Astronomy Thesaurus concepts: Solar magnetic fields (1503); Computational methods (1965);
Convolutional neural networks (1938)

1. Introduction

The Sun’s magnetic field is the energy source for all solar
activity, including energetic events, such as flares and coronal
mass ejections, that drive the most extreme space weather
phenomena. Accordingly, there are multiple instruments
measuring the photospheric magnetic field at a variety of duty
cycles, spatial resolutions, and temporal cadences. One such
instrument is the Helioseismic and Magnetic Imager (HMI;
Schou et al. 2012) on the Solar Dynamics Observatory (SDO;
Pesnell et al. 2012), the first space-based instrument that
produces full-disk maps of the photospheric vector magnetic
field with a cadence of order minutes and a spatial resolution of
order one arcsecond. HMI has collected almost a full, 11yr
solar activity cycle’s worth of consistently acquired data,
covering both maximum and minimum. Consequently, the
HMI data have become the “go to” for science investigations of
solar activity by researchers throughout the world. These data
products are also used throughout the space weather commu-
nity in applications ranging from flare forecasting research
(e.g., Bobra & Couvidat 2015; Leka et al. 2018) to setting
boundary conditions for coronal mass ejection modeling (van
der Holst et al. 2014).

Observational instruments do not directly measure the
magnetic field. Instead, the magnetic field is estimated by first
observing polarized light in a magnetically sensitive spectral
line, then modeling the photospheric plasma conditions that
would best produce spectra consistent with those observed.
With this method, instruments record polarized light (using the
Stokes formalism) at multiple wavelengths before inverting the

generative process and mapping photospheric parameters to
polarized light. For instance, SDO/HMI first measures six
polarization states and transforms these observations to the four
Stokes components I, Q, U, and V at six wavelength positions
(24 measurements per pixel). A subsequent algorithm, the Very
Fast Inversion of the Stokes Vector (VFISV; Borrero et al.
2011), then inverts these Stokes vectors to produce magnetic
and atmospheric parameters. VFISV forward models eight
parameters describing the magnetic field, kinematic, and
thermodynamic properties in the photosphere with a Milne–
Eddington (ME) atmosphere (Unno 1956; Rachkovsky 1962)
to synthesize an estimated Stokes vector. VFISV then inverts
this generative process by iterating the photospheric parameters
with a Levenberg–Marquardt algorithm (Levenberg 1944;
Marquardt 1963), until the discrepancy between the synthe-
sized and observed Stokes vectors is minimized. This process
results in eight observables and associated uncertainties,
namely the field strength B, the plane-of-sky inclination γ
and azimuth Ψ, the line-of-sight (LOS) component of the
velocity of the magnetized plasma, the Doppler width, the line-
to-continuum ratio η0, the source continuum S0, and the source
gradient S1. Due to data limitations, the HMI pipeline VFISV
does not invoke the magnetic fill-fraction parameter in the
optimization and assigns it to unity throughout (Centeno et al.
2014) such that the returned field strength parameter B is
physically the pixel-averaged magnetic flux density (Graham
et al. 2002).
The VFISV processing, like the majority of inversions of

solar polarization data, are performed using a pixel-independent
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approach. Despite extensive optimization of the code and system-
specific simplifications (Centeno et al. 2014), the analysis takes
approximately 30 minutes using eight cores per full-disk
measurement computed with 4096×4096 pixels. Similar sys-
tems, such as MERLIN (Lites et al. 2006), used in the Hinode/
Solar Optical Telescope-SpectroPolarimeter data pipeline (Kosugi
et al. 2007; Tsuneta et al. 2008), are similarly slow.

Our paper presents a deep-network-based approach that
provides an ultrafast (4.8 s per target on a consumer GPU)
emulation of this Stokes-inversion pipeline. This emulation
encompasses both the ME model of the atmosphere and,
importantly, the details of the HMI instrument specifications,
i.e., instrument calibration, transmission profiles, measurement
noise, etc., making it comparable to work like Ramos & Baso
(2019), which learns to invert from magnetohydrodynamic
simulations that were degraded using instrument spectral
profiles and a spatial point-spread function. This approach
takes images containing, per pixel, all of the Stokes-vector
inputs (as well as metadata) and maps them to per-pixel
estimates of an ME parameter produced by VFISV. Prior work
has brought Stokes-vector inversion methods to the GPU
(Harker & Mighell 2012), with the goal of achieving real-time
inversions, which our method achieves. We see our deep-
learning approach as complementary to the porting of
optimization-based methods to GPUs and believe it has a
number of benefits. First, the deep-learning system requires
only samples of inputs and outputs, which may reduce the
effort needed to work on a new inversion scenario. Second, the
framing as a deep network enables further acceleration via the
extensive efforts toward task-independent acceleration of deep-
network forward passes, which range from reduced-precision
arithmetic to quantization (Jacob et al. 2018).

We base our approach on a U-Net (Ronneberger et al. 2015)
architecture with a few crucial problem-specific modifications.
This general approach has been used in other solar physics
works such as by Galvez et al. (2019) and Park et al. (2019)
for SDO/AIA UV/EUV image generation from SDO/HMI
magnetograms and is a standard formulation used in areas such
as biomedical image segmentation (Ronneberger et al. 2015),
pixel labeling (Shelhamer et al. 2017), and general image
translation (Isola et al. 2017). Our proposed network is trained
to solve the problem via regression by classification, where we
train the network to match a distribution over a set of bins,
which has been successfully used in computer vision for 3D
prediction (Ladický et al. 2014; Wang et al. 2015) and human
pose estimation (Güler et al. (2018), in part due to how it
represents uncertainty compared to a more standard regression
formulation. We demonstrate that this approach is capable of
producing scientifically useful confidence intervals for all
predictions.

The approach is trained on pairs of inputs and outputs from
the existing pipeline’s VFISV and thus aims to accurately
emulate the results of the SDO/HMI inversion rather than
improve them. Our approach is therefore most similar to recent
work by Liu et al. (2020) that emulates Stokes inversions on
data from the Near InfraRed Imaging Spectropolarimeter
(NIRIS) on the 1.6 m Goode Solar Telescope (GST) at the
Big Bear Solar Observatory, as well as work on a fast learned
inversion of differential emission measurements from SDO/
AIA data by Cheung et al. (2018). Our work differs across a
number of crucial dimensions: our input measurements have far
more limited spectral sampling (6 for SDO/HMI versus 60 for

GST/NIRIS); methodologically, our proposed system can
generate useful confidence intervals that communicate uncer-
tainty; finally, we evaluate performance not only in terms of
average per-pixel accuracy but also in trends over time in
comparison to known system behavior.
We evaluate how well this system can faithfully emulate

VFISV in the SDO/HMI pipeline via a series of experiments.
We first train instances of the system, i.e., fit parameters of the
neural network, on solar disks sampled from the first 60% of
2015. We then validate the modelʼs performance on data never
encountered during training, sampled from the remaining 40%
of 2015. Finally, all evaluation, metrics, figures, and results are
calculated and produced from test data consisting of solar disks
sampled from the entirety of 2016. These test data are
previously unseen by the model and separated in time from
the training data by over 4 months. By employing temporally
separate data regimes for training and testing, we ensure a fair
evaluation of the proposed system.
We see a number of important applications for an ultrafast

emulation of VFISV. First, it can serve as an initialization of
the pipeline’s optimization (replacing an earlier, now defunct,
neural initialization). This improved initialization can speed up
optimization convergence and reduce resource usage. Second,
as a standalone system, it can serve as a fast “quick-look” (still
azimuth ambiguous) Stokes inversion for space weather
forecasting applications when near-real-time data are needed
before the definitive inversion is performed.

