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1 Summary
We provide extended and detailed versions of all salient model architectures, datasets, the-
oretical justifications and comparisions. First we provide model architecture, training and
dataset details (Sections 2, 3, 4, 5 and 6). Next we provide additional analyses as referenced
by our main paper, namely a theoretical analysis with reference to the Gambler’s Ruin (Sec-
tion 7), a comparison to L2 training loss (Section 8), and a comparison to Learning to Fly
By Crashing [2] (Section 9). Finally, we show extended versions of Figures 4 and 5 from the
main paper, with results from randomly selected test-set examples (Section 10).

Additionally, we provide a brief supplementary video, which is highlighted in Figure 1
and enclosed as an mp4 tested to be compatible with VLC media player. The video shows
qualitative distance function results from our remote point prediction model. The results
shown are from uncurated random trajectories in test-set environments unseen during train-
ing.

2 Remote Prediction Model Details
All remote point prediction models follow a PIFu [7] style architecture composed of two
components:

1. an Image Encoder which predicts features used to condition implicit functions at each
pixel.

2. an Implicit Function Decoder that maps from the feature map (plus auxiliary informa-
tion) to an output that is target-dependent.

Image Encoder: All remote point prediction models use the same image encoder, a feature-
pyramid network [5] applied to a ResNet-18 CNN [3] pretrained on ImageNet [6]. Given a
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Figure 1: Screenshot of our supplementary video, showing a distance function predicted in
a test set environment

256×256×3 input image, the encoder produces a pyramid of features with feature dimen-
sions of 64, 64, 128, 256 and 512. Each of these features can be indexed with a (possibly
fractional) coordinate corresponding the projected location of each query point. Fractional
coordinates are accessed using bi-linear interpolation. The indexed features are then con-
catenated into a 1024-dimensional feature vector to condition the implicit function for each
query point.

Implicit Function Decoder: The implicit function decoder maps a feature vector sampled
at a location to an output.

Input: The decoder takes as input a feature vector that is bi-linearly sampled from the image
encoder as described above. In all cases, we concatenate a scalar to this representing the
projected depth dπ(x), forming the feature denoted φ(x) in the main paper. Methods that use
the relative heading angle as an input also have information about the angle concatenated to
the feature; we encode angles using a sine/cosine encoding of [sin(θ),cos(θ)]. Thus angle-
agnostic methods have an input dimension of 1025 and angle-conditioned ones have an input
dimension of 1027.

Network: We decode the above concatenated feature vector with a multi-layer perceptron
with hidden layer sizes 1024, 512, and 256; each layer is followed by a Leaky ReLU non-
linearity (with negative slope 0.01).

Output and Loss Function: The output size and loss function used depends on the model:

• Classification: In the main multi-class case, the network produces a 11-dimensional
output corresponding to the logits for steps (0,1, . . . ,10+). The resulting loss function
is the cross-entropy between the softmax of these logits and a target value derived from
collision replay.

• Regression: In the regression case, the network produces a 1-dimensional output cor-
responding to the log of the number of steps. The loss function is the Smoothed L1,
or L2, loss between this and the log of the target number of steps.

• Binary Freespace: In comparisons with freespace classification, we produce a 1-
dimensional output representing the log-odds that the space is free. The loss function



RAISTRICK, KULKARNI, FOUHEY: COLLISION REPLAY SUPPLEMENTARY MATERIAL 3

is the binary cross entropy between this and the target value.

3 Distance Function Decoding Details
Once the networks have made predictions, we need to decode these into distance functions.

Classification Minima Distance Function Decoding: As described in Section 3.2 in the
main paper, when computing a distance function in the multi-class classification case, we find
the minimum step value where the cumulative probability of collision exceeds a threshold ε

(i.e. (∑ j≤t P( j))≥ ε). Applied naïvely, this leads to discrete jumps between bins and always
over-estimates the time to collision. We therefore linearly interpolate between the bins. This
reduces over-prediction and leads to smoothly varying distance function predictions.

Angle Minima Distance Function Decoding: In experiments considering the heading angle
of each remote point, we must take the minimum over possible angles to produce a distance
function for the scene. In the remote prediction case, we evaluate this by taking the mini-
mum over 32 evenly spaced sample angles between 0◦ and 360◦. In the egocentric case, we
evaluate the minimum over the actions.

4 Egocentric Prediction Model Details
Backbone: In the egocentric setting, we apply a ResNet-18 backbone to each input image,
followed by average pooling and then a multi-layer perceptron with hidden layer sizes of
512 and 256, using the same Leaky ReLU activation with a negative slope of 0.01. We
then compute an output layer, with shape depending on whether we use classification or
regression as an objective following

• Classification: In the classification case, we produce an output of shape 11×3, which
we interpret as a logits for the conditional probability distribution P(t|α), where t is
one of the discrete values (0,1, . . . ,10+), and α is one of the three actions (turn left,
move forwards, turn right). We do not consider the turn around action for egocentric
training, as there is reduced information in an egocentric view to predict whether the
space behind the agent is occupied. At train time, we take examples of the form (image
I, action A, steps to collision T), and apply a Cross Entropy loss between P(t|α = A)
and the label T.

• Regression: In the regression model, we mirror the classification case as closely as
possible by creating a 3 dimensional output vector, where each element predicts a
steps to collision value conditioned on the agent taking a particular action. At train
time, we supervise the value from this vector corresponding to the action taken in a
particular example. We use the same Smoothed L1, or L2, regression objective as in
the remote prediction case.

5 Data Collection Details
We filter the points and images that are used for training. For start with a dataset of 500 steps
for each of 10 episodes from 360 different environments (for our main Gibson dataset), for
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a total of 1.8M total images. We discard any training images in this dataset containing fewer
than 1 collision point or fewer than 5 non-collision points within the camera frustum. This
yields a dataset of 800K images.

6 Training Details

Optimization: At train time, we use a batch size of 128 images. In the remote point predic-
tion setting, we randomly sample 150 trajectory points to query in each example. We train
each remote prediction model for 20 epochs over the above 800K image dataset. We train
egocentric models for 5 epochs, which maximizes performance on the validation set. All
models are optimized with Adam [4], following a cosine schedule with a starting value of
2e-5, a maximum value of 2e-4 after 30% of training has elapsed, and a final value of 1e-
5. Training a remote prediction model takes approximately 12 hours on two Nvidia 2080Ti
GPUs.

Data Augmentation: We apply augmentation in the form of random horizontal flips, and
random horizontal shifts with percentage shift distributed normally with σ = 10%. All image
augmentations are equivalently applied to the camera matrices, so that trajectory points still
correctly line up with image contents. In the remote prediction setting, we also apply 2D
Gaussian noise with σ = 3cm within the floor plane to the query points’ scene coordinates, to
encourage smoothness and maximize the number of pixels being supervised across epochs.

7 Theoretical Modeling
Our setting can be connected with classic random walk problem settings such as the Gam-
bler’s ruin. These settings, albeit in simplified worlds, enable us to derive analytical results
describing times to collisions. In turn, these analytical results explain empirical behavior of
our system and of baselines. More specifically, if can characterize how likely particular path
lengths are, we can ask questions like: is it likely that we will see short paths during training?
what path length do we expect?

Setting: Suppose an agent is in a 1D grid world where cells 1, . . . ,a− 1 are free and there
are walls at cell 0 and a that trigger the collision sensors. The agent starts at a position z
and moves to the right with probability p and to the left with probability q = 1− p. This
corresponds precisely to the Gambler’s ruin (our results, and thus notation, follow Feller [1],
Chapter 14), where a gambler and casino repeatedly play a fixed game where the gambler
wins dollar with probability p and the casino wins a dollar with probability q. The gambler
starts with z dollars (an integer) and the casino with a− z dollars and both play until either
the gambler has 0 dollars (ruin) or wins a dollars (gain). Gambler’s ruin problems focus
on characterizing the number of rounds the gambler and casino play. While well studied in
the stochastic processes area and readily simulated, closed form solutions to these problems
resist casual solutions since the number of rounds is unknown in advance.