2. Methods

We train a convolutional neural network (CNN) to map
observations of polarized light and auxiliary signals to
estimates of a particular parameter of the photospheric
magnetic field. Our network is a U-Net (Ronneberger et al.
2015), an architecture capable of producing high-resolution
per-pixel outputs that still consider and factor in a supporting
spatial extent. As output, we modify this network to produce a
distribution over a set of discrete values a magnetic field
parameter can take; this distribution can be decoded via
expectation into a single continuous estimate and additionally
produce confidence bounds. To avoid tuning over eight
simultaneous losses by handling all of the parameters estimated
by the SDO/HMI pipeline’s VFISV inversion in a single
network, we instead train individual networks for each of the
eight parameters used for the ME Stokes-vector generation.
Training simultaneously over eight targets could be done but is
not required given the considerable size of the data set. We do
not explicitly use the uncertainties produced by the pipeline’s
VFISV inversion.

2.1. Input and Architecture

As input, our network takes a 28 channel image consisting of
24 channels of the 4 components of the Stokes vector
(I Q U V, , , ) observed in 6 passbands (the hmi.S_720s
series); 1 channel of the continuum image (the hmi.Ic_720s
series); and 3 auxiliary channels comprising the heliographic
coordinates computed via SunPy and a channel that is 1 if the
pixel is off disk and 0 otherwise. No further calibration is
performed on these published data sets.
This input is passed through a U-Net-style CNN (Figure 1)

that maps this 28 channel image to an 80 channel same-sized
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image, where each pixel encodes a distribution over possible
outputs.

This network is the composition of two jointly trained
subnetworks: an encoder that maps the input image to a smaller
resolution image followed by a decoder that progressively
maps this smaller resolution image back to the original size,
mirroring the downsampling in the encoder with equivalent
upsampling, finally resulting in an equal resolution output. As
the decoder progresses, it incorporates information from both
an upsampled version of the previous layer of the decoder as
well as the equivalently sized image from the encoder via a
skip connection. In this instance, a skip connection is an
alternate path for information flow through the neural network,
with connections between the encoder and decoder at layers of
equal resolution. These skip connections are represented by the
black connectors in Figure 1. Combined, this architecture
enables the decoder’s inference to depend both on pixel-
accurate local information (via the skip connection) and
broader context (via the encoder). The local information is
important for precise per-pixel estimates, and the broad context
aids the inversion by enabling easy recognition of structures via
shape. Though the VFISV pipeline does not consider spatial
context across neighboring spectra, we include spatial context
in our method to enable adjacency consideration as a potential
information source when given a confusing input.

We largely follow a standard design. The encoder and
decoder blocks function similarly: after either a 2×2 max-
pooling for downsampling or a 2×2 transpose convolution
for upsampling, there are two 3×3 stride-1 convolutions (with
each followed by a rectified linear unit (ReLU; Nair &
Hinton 2010). Spatial max-pooling is the process of only
forwarding the largest output in a given height by width
window to deeper layers for a downsampled output, while
transposed convolution is a method of using learned weights to
project a lower resolution image to a higher resolution. Each
halving/doubling of spatial resolution is accompanied by a
doubling/halving of feature channels, and each convolution is
zero padded to preserve spatial resolution. The encoder has
four downsampling blocks, which are mirrored by corresp-
onding upsampling blocks. The first and last convolutional
layers of the U-Net are not symmetric, respectively mapping
the 28 input channels and 80 output channels to and from a 64
channel representation.

One crucial difference is the omission of Batch-Norm. Batch
normalization is a neural network component that calculates a
mean and variance for inputs at a certain depth in the network
and normalizes these inputs to help further computation later in
the network. In addition to a nonlinearity like a ReLU, many

CNNs conventionally interleave batch-normalization layers
(Ioffe & Szegedy 2015) that aim to statistically whiten (mean 0
and unit variance) each dimension of the internal features
within a batch. We found it degraded model performance; we
discuss likely causes of this in Section 4.4.
In total, our network has 15 million trainable parameters.

Our code and weights will be made publicly available and are
implemented in PyTorch (Paszke et al. 2019).

2.2. Inference

We cast our problem as a prediction of a distribution over a
set of discrete values Î v K (throughout we set K= 80 due to
memory considerations). In particular, the network predicts,
at each pixel, a K-dimensional vector (of logits) that is
converted to a distribution via the softmax function ( )s =zi

( ) ( )åz zexp expi j j (Bridle 1990). After the softmax function,
each pixel of output is a distribution ˆ [ ]Îy 0, 1 K or ˆå =y 1j j .
This makes ŷ an 80 element vector of probabilities. The bin
values are linearly spaced depending on a range per inversion
output: for instance, for angles that range from [0,180], we
set ( )= ´ -v j K180 1j .
To get a single value from this distribution, we decode a

continuous value from the distribution. The most likely bin
value is vm, where ˆ= ym argmaxj i. Following Ladický et al.
(2014), we take an expectation over the adjacent values of this
most likely bin, or

⎛
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+
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This scalar output is the final per-pixel prediction of our
network. Though this approach produces continuous predic-
tions, the propensity for CNNs to overconfidently predict a
single bin (Pereyra et al. 2017; Guo et al. 2017) can lead this
method of expectation to still have discrete, “striped” patterns
in outputs, as shown in Figure 6.
One can similarly obtain a confidence interval (ll, lu) by

identifying the bin value at which the cumulative sum first
exceeds a fixed threshold α, or the l where ˆa = å = yj

l
j1 . This

can be calculated with sub-bin accuracy by linearly interpolat-
ing the cumulative distribution function (CDF) between bins.
Thus, assuming the output is at the median, one obtains a 90%
confidence interval (CI) by solving for ll and lu for which the
CDF is 5% and 95%, respectively.
In practice, neural networks tend to have poorly calibrated

confidence intervals, and we therefore recalibrate the interval

Figure 1. Our approach for emulating the SDO/HMI Stokes-vector inversion pipeline, VFISV. As input, our network takes Stokes-vector measurements (IQUV),
metadata, and estimates of the continuum intensity (Section 2.1). As output, it produces a per-pixel estimate of a single parameter of the inversion as would be
produced by VFISV, e.g., inclination (Section 2.2). We cast the problem as regression by classification over a discrete set of bins. We show that this is both accurate
(Section 4.2) and enables fast uncertainty quantification (Section 4.3).
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on held-out data (not used in evaluation) by fitting two simple
correction factors. The first, following Neumann et al. (2018),
incorporates a temperature τ in the softmax or ( )s t =z, i

( · ) ( · )t tåz zexp expi j j , where t  0 softens the distribution
to a uniform distribution and t  ¥ sharpens it to a one-hot (1
in the correct class location and 0 elsewhere) vector. One can fit
τ to ensure the empirical confidence interval covers 90% of the
data. This improves results, but for relatively wide intervals, we
find that the intervals can still underestimate, because they do
not cover enough of the output space to sufficiently account for
outliers. We additionally apply a simple and empirically
effective post hoc correlation where we expand the interval
(ll, lu) around the center by a factor of β. We compute this β
as the ratio between the target coverage (e.g., 90%) and the
empirical coverage on held-out data.