There are a number of results that are of interest to our setting. All but the shortest
path one appear in Feller [1]. We will introduce them and then show how these are of
use. Suppose T is the random variable representing the time to collision whose distribution
depends on (p, a, and z). Given that our agents act with some direction, we are interested in
games that are biased (or p 6= q). We will model this with p < 1

2 . This means the gambler is
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Figure 2: Plots of the probability of seeing a fairly short path as a function of location
inside the room. Each figure plots probability of taking the shortest path within a set of
tolerances as a function of the location in the room. In other words, the P(t ≤ z+ 4) plot
is the probability of having a path that is no more than 4 steps farther than the optimal path
and is calculated via ∑

z+4
i=1 PT (t = i). The columns vary the probability of moving left q and

the rows show linear (top) and logarithmic (bottom) scales. If the agent has a reasonably
high chance of moving left (q = 90%), then exactly short paths are surprisingly common.
Even with a lower chance of moving left, nearly shortest paths are fairly common and well-
represented in the training data.

likely to have ruin or, in our setting, the agent is likely to hit the left wall; one can reverse the
roles of gambler and casino to obtain results for hitting the right wall. We focus on the case
of ruin (i.e., hitting the left wall). The most most simple results are given for time to ruin, and
ruin serves as a reasonable proxy for time to collision because ruin is virtually guaranteed
for p < 1

2 and reasonably-sized a).

Probability of Ruin: We are generally concerned with settings where the agent moves
forward with high probability. For a fair (p = q) game, the probability of hitting the left
wall/ruin is 1− z/a. For an unfair game (p 6= q), the probability is given by [1] as

(q/p)a− (q/p)z

(q− p)a−1
, (1)

which becomes extraordinarily likely high as z and a get bigger so long as there is some
advantage for the house (i.e., the agent is more likely to go left than right).

Expected duration: the expected duration of the game (i.e., E[T ]) is important because the
expected value of a distribution is the minimum for predicting samples for that distribution.
Thus, a system that models time to collisions by minimizing the L2 error between samples
from that distribution and the prediction has a minimum at the expected value of the distri-
bution. The expected value has a clean, closed form expression of z(a− z) for p = 1

2 and

E[T ] =
z

q− p
− a

q− p
· 1− (q/p)z

1− (q/p)a (2)

for p 6= 1
2 . In Fig. 3, we plot some plots of the expected time as (a) a function of location for

a set of qs; and (b) a function of q for a fixed location.
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Figure 3: Expected time: (a) as a function of location for a set of q; (b) as a function of q for
a fixed location.

This E[T ] is important because a network trained to minimize the L2 distance / MSE
between its predictions and samples from T has its minimum on at E[T ]. Across all locations
and probabilities of moving towards the nearest wall q, E[T ]> z and is an overestimate by a
factor that depends on q.

Probability of seeing the shortest path to the wall: One might wonder how frequently we
would sample a shortest path to the wall given that we observe a time to collision. Without
loss of generality, assume that z≤ a/2: the shortest path to any wall goes to the left and takes
z steps. The probability of seeing the shortest path given a sample is then given by qz. This
can be seen by noting that one only has to look at the tree of possible paths after z steps have
played out. If all steps go to the left, then there is a collision; otherwise the result is not a
shortest path. The probability of seeing the shortest path is relatively small for large rooms.

Distribution over probability of ruin in t steps. If the shortest path takes t = z steps, we
may be equally happy to reach the nearest surface in t = z+2 or t = z+4 steps since these
distinctions may be washed out in actuation noise. There are known results for the particular
case where we are only concerned with time to arrival at the leftmost wall or ruin. This helps
us characterize how frequently we might see nearly-optimal paths to the wall. This is given
by the involved but analytical formula [1] (replacing Feller’s n with our t)

pT (t|ruin) =a−12t p(t−z)/2q(t+z)/2

a−1

∑
v=1

cost−1
(

πv
a

)
sin

(
πv
a

)
sin

(
πzv
a

)
,

(3)

which gives (assuming ruin occurs), the probability of it occurring on the tth step. This is
a pT (t|ruin) rather than pT (t), the overwhelming likelihood of ruin means this gives close
agreement to empirical simulation results for termination. This underestimates probabilities
of getting a short path in the middle of rooms but otherwise gives good agreement.

We plot distributions of PT in Fig. 2 for a large room a = 51: note that with a step
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size of 25cm, this room would be 12.5m across. The figure shows that if the agent has a
reasonably high chance of moving towards the nearest wall (q = 90%), then exactly short
paths are surprisingly common. Even with a lower chance of moving towards the wall,
nearly shortest paths are fairly common and well-represented in the training data. The only
conditions under which one is unlikely to see fairly short paths is when the agent wanders
(q small) or the room is enormous (a very large). Wandering can be fixed by picking a more
forward-moving policy; the room can be fixed by increasing the step size, which effectively
reduces a.

Concrete Results Now, we may generate concrete numbers under the following scenario:
an agent starts at cell z = 20 in a 51 cell world enclosed by two walls, and moves left towards
the wall with p=80% chance and right away from the wall with 1− p.

First, the agent has an effectively 100% chance of reaching 0, but the expected time, 33,
is always an overestimate of the distance. This overestimate depends on p: (p=90% gives
25; p=45% gives ≈199). Thus, networks trained with the MSE should overestimate time to
collision by a factor that depends on the specific policy being executed.

Second, approximately short paths are surprisingly likely. It is true that the exact shortest
path’s likelihood decays exponentially with distance: there is an≈1/84 chance of taking the
shortest path at z=20. However, there is a ≈1/20 chance of a path that is at-most 2 more
steps and a ≈1/8 chance of a path that is at-most 4 more steps than the shortest path. This
suggests that networks trying to match PT (t|x,α) will frequently encounter samples that are
nearly shortest. Moreover, while changing the policy changes the distribution, the distance
function estimate is inaccurate only if train time frequency is very small for fairly short
paths.

8 Comparison to L2 Training Loss
In Table 1 we provide an extended version of our Remote Prediction table from our main pa-
per, now including a comparison to ’Regression-L2’, a version of the model with L2 training
loss. We provide Regression-L2 metrics for models trained with or without a heading angle
input, and with or without ego-motion noise applied to remote point locations. We observe
that it narrowly under-performs our Regression-L1 model in all settings, so we chose the L1
variant as our primary regression model for use in the main paper.

9 Comparison to Learning to Fly by Crashing
Learning to Fly By Crashing (LFC) [2] is a prior work which uses real world drone trajec-
tories to learn a model to predict whether a drone’s egocentric image is ’near’ or ’far’ from
colliding with the environment, which approximately translates to predicting whether the
agent is within K steps of colliding, for K chosen at training time.

To enable comparison, we created versions of our model which emulate LFC’s original
binary training task. LFC is most similar to egocentric setting, so we adopt the same pre-
diction backbone and training methods as is described in Section 4. We replace the usual
regression or multi-class classification output with a single scalar output. We then use a bi-
nary cross entropy loss, with labels specifying whether the steps-to-collision value is greater
or less than a given K. We trained a version of this LFC-analogous model for K = 2, 4, 6, 8
in order to cover the 0 to 10 step range modelled by our main method.
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Table 1: Quantitative results for distance functions and floorplans.

Distance Function Floor
Angle Noise MAE RMSE %≤ δ IoU

Classification 7 3 0.16 0.31 0.77 0.49
Regression-L1 7 3 0.25 0.38 0.66 0.47
Regression-L2 7 3 0.25 0.38 0.66 0.47
Classification 3 3 0.11 0.21 0.83 0.47
Regression-L1 3 3 0.13 0.24 0.79 0.45
Regression-L2 3 3 0.14 0.24 0.79 0.47
Free-Space 7 3 0.13 0.23 0.82 0.52

Classification 3 7 0.10 0.20 0.86 0.54
Regression-L1 3 7 0.11 0.22 0.83 0.49
Regression-L2 3 7 0.12 0.22 0.83 0.53