2.3. Objective and Training

The network is trained on N pairs of inputs and corresp-
onding targets { }( ) ( )X Y,i i , with height H and width W. Suppose

´ ´ ´ ´ f : H W H W28 80 is the function that the CNN
represents, and q represents all of the trainable parameters of
the network (i.e., all of the convolution filter weights and biases
for the encoders and decoders mentioned in Section 2.1). We
seek to solve the minimization problem:

( ( ) ) ( )( ) ( )åå q
q =

 X Yfarg min ; , , 2
i

N

p

i
p p

i

1

or the minimization with respect to q of the sum, over each
pixel p in each image i, of a loss function measuring how well
the estimate ( )( ) qXf ;i matches the target ( )Y i .

Given an estimate of the distribution ˆ ( )( ) q=y Xf ;i
p and

target ( )= Yy p
i , we penalize estimates ŷ that deviate from a

target discrete distribution d that has y as its expected value. In
particular, d is created by identifying the subsequent bin values
vb and +vb 1 that bracket y (above and below) and then solving
for probabilities db and db+1 that make = + + +d dy v vb b b b1 1.
To also discourage network overconfidence, other bin values
take on a small probability of 10−4. The final error is the
Kullback Leibler (KL) divergence (Kullback & Leibler 1951),
which measures the deviation between ŷ and d, or

⎜ ⎟
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, log . 3
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Overall, this approach penalizes an inaccurate final estimate by
penalizing the difference between a predicted probability
distribution across bins and a constructed one.

An alternative that we explored, and compare quantitatively
to, is minimizing the divergence from ŷ to a one-hot
distribution where only the nearest bin m had probability
mass. This is equivalent to the standard negative-log-likelihood
loss, or ( )- ylog m . In practice, we found that smoothed
encoding produced superior results. We hypothesize that this
is because the divergence to one-hot encoding encourages
predicting the nearest bin rather than producing a distribution:
in low-field-strength regions, for instance, if the network can
identify that the field is nearer to zero than the first bin value,
then it is rewarded for placing its probability mass in the zeroth
bin rather than producing a distribution. Because many of
the targets do not follow a uniform distribution of values,
we experimented with weighting the probabilities in the KL

divergence loss with the inverse frequency of each bin (along
with a bias to prevent enormous weights when taking the
inverse). Although weighting helped training in the negative-
log-likelihood setting, it did not improve performance.
We note that irrespective of the loss function at each pixel,

the total training objective is per pixel in the sense that it is a
sum of one term per pixel with no terms that tie together pixels
(e.g., ensuring that summary statistics between the network and
the ground-truth match). Thus, while the network is not per
pixel on the input size because each output pixel depends on a
set of pixels on the input side, the network has no indication
that its goal should include anything beyond matching each
pixel independently and as closely as possible. This leaves
room for various improvements, although our experiments
show that the network trained as it reproduced some important
summary statistics.
We solve for the network parameters of each model by

minimizing Equation (2) with respect to q via stochastic
gradient descent (Robbins & Monro 1951) using the AdamW
optimizer (Loshchilov & Hutter 2017), with learning rate 10−4,
ò=10−4, and weight decay 3×10−7. Optimization schedul-
ing was accomplished by monitoring loss on held-out data: the
learning rate was halved if there were two consecutive epochs
without validation loss and terminated if there were four.
Validation data were used to fit τ and β for CI calibration with
half used to fit τ and half to fit β.

2.4. Speed and Implementation Details

Due to GPU memory constraints, each 4096×4096 full-
disk image was divided into 16 1024×1024 pixel tiles. On a
GeForce RTX 2080 Ti GPU with 4352 CUDA cores, we find
that inference on each tile takes an average of 300 ms once the
input data tensor has been loaded into main memory. In
running the full system, the time spent loading from disk is the
primary bottleneck. Running all 16 tiles sequentially on a
single GPU thereby takes 4.8 seconds. This time includes time
spent to load input from main memory to GPU memory, time
spent running the neural network on this input, and finally, time
taken to turn output probabilities into regressed values.

3. Experiments

We conduct a series of experiments to quantitatively answer
a number of questions about the proposed emulation technique.
From the start, we stress that our goal is to emulate the SDO/
HMI and VFISV pipeline with high fidelity, rather than to
improve it. In particular, we assess (a) how accurately we
emulate the current pipeline on held-out data, what parts of the
data are particularly well emulated (and which are not), and
whether our confidences correlate with uncertainties produced
by the existing pipeline; (b) how well the proposed approach
compares to alternative approaches, including using more
standard regression, the network originally used to initialize
VFISV, and a network using Batch-Norm; and (c) how the
performance varies in the temporal domain in addition to static
single-snapshot evaluations, namely whether we emulate (for
example) the known 24hr periodic oscillations in the pipeline.

3.1. Data Sets

Three sets of data from JSOC of the SDO/HMI data were
employed, and will be given DOIs and made publicly available.
In particular:
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1. 2015-All. A regular cadence every two days starting on
2015 January 1 to 2015 December 31, sampling an hour
and minute randomly (from cadences available) and
ignoring any failures. We chronologically split this into
training, validation, and test sets in 60%/20%/20%
proportion. The last observation in the training set and the
first observation in the test set are separated by over two
months. The training portion of this data set is used for
training and small-scale validation of our model.

2. 2016-All. We repeat the above procedure, but for 2016.
These data are never used for training the models.

3. 2016-Month. To investigate whether the proposed
approach successfully replicates known oscillatory beha-
vior, we pick a random month from 2016 and sample
hourly at 36 minutes past the hour. These data are never
used for training.

3.2. Outputs and Data Preparation

We predict the eight magnetic and thermodynamic parameters
produced by the pipeline’s VFISV inversion and stored in the
hmi.ME_720s_ fd10series. For each output, we identify a
target range that our classification network predicts, which is
determined by starting at the 99% range of the data, adjusting for

physical plausibility and important rare values; we also report the
units as originally reported by VFISV, along with any important
findings. In particular, we note quantities that are known to have
unphysical 24hr periodic oscillations. A more complete
description can be found in Hoeksema et al. (2014).

1. Field Strength (B), albeit physically the magnetic flux
density, which we predict from 0 to 5000 Mx cm−2.
Strong values are rare but important to predict correctly.
The average on-disk flux density (i.e., å B

n p p
1 , where p

indexes over the n on-disk pixels), dominated by inferred
low-field strength values, is known to oscillate with the
orbital velocity (plus harmonics).

2. Inclination (γ), which we predict from 0° to 180°. There
is a preferred direction of 90°, which dominates in low-
polarization regimes but is understood to be an influence
of noise (Borrero & Kobel 2011); as polarization signals
(both linear and circular) increase, accuracy increases
however the precision of the prediction becomes worse,
likely because the inclination becomes more varied and
high-polarization points are relatively rare. The average
distance from 90° (i.e., ∣ ∣gå - 90

n p p
1 ) also oscillates with

SDO’s orbit see Figure 9 and Hoeksema et al. (2014).

Figure 2. Qualitative results for the full disk and a few active regions on held-back data corresponding to observations at 2016 May 10 at 06:48:00 TAI. The predicted
full-disk images for magnetic field strength, inclination, and azimuth are generated by the proposed approach. We show cutouts for a few different areas—an active
region toward the east limb, an active region in the center of the disk, and plage to the west of the disk center. Field strength and inclination estimates are generally
precise in regions of both moderate and weak polarization. Azimuth, on the other hand, is poorly constrained in areas of weak linear polarization. However, the
azimuth-angle predictions from VFISV are also poorly constrained in such areas; therefore, it is consistent that the proposed emulation method is similarly noisy.
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3. Azimuth (Ψ), which we also predict from 0° to 180° (the
180° ambiguous azimuth as per the output of the pipeline
VFISV inversion). In areas of low linear polarization, this
value is less constrained and far noisier, making it more
difficult for a network to predict.

4. Line-of-sight (Doppler) Velocity (v), which we predict
from −700,000 to 700,000 cm s−1. This velocity is with
respect to the instrument and thus accounts for the solar
plasma velocity itself, solar rotation, and the orbital
velocity of the instrument’s satellite (imparted by
maintaining a geosynchronous orbit for transmission to
a ground station).

5. Doppler Width (ΔλD), which we predict from 0 to
60 mÅ. This parameter is not well constrained in the
pipeline VFISV due to degeneracy with other thermo-
dynamic variables and, at some level, the Zeeman
splitting itself. The pipeline VFISV instituted a variable
substitution to address this by simultaneously fitting ΔλD
and η0 (Centeno et al. 2014), but the proposed method
addresses each parameter separately.

6. Line-to-continuum Ratio (η0), which we predict from 0 to
60. This dimensionless quantity is not well constrained
by the SDO/HMI observations due to low spectral
resolution and degeneracy with other thermodynamic
variables (Centeno et al. 2014). The VFISV pipeline

therefore has a regularization term that encourages
solutions close to a constant, 5.

7. Source Function Constant (S0), which we predict from
0 to 29,000 data numbers (i.e., counts from the CCD) per
second, or DN s−1.

8. Source Function Gradient (S1), which we predict from
0 to 52,000 DN s−1.

The magnetic field (strength and angles) and kinematic
property (LOS velocity) additionally include uncertainties,
which are computed as proportional to the inverse of the
diagonal elements on the Hessian of the VFISV minimization
objective, multiplied by the final χ2 objective function value
see Equation (11.29) in del Toro Iniesta 2003.
The inputs to our model come from the hmi.S_720s and

hmi.Ic_720s series as well as from calculations done by
SunPy (The SunPy Community et al. 2020) on these data to
obtain solar latitude/longitude. Throughout, we operate on
images that have been rotated according to the CROTA_2 FITS
header paraeter via SunPy.

4. Results

4.1. Qualitative Results

We first show qualitative results on held-back data in
Figure 2 with full-disk results, as well as on the same tile in

Figure 3. Performance compared to ground-truth results for field strength (magnetic flux density), inclination, and azimuth on held-back, unseen data from 2016
January 15 at 12:36:00 TAI. The lower and upper bounds of the 90% confidence interval are also visualized. The similar lower and upper bounds for flux density and
most of the pixels for inclination indicate the network is confident the true value is believed to lie in a narrow range. In the active-region inclination maps, one can see
variations in color saturation but not hue across the lower and upper bounds, indicating confusion about the distance to 90° but not direction.
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Figure 3 for magnetic field parameters and Figure 4 for
kinematic and thermodynamic parameters. Figure 5 displays
qualitative results for magnetic field parameters from randomly
selected active regions of test data in 2016-all. Overall, despite
using discrete probabilities, banding patterns in the output are
usually relatively difficult to identify.

The field strength parameter is modeled qualitatively
precisely (close to the VFISV output), overall. Results are
difficult to distinguish by eye and require a relatively tight
difference map (±200 Mx cm−2, or 4% of the total range) to
clearly bring out errors. The largest areas of frequent and
significant error are in strong-field regions (see more discussion
in Section 4.6).

Inclination is modeled well qualitatively, although some
systematic errors exist. These errors can be identified in
difference maps, where red corresponds to overprediction and
blue underprediction: plage pixels with inclination <90° tend to
be overpredictions in the difference map; pixels with inclination
>90° tend to be underpredictions. This prediction uncertainty is
reflected in the inclination CIs (Figure 3) in the active regions:
the difference in saturation, but not hue, between the lower and
upper CI values shows that the network is sure of the direction
(up or down) but less sure of how far up or down.

The azimuth is far noisier over much of the disk, where
linear polarization ([Q,U]) is low, so the difference map is
difficult to interpret. However, as these signals increase, the

trained system does a qualitatively good job at modeling the
complex patterns in the azimuth, as seen by the good spatial
correspondence and substantial regions of white (agreement) in
the difference maps. Meanwhile, the VFISV-produced azi-
muths are highly random as well in noise-dominated areas,
which explains why the difference map is so pronounced there
—the network has understandable difficulty predicting random
outcomes.
The LOS (Doppler) velocity is generally estimated precisely,

although less so in strong-polarization regions. There is a
noticeable change in the direction of error at the limb in quiet
regions that occurs on many other dates as well.
Thermodynamic parameters are generally estimated with fair

precision. We note a trend of the network to oversmooth details
in high-strength regions (contrast, for instance, the small details
in the sunspot regions in VFISV with the proposed approach).
Just as with the Doppler velocity, the source continuum and
gradient change error modes closer to the limb and in quieter
areas.

4.2. Standalone Accuracy Analysis

Quantitative results are next reported for all of the outputs on
the 2016-All data set (Table 1). These numbers are best
interpreted alongside the per-output bivariate log histograms in
Figure 6, where data off the y=x line indicate the presence of
estimation errors.

Figure 4. Prediction of the kinematic (LOS velocity) and thermodynamic parameters (Doppler width, line-to-continuum ratio η0, source function constant term S0, and
source function gradient term S1) on held-back, unseen data from 2016 January 15 at 12:36:00 TAI.
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Metrics: we quantify performance between a scalar target y
and inference result ŷ with two styles of metrics. The first is the
mean absolute error (MAE) or the average of ∣ ˆ∣-y y over the
data set. Because this is the average distance between the target
and the inferred value, it can be highly influenced by outliers
(Scharstein & Szeliski (2002); a mean absolute error of 20°
could be either all pixels being off by 20° or 80% of pixels
being off by 4° and 20% being off by 84°. We therefore also
compute percent of good pixels or the average number of pixels
satisfying ∣ ˆ∣- <y y t for a threshold t. To avoid picking eight
independent thresholds, we pick a threshold for the inclination
angle (5° to represent reasonably close predictions) and then
scale this for other variables. Mimicking how R2, the
coefficient of determination, scales by variance, we scale the
thresholds by the relative variances (i.e., field strength
tB/tγ= var(B)/var(γ)). We report the average for each quantity,
thresholded at the appropriate t.