Supervised - 7 0.08 0.19 0.90 0.66
Depthmap - 7 0.09 0.20 0.87 0.57

Table 2: Quantitative results for distance
function decoding

Distance Function
MAE RMSE %≤ t

LFC (K=2) 1.30 1.46 0.101
LFC (K=4) 0.95 1.17 0.22
LFC (K=6) 0.73 0.96 0.294
LFC (K=8) 0.61 0.841 0.335
Regression 0.96 1.14 0.13
Classification 0.58 0.79 0.36

Table 3: Quantitative results for threshold
binary classification

F1 Score
K=2 K=4 K=6 K=8

LFC 0.85 0.77 0.72 0.62
Ours 0.86 0.79 0.74 0.66

Distance function are difficult since LFC is aimed at producing a policy as opposed to
scene structure or a distance function. Nonetheless, we compare on both our own task of
producing a scene distance function, as well as LFC’s original training task of distinguishing
whether the given image is within K steps of colliding. To evaluate LFC on our distance
function task we linearly re-scale it’s output probability up to the same 0-4m range as our
main method. To evaluate our multi-class classification model on LFC’s task we produce a
binary value by determining if the most likely step count (argmax) is greater or less than K.

In Table 2 we observe that our method outperforms LFC in distance function prediction
across all K as expected. Additionally, as seen in Table 3 our method outperforms LFC on
its binary classification task, likely due to multi-task learning effects.

10 Qualitative Results Tables

We show extended versions of select figures from our main paper in Figures 4 and 5 re-
spectively. These examples are randomly selected from the same set of examples used for
metric evaluation (examples with at least 10% of the 4m× 4m area infront of the agent being
freespace).
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Figure 4: Randomly selected examples of the conditional probability P(t|α) for grids of
scene points and a varying heading angle α as shown by markers in blue. Probabilities are
obtained from a classification model trained with noisy random walks.
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In Fig. 4, we show examples of the conditional probability P(t|α) for grids of scene
points and a varying heading angle α . This visualizes the underlying representation used to
produce distance functions. A distance function can be produced by taking the minimum
prediction for each point across all visualized angles. Our method correctly predicts that
points for which the heading angle faces a nearby obstacle or surface will have a low distance
(shown in purple), whereas points where the heading angle leads to an open space have a
higher distance (shown in yellow). In row 2, we see an example of the model’s reasoning for
various heading angles around a doorway. In the first column, the model recognizes that if
the agent is below the doorway in the image it will likely continue into free space, but if the
heading angle faces towards the doorway from above it in the image, it is unlikely that the
random walk will successfully traverse through, so we see a low prediction.
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Ground Truth Noisy Train Noiseless Train Ground Truth Noisy Train Noiseless Train Ground Truth Noisy Train Noiseless Train

Figure 5: Randomly selected examples of 2D scene distance functions extracted from (left)
the simulator navigation-mesh; (middle) a model trained on noisy random walks; or (right)
a model trained on noise-free random walks

In Fig. 5, we show examples of the final distance function output of a classification
model trained with either noisy or noiseless random walks, as compared to the ground truth.
As in the main paper, the presence of points is used to indicate whether each method pre-
dicted the region to be freespace, so the results support that our model is generally accurate
in predicting the visible regions of the scene that are traversable. The model produces lower
values near obstacles, and high values in the middle of open spaces.
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Binaural Spectrogram Input
Predicted 

Distribution

Egocentric 

Reference Image

0 steps

10 steps

Left Ear 0° +45°-45°Right Ear (Not used by model)

Figure 6: Selected examples of echolocation-based egocentric prediction distributions. Each
row shows the model input (left), predicted P(t|α) distribution (middle) and a reference
image (right) which was not provided as input to the model.

In Fig. 6 we show examples of per-timestep egocentric predictions made by our egocen-
tric sound-based model. The two spectrogram images shown for each timestep are stacked
to create a two channel image input to the model. As with the other egocentric images, the
prediction takes the form of a distribution of P(t|α), with angles represented by the turn
angle of the action next taken next by the agent.
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