Pixel populations: evaluating error statistics over the full
disk does not give a full picture of the results because the vast
majority of on-disk pixels have low signal-to-noise ratios. We
therefore report per-pixel evaluations on the full disk as well as

regions that aim to capture plage, active regions (AR), and
pixels with at least 100 Mx cm−2 (100+). We define plage
pixels as any pixel with continuum intensity (from hmi.
Ic_noLimbDark_720s)�0.8, LOS absolute flux density
(from HMI.M_720s due to its reduced noise)>100
Mx cm−2, and disambiguation confidence, conf_disambig
(from hmi.B_720s)�60. The plage mask primarily
includes plage, but also includes a small amount of outer
penumbra, and accounts for ∼0.4% of the data in the 2016-All
data set. We define AR using the same series, requiring
continuum intensity < 0.8, LOS absolute flux density >100
Mx cm−2, and disambiguation confidence �60. The AR mask
accounts for ∼0.02% of the data. Finally, we evaluate on pixels
with at least >100Mx cm−2 absolute value in the LOS flux
density, which accounts for ∼47% of the data.
Field strength is difficult to model accurately because most

pixels correspond to low-field strength or unresolved structures
on the Sun, while pixels with both high intrinsic field strength
and large fill fraction (thus presumably resolved) are relatively
rare. Although our discretization steps are 63.3 Mx cm−2 apart,
the network is able to achieve sub-bin precision with an MAE

Figure 5. Results on high-signal regions. We cut out 125″ square regions by randomly selecting test set dates from 2016-All, cropping around the pixel with the
highest field strength, and skipping dates if they appear elsewhere in the manuscript, the pixel was on-limb, or less than 1% of the cutout had field strength more than
500 Mx cm−2. There is some smoothing, which reduces speckling in inclination and some small loss of detail in the field.
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of 9.67Mx cm−2 and with 99.2% of the pixels within
47Mx cm−2. In the rare regimes of 2750 Mx cm−2, the
predicted output is generally underestimated, likely due to
extreme data scarcity.

The inclination is similarly well estimated, with an MAE of
0°.58, around 25% of the 2°.27 bin width. One might suspect that
the low error in full-disk prediction is driven by the positive-
definite character of the noise in the transverse component of the
field estimates, leading to a preference for an inclination angle of
90°, especially in quiet-Sun (low-polarization) regions. None-
theless, it is not required, as the approach still achieves a low
MAE of 2°.46 in the 100 regime, with over 87.1% of those
values predicted within 5°. As seen in Figure 6, the relatively
few gross inclination errors are rarely on the wrong side of 90°
(seen by counts in the upper-left or bottom-right quadrant), but
rather an underestimate of the angle magnitude.

The azimuth has the opposite difficulty compared to
inclination because it is noisy (and therefore difficult to
estimate) in regions with weak linear polarization, which can
occur in both strong- and weak-field regimes, although the
former is extremely rare, occurring in small areas within
sunspots. As the overall polarization signal increases (into
stronger-field regimes), the MAE improves, going down
substantially from 13°.06 on disk to 8°.58 in >100 Mx cm−2

LOS absolute flux density pixels and ≈10° in the AR and
Plage areas.
The LOS velocity has the tightest estimates of all the outputs

in the bivariate histograms and nearly every pixel (99.7%) falls
within the threshold. This is in part because much of the
variability is driven by a global parameter corresponding
to the spacecraft’s velocity at the time of data acquisition. As
the field parameter (flux density) increases, the error jumps

Table 1
Quantitative Evaluation of VFISV Emulation Results across Eight Stokes-vector Inversion Targets across the 2016-All Data Set

Target Range MAE t % Within t

Disk Plage AR 100G+ Disk Plage AR 100G+

Field (B) [0,5 × 103] Mx cm−2 9.67 18.87 108.44 16.98 47 99.2% 93.1% 31.9% 93.6%
Inclination (γ) [0,180] ° 0.58 2.42 2.53 2.46 5 98.9% 88.1% 84.1% 87.1%
Azimuth (Ψ) [0,180]° 13.06 9.58 10.67 8.58 7 59.9% 75.1% 71.2% 77.9%
LOS Velocity [−7 × 105,7 × 105] cm/s 5,247 7,797 23,834 7,010 38,800 99.7% 99.4% 80.6% 99.0%
Dop.Width [0,60] mÅ 1.36 1.83 6.29 1.67 0.96 63.2% 45.9% 15.0% 56.5%
Line/C. η0 [0,60] 0.78 0.77 10.19 1.00 0.81 79.4% 81.1% 11.0% 82.0%
SrcCont. S0 [0,2.9 × 104] DN s−1 969 2,371 2,494 2,041 813 74.0% 53.4% 23.4% 63.2%
SrcGrad. S1 [0,5.2 × 104] DN s−1 1,234 2,592 2,874 2,218 1,814 80.7% 66.7% 41.2% 73.4%

Note. We evaluate according to the Mean Absolute Error (MAE) and percent of pixels within t. Values for t are target specific and are generated by scaling according
to the relative variances. We report numbers on four populations of pixels, defined in the text: (Disk) On-disk, (Plage) plage Pixels, (AR) active-region pixels, (100+)
pixels with at least 100 Mx cm−2 in the absolute value line-of-sight magnetic flux density.

Figure 6. Visualizing classification model prediction performance with log count bivariate histograms across the 2016-All data. A perfect prediction would put all data
on the y=x line (shown in red). While more rare bins or bad errors do have a banding effect (due to classification binning), most of the pixels lie along the y=x line,
with relatively good agreement with VFISV.
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substantially. However, as seen in Figure 6, sign flips are
relatively rare, as is the case for inclination.

Thermodynamic parameters are predicted similarly well.
Source continuum, source gradient, Doppler width, and η0 are
relatively precisely modeled and are roughly similar in
behavior to inclination. η0 prediction performance is not
excellent, yet this behavior is consistent with the observations
of Centeno et al. (2014) that there are degeneracies in the
pipeline relations of field strength and η0. The Doppler width
histogram shows an interesting separation of values, where
almost no predictions land in the interval between 8 and
13 mÅ, as seen in the bottom-leftmost panel of Figure 6.

Across all targets, prediction quality is good, with low
average error. Despite our method producing continuous output
values, we find that the bivariate log histogram in Figure 6
reveals a banding pattern as a product of overly confident
predictions in regression via classification. This is, however,
usually less pronounced near the y=x line. Of all targets, the
azimuth angle is the only one to improve absolutely for high-
field-strength (nominally high-polarization) regions. The abso-
lute performance of other targets decreases in ARs; however,
their relative/fractional error may actually be smaller than other
pixel populations.

4.3. Standalone Confidence Analysis

We next analyze the performance of our network at
predicting upper and lower confidence bounds for where
pipeline VFISV outputs will fall, on the 2016-All data set. We
do this by comparing our uncertainties with absolute error (i.e.,
is the approach less accurate on pixels that it is less certain
about?) and with pipeline uncertainties (i.e., is the approach
generally more uncertain about the same pixels as the
generating pipeline VFISV output?).

We begin with some qualitative behavior in Figure 7 that
shows how parameter values and confidence interval width co-
vary. Inclination prediction is less confident as it deviates from
90°, as shown by the two plumes, matching the qualitative
behavior seen in identical lower and upper bounds in quiet Sun.
The quiet-Sun (noise-dominated) azimuth, on the other hand, is
uniformly distributed, and therefore, there is close to no
relationship between azimuth and width. Finally, field strength
and Doppler velocity are unsurprisingly more confident closer
to zero, and prediction widths increase as magnitude increases.

To answer how our uncertainty relates to the absolute error,
we report comparisons in Table 2. To avoid making
assumptions about the form of the error, we assess how well
the uncertainty corresponds with error through Spearman’s
rank correlation ρ (calculated on a large representative subset
for computational reasons). This measures to what extent the
two are related by a monotonic function. We additionally report
the width of the intervals and how calibrated they are
(measured by what fraction of the data in the test set falls
within them). Most of our outputs show agreement between
uncertain regions and large error regions. The ones with the
weakest correlation, the field strength and vlos already have an
average interval width that is about the size of the bin: field is at
bin size and vlos is about twice the bin size. We hypothesize that
increasing the number of bins may improve the uncertainty
modeling. The thermodynamic properties, on the whole, have
substantially larger bin sizes and worse calibration—ΔλD, η0,

and S0 are all overly narrow. Nonetheless, while this points to
potential areas for improvement, the produced uncertainty has a
good correlation with error and is generally reasonably sized,

Figure 7. Log histograms comparing the width of the network’s 90%
confidence interval to ground-truth values for field strength, LOS velocity,
inclination, and azimuth (rows 1–2). Row 3 compares the width of the
network’s 90% confidence interval against field strength for both inclination
and azimuth angle. Results calculated on all pixels in the 2016-All data set.

Table 2
Spearman’s ρ between Emulated Confidences and Absolute Error,

Classification Bin Width, Average Width of 90% Confidence Interval, and
Percent of Test Set within the 90% Confidence Interval Measured on 2016-All

Target ρ Bin Width CI Width % in CI

B (Mx cm−2) 0.04 63.3 64.4 88.5%
γ (°) 0.32 2.3 4.2 86.1%
Ψ (°) 0.47 2.3 51.3 90.2%
vlos (cm/s) 0.15 17,721 31,992 77.5%
Δ λD (mÅ) 0.42 0.76 2.2 60.0%
η0 0.42 0.76 0.97 66.5%
S0 DN s−1 0.63 367 1049 60.3%
S1 DN s−1 0.57 658 5565 88.5%

Note. While some ρ are low, all are reported as significant. Many of the test set
intervals are close to including 90% of the data, although some are under- or
overestimated.
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with the exception of azimuth, which is extremely noisy for
most of the Sun.

Finally, we report the rank correlation between our
uncertainties and those produced by the pipeline VFISV code
(but which are used in downstream analysis). In addition to
directly testing the quantities we do compare, good correspon-
dence would indirectly validate the thermodynamic properties,
for which there is no pipeline uncertainty. With the exception
of field strength, Table 3 shows there is a reasonably good
correlation between the pipeline and emulated uncertainties;
when one looks at higher-field regions, this correlation
substantially improves. Pipeline VFISV uncertainties are
derived solely from the local derivatives in parameter space
and represent lower limits to the uncertainty of the value at any
given data point.

4.4. Comparison with Alternate Approaches

We next quantitatively compare our approach with a number
of alternate techniques, investigating which model decisions
are important for performance, along with the relative trade-
offs of various techniques. Six categories of models are
considered, many of which are ablations (changes that remove
a component individually to assess its standalone impact) of
our proposed full model:

1. Alternate classification systems. We ablate variations of
our classification output, trying pairwise combinations of
using the smoothed target compared to a one-hot target.
We found the one-hot technique to work poorly on rare
values without applying a weight to the loss for rare
classes. As such, results are presented as from 1 Hot-W
(Weighted) as well as 1 Hot-UW (Unweighted).

2. Regression. We use the same network as proposed, but
optimize a standard mean-squared error and report this as
MSE. Internally, rather than predict the raw values, the
network predicts the z-scored values (i.e., zero-mean, unit
variance), a process that is undone for evaluation. This
compensates for the fact that native values from the
VFISV output vary tremendously.

This tests whether our regression by classification,
which comes with the ancillary benefits of enabling the
identification of confident predictions, is detrimental to
performance. Our goal in this experiment is to put the
performance of the system in context, not to claim that
regression networks cannot outperform the classification
network—there may be alternate settings, losses, and
schemes under which they may.

3. With batch-norm. We use the same network as proposed,
but incorporate Batch-Norm (Ioffe & Szegedy 2015), a
standard practice, and report it as Prop.+BN. This

comparison tests whether Batch-Norm is harmful to
network performance.

4. Without auxiliary channels. We train the same network as
proposed, but remove three of the auxiliary channels
(latitude/longitude/on-disk flag), and report it as No-
Meta. This comparison tests whether this information is
informative for the network.

5. Multi-layer perceptron (MLP). The VFISV pipeline was
originally meant to have an initialization via a shallow
(three-layer) fully connected neural network per pixel
consisting of 30 neurons per layer. We compare with a
modernized version of this network: we replace its
activations with a ReLU to accelerate training conv-
ergence and implement the per-pixel fully connected
network via equivalent 1×1 convolutions to accelerate
data processing. This comparison gives context to using a
much deeper network. We refer to an MLP network
trained with an MSE objective function as MLP+MSE
and an MLP network trained with a negative-log-
likelihood objective function as MLP+NLL.

6. Linear model. There has been substantial work in using
linear functions to perform Stokes inversions e.g., via
principal component analysis (PCA) in Socas-Navarro
et al. (2001). To test the performance of a linear model in
the present context, we optimize a 1×1 CNN directly to
targets, which is equivalent to learning linear weights for
each of the 24 input channels as part of mapping them to
outputs. We train this network with an MSE loss.

We report results in Table 4 for only the magnetic field
parameters in the interest of space and report ablations in terms
of differences in loss function, inputs, and architecture.
Losses. The smoothed target does substantially better on

strength and inclination compared to one-hot schemes and the
mean-square error, and does slightly worse (by only about 6%)
on azimuth compared to one-hot. The azimuth error for the
MSE-trained network is, however, substantially lower. We note
though that the MSE-trained network comes with no
uncertainty quantification.
Inputs. Removing auxiliary information about the location

on the disk from the network reduces performance on all
targets. While VFISV is indeed a per-pixel process, the full
HMI processing pipeline includes position-dependent calibra-
tion information (e.g., in the instrument transmission profile
and noise-level estimates). Hence, a decrease in performance
without auxiliary information is not surprising.
Architectures. While Batch-Norm is common practice in

most networks that are trained on Internet images, adding it to
the proposed network hurts, reducing performance to some-
times worse than a linear model. This is likely because many
outputs depend on the absolute values of the input rather than
their normalized/whitened versions: for example, the total
amount of light in each passband is crucial to identifying the
amount of Doppler shift. We illustrate this in Figure 8. Without
this varying intensity signal, the network must rely on other,
less effective, cues. With Batch-Norm, the input to the network
would be improperly whitened, and it would be difficult to
model the variation seen in the top two rows.
Substantially decreasing the capacity unsurprisingly has a

negative impact on performance. As seen in Table 4, our
proposed model cuts the error rate by ∼60% for both field and
inclination and by around ∼45% for azimuth compared to the
style of network originally used in VFISV. Confirming the

Table 3
Spearman’s ρ between Pipeline VFISV Uncertainty and the Width of the

Estimated 90% Confidence Intervals

Data Set B γ Ψ vlos

All 0.04 0.30 0.47 0.26
>300 Mx cm−2 0.09 0.73 0.55 0.49

Note. With the exception of field strength, there is reasonably good agreement
between the system and the pipeline.
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suggestions in Centeno et al. (2014), a linear model does even
worse: our model improves on MAE by ∼70% for field and
inclination and ∼60% for azimuth over a linear MSE-trained
model.

4.5. Network Behavior across a Time Sequence

Finally, we evaluate how the network’s outputs change in
the temporal dimension. This is of interest, because the network
is trained solely on individual images, independent of a
temporal requirement, and, as Equation (2) shows, is trained by
minimizing an objective that considers each output pixel
independently.

In particular, we analyze to what extent the network is able
to capture the known 24hr oscillatory behavior of the pipeline
by examining its output at a uniform, higher, hourly cadence
over a month-long period. We do this for two statistics:
the average on-disk magnetic flux density ( å B

n p p
1 ) and the

average inclination distance from horizontal ( ∣ ∣gå - 90
n p p
1 ).

We plot these as a function of time over a two-week period in
Figure 9. The results capture the periodicity of the oscillations,

slightly offset by an average absolute error of 1.0 Mx cm−2 for
the field and 0°.17 for inclination. The flux density error is 1.5%
of the width of a bin in our system, while the inclination error is
7.5% of the width of a bin.
We quantify how well our model predictions match the

VFISV pipeline outputs with Spearman’s rank correlation ρ,
which describes how well the two are related by a monotonic
function (i.e., that could be applied post hoc). Both are near
unity: 0.987 for field and 0.995 for inclination. Moreover, a
per-hour-of-the-day additive correction estimated from a single
day of data and applied to all remaining days drops the average
absolute error to 0.17 Mx cm−2 and 0°.01. These experiments
show that our system captures known periodic artifacts
produced by the pipeline VFISV inversion as described in
Hoeksema et al. (2014). The alignment of around ∼1 Mx cm−2

is surprising, given the field strength bin size of ∼63 Mx cm−2.
This extreme correlation enables our approach to serve as an
ultrafast proxy for VFISV to aid the investigation into the root
cause of the periodic oscillations.

Table 4
Ablations of Different Losses and Models

U-Net MLP Model Linear
Target Proposed 1 Hot-W 1 Hot-UW MSE Prop.+BN No-Meta MSE NLL MSE

Strength (Mx cm−2) 9.7 16.3 20.2 10.3 26.6 16.0 26.3 30.9 32.9
Inclination (°) 0.58 0.88 0.92 0.64 1.45 0.77 1.51 1.78 2.29
Azimuth (°) 13.1 13.7 13.1 11.4 42.8 20.9 24.5 21.5 34.9

Note. We report results comparing MAE on the 2016-All data set.

Figure 8. Illustration of where Batch-Norm can have harmful effects. The line-
of-sight velocity (top row), here plotted at three evenly spaced times after 2016
January 01 at 00:36:00 TAI, depends on the velocity of the instrument. The
amount of light falling into each bandpass (bottom two rows) varies due to this
velocity. The varying average Stokes band input, a clean signal for line-of-sight
velocity, gets removed with input-dependent normalization or whitening.

Figure 9. Average on-disk field strength and deviation from horizontal as a
function of time over a two-week period with 24 hour periods separated by
black vertical lines. The proposed system faithfully recreates the known
periodic behavior of the current SDO/HMI pipeline.
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4.6. Failure Modes and Limitations

We briefly describe some limitations of our current
approach. Many of these limitations stem from extraordinarily
rare events such as the strongest polarization pixels, especially
those at the centers of large sunspots; performance may
improve with more training data. Some instances of suboptimal
performance may stem from our use of identical models for all
outputs and may be fixed by tailoring the design decisions for
particular targets.

Line-to-continuum ratio/η0. Some SDO/HMI observations
result in the Stokes-inversion optimization objective having
two distinct minima with a degeneracy involving η0 and B.
VFISV overcomes this with a term in its objective that prefers
η0 to be closer to a set value, 5. Our method does not estimate
η0 well, which may be explained by this degeneracy.

Saturated predictions. Strong but sunspot-appropriate flux
densities (∼3000 Mx cm−2) are rare in general and exceedingly
so in the training set. While the model shows good agreement
for pixels in the 1000–2000 Mx cm−2 range (which 0.07% and
0.006% of training pixels exceed, respectively), the model’s
predicted B saturates at 2750 Mx cm−2 (which fewer than
0.0003% of training pixels exceed). We hypothesize the model
may treat these rare-value points as similar to those in the more
moderate-signal regime due to lack of training data. Future
work could investigate avenues for improved performance in
these strong-signal regimes, including increased data samples,
supplementing the training with synthesized data, or employing
specialized subnetworks that address them exclusively.

Large sunspots. Many active regions are precisely emulated
by the model, as seen in Figures 2, 3, and 5. However, the very
centers of some large sunspots can appear similar to quiet-Sun
regions when viewed solely in some of the input channels for
the SDO/HMI pipeline as seen in Figure 10. Specifically, a
lack of polarization signal (in raw counts) near the line center
can be explained by either strong Zeeman splitting or lack of
magnetic field, notwithstanding the continuum intensity.
Strongly Zeeman-split spectra are rare in the data, and so there
are few samples for the training to consider when learning to
look at the other wavelengths. The sunspot centers are thus
sometimes predicted to have low field strength; this could
likely be corrected by post hoc processing or increased training
data of sunspots.

Field strength uncertainties. While most of the model’s
uncertainties correlate well with both absolute errors and their
counterparts in the VFISV pipeline (especially in the higher-
flux regime), the uncertainties for the field strength parameter
have a lower correlation. We hypothesize that it is difficult to
express uncertainties smaller than the bin size of the field
outputs (for field, ∼63Mx cm−2) and that narrower bins for the
field parameter (and LOS velocity) may produce better
uncertainties. In practice, the estimated field strength (flux
density) is itself a good fall-back predictor of the likely size of
errors as shown by the slight growth in the spread in the
bivariate histograms.
Noisy and circular azimuth angle. The 90% confidence

intervals for azimuth are, on average, much larger than other
targets. Much of this is likely driven by the weak-polarization
regions that make up the bulk of the Sun and hence dominate
the training data but have a low signal-to-noise ratio, especially
for the linear polarization. We suspect an additional complica-
tion from the inherent 180° ambiguity in the azimuth output
from VFISV (and all other inversions) of Zeeman-based
polarimetry. In other words, the CNN cannot model the
azimuth’s circularity, the azimuth is treated like inclination, and
the method is unaware that 0° and 180° are the same. Future
work aiming for higher performance may wish to treat azimuth
differently.
Multiple networks. To avoid the issue of balancing all eight

losses together in one equation, we train a single network per
inversion output. An example of where cross-loss balancing
may be an issue is the weighting of MSE components between
the field strength parameter, ranging from 0 to 5000 Mx cm−2,
and the inclination angle parameter, ranging from 0° to 180°.
While using multiple networks maximizes accuracy and
prevents failures due to poor loss scaling, it does increase
runtime. Future work may wish to consolidate frequently used
subsets (e.g., field, azimuth, inclination) into a single network.
Varying instrumental calibration. The reality of variations in

instrumental characteristics and calibration will lead to subtle
differences between the training, validation, and test data. In
the present case, for example, the data sets chosen (Section 3.1)
were agnostic to an observing-sequence modification that HMI
underwent mid 2016 (Hoeksema et al. 2018). As such, were the
training and testing data sets instead chosen specifically with
this abrupt change under consideration, i.e., restricting all data

Figure 10. The system sometimes underpredicts in the spatial center (darkest part) of the largest sunspots. Here, the large Zeeman splitting and very low intensity
make the near-line-center filtergrams appear similar to the quiet Sun for the CNN. Thus, a normally reliable polarization signal is removed from the information
available to the training. Due to the rarity of this event, there are few pixels to provide a good alternate signal for the system to learn.
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sets to before or after, it is likely that error levels would have
improved. A full investigation into the magnitude of such
effects is beyond the scope of this paper, but this potential
limitation does extend to all issues of unstable data quality—be
it through instrumental degradation, data-collection protocol, or
varying calibration.

5. Discussion and Conclusions

We present a deep-learning approach for emulating the
SDO/HMI pipeline VFISV Stokes inversion. The system
emulates the pipeline well on an absolute basis (seen in
Section 4.2). The system usually produces estimates of
uncertainty that are predictive of errors and agree well with
uncertainties produced during the VFISV optimization proce-
dure (seen in Section 4.3). We find that a careful design of the
regression-via-classification problem, using relatively deep
networks, and removing Batch-Norm (Ioffe & Szegedy 2015)
are all important for performance (seen in Section 4.4). Finally,
we show that the trained system faithfully recreates a periodic
oscillation known to appear in SDO/HMI pipeline outputs
(Hoeksema et al. 2014; Schuck et al. 2016), as seen in
Section 4.5.

The closest point of comparison between our results and
other recent work is Liu et al. (2020), who applied a CNN to
data from the Near Infrared Imaging SpectroPolarimeter at the
Goode Solar Telescope. While we use similar base techniques
of convolutional networks, there are several key differences in
the data and methodology. First, our approach produces
estimates of uncertainty compared to single point estimates;
the former are important for downstream applications, such as
quickly identifying which estimates are likely to be correct and
which are not. Second, our approach uses both Stokes
components and auxiliary data in order to predict the inversion.
We show that this auxiliary data improves results in our setting.
Finally, our approach performs convolution over spatial
resolution as opposed to a convolution over spectral dimen-
sions. While Liu et al. (2020) report a slower speed to obtain
field, inclination, and azimuth (one 7202 pixel in 50 s compared
to three 40962 in 15 s), we suspect hardware difference or
implementation details drive this, because our network is also
substantially deeper.

Direct quantitative comparison in terms of experimental
results obtained is difficult due to the difference in the
instruments and data. Nonetheless, even though GST/NIRIS
has 10× the spectral sampling, almost 2× the spectral
resolution, and 6× the spatial resolution compared to SDO/
HMI, our network produces comparable or better results. Liu
et al. (2020) report MAEs of 134 G/6°.5/13°.2 for field
strength/inclination/azimuth in rectangular cutouts near two
unseen active regions (with average predicted field strength 942
G and 62% of pixels above 500G). In unseen active regions
(average field strength 1513 G, 99.98% above 500 G), our
system obtains MAEs of 108 G/2°.5/10°.7. To better match the
population from Liu et al. (2020), we also computed tight
bounding boxes around active-region-connected components
bigger than 252 pixels/12.52 arcsec (average field strength
1185 G, 86.2% pixels above 500 G). In these regions, our
system obtains MAEs of 41 G/1°.1/5°.3.

Beyond quantitative accuracy measurements on overlapping
targets, our classification experiments demonstrate a number of
further contributions: we can additionally emulate kinematic

and thermodynamic parameters, and our approach’s uncertainty
quantification usually carries meaningful information. Our
ablation experiments extend these contributions, demonstrating
both the detrimental impact of whitening features and the value
of certain classification targets when applied to predicting
physical quantities. Finally, our temporal experiments demon-
strate that the system’s averaged behavior both spatially across
the disk and temporally, tracked over weeks, behaves similarly
to the SDO/HMI pipeline output, which serves as further
validation of our method. We see experiments like these, that
go beyond pixel statistics, as critical to the future success and
validation of deep-learning-based tools for solar physics.
From the analysis above, we conclude that our deep-learning

approach provides two major enhancements to the standard
pipeline for deriving photospheric magnetic fields from the
HMI observations: speed and flexibility. Speed is generally a
prerequisite for flexibility, but by itself, speed can dramatically
enhance the effectiveness of the HMI data. Our approach has
over two orders of magnitude faster time to solution than the
present pipeline. Our speed-up originates from both the
parallelism of GPUs and inference speed of CNNs, and using
both together achieves the goal of real-time Stokes-vector
inversion.
We see a number of important applications for an ultrafast

emulation of VFISV. Our method can provide initialization to
the pipelineʼs optimization (replacing an earlier, now defunct,
neural initialization). Functioning as a front-end to the pipeline,
our method would provide an initial solution that is close to
what the pipeline would derive, thereby speeding up the
convergence of the pipelineʼs optimization and reducing
resource usage. Additionally, the increase in speed and faithful
emulation of the oscillation artifacts may enable more rapid
analysis of the source of these artifacts and lead to their
correction. While our results are still azimuth ambiguous, and
there is still room for improvement, we also see our work as a
crucial step toward obtaining data faster, which may have many
downstream impacts in space weather modeling. Looking
toward the future, a far faster inversion process may aid in near-
real-time forecasting and help in the direct driving of coronal
MHD models, because recent work has suggested that the
necessary cadence may be far faster than the 12 minute cadence
of the HMI observations (Leake et al. 2017). As a standalone
system, our method can serve as a fast “quick-look” Stokes
inversion for space weather forecasting applications when near-
real-time data are needed before the definitive inversion is
performed.
In summary, we have presented in this paper a deep-learning

approach for fast and accurate emulation of the HMI pipeline
Stokes-inversion module. While our approach provides a more
efficient way to produce existing information and does not
produce new scientific models, it provides a first step toward
advances like correcting hemispheric bias in HMI data,
removing oscillation artifacts in HMI magnetograms, and
extending solar magnetic field measurements with other
observation modalities. In these cases, the prospect of
correcting errors or making predictions without a corresp-
onding detailed physical model has the potential to dramati-
cally enhance a mission’s scientific value for solar and space
research. Seen from this viewpoint, our ability to rapidly
emulate the current pipeline is only a beginning.
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