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Abstract

In this paper we learn to segment hands and hand-held objects from motion. Our
system takes a single RGB image and hand location as input to segment the
hand and hand-held object. For learning, we generate responsibility maps that
show how well a hand’s motion explains other pixels’ motion in video. We use
these responsibility maps as pseudo-labels to train a weakly-supervised neural
network using an attention-based similarity loss and contrastive loss. Our system
outperforms alternate methods, achieving good performance on the 100DOH,
EPIC-KITCHENS, and HO3D datasets.

1 Introduction

We invite you to pick up an object in your vicinity and bring it towards you. As you hold the object
and move your hand, the object moves coherently, and is roughly rigidly attached to a coordinate
frame in your hand. While your adult brain does not need this signal and can readily differentiate
the object in your hand from both your hand and the background even if you hold your hand still,
how did you learn to do this? One answer [42] is that as a human you have time locked modalities of
your own hand’s configuration via proprioception and vision, and your hand and the object share a
“common fate” [47]. The goal of this paper is to operationalize this idea by learning to segment hand
and in-hand objects (irrespective of name) from a single image by learning from video data.

This goal poses many challenges for current computer vision. While there has been a longstanding
interest in learning segmentation and object individuation from motion cues in vision [41, 34, 11], the
general case of being broadly able to segment everything has not made substantial progress. While
there has, of course, been substantial progress on instance segmentation for particular categories (for
instance MaskRCNN [21]) powered by large segmentation datasets [28], the space of categories that
one can pick up is vast. Indeed, recent work that aims to reconstruct in-hand objects via segmentation
losses [7] reconstructs a few objects by finding category correspondences (e.g., tennis racket masks
are used for knives). At the same time, while there is work on understanding hands, including contact
state [32], and detecting boxes around held generic objects [40], there is no work on segmenting
objects, much less work that learns from video data. In sum – segmenting lots of generic objects is
still challenging, and segmenting generic objects in contact is no exception.

Our approach makes progress on this challenging problem by assuming a small amount of knowledge
about humans. We assume we can estimate landmarks on hands [37], identify whether they are
holding something [40], as well as identify which pixels belong to people [23]. This small amount of
information guides understanding of the the deluge of information from optical flow [43]. Rather
than segmenting the full 3D motions of 3D objects from the flow, we instead only have to identify
whether the flow is better explained by a moving hand or a background. Moreover, by knowing about
an ubiquitous object (the hand), we show we can learn about many less ubiquitous objects.
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We implement our solution with a network, named COHESIV, that takes an RGB image and one
2D location on a hand as inputs to segment the hand and the object that the hand is interacting with
(Section 3). At test time, COHESIV maps the input image to an embedding space with a CNN [38];
this embedding is processed with lightweight heads to produce per-pixel detectors at each hand, and
feature maps for objects that can be queried to produce a heatmap. At training time, we use the
motion with nearby frames to derive signal. We define a responsibility map for a moving hand as the
relative goodness of fit on optical flow for a planar motion model in comparison to a background
model. These responsibilities power two losses: a similarity loss that directly supervises per-hand
segments; a contrastive loss [13] that encourages in-group affinity as well as separates embeddings
among people, objects, and background via pseudo-labels.

We train and validate on video data of humans engaged in complex behaviors using subsets of the
100 Days of Hands (100DOH) [40], EPIC-KITCHENS-55 (EPICK) [9, 10], and HO3D [18] datasets.
We compare with alternate methods that range from fully-supervised bounding boxes [40] to basic
motion cues from optical flow [43], to saliency [51]. We show that our weakly-supervised method is
comparable to the supervised bounding box detector method, while outperforming flow and saliency
methods.

2 Related Work

Our work aims to segment hands and in-hand objects from a single image and thus interacts with a
variety of related areas, ranging from: the domain we work on (understanding hand-object contact),
the signals we use (common fate with optical flow), and the methods we use to extract meaning from
this signal (contrastive learning). Our approach differs from each by using contrastive learning to
extract supervision from optical flow in order to segment out objects people are holding.

Understanding hands in contact with objects has long been of interest. In addition to work focused on
finding hands [3, 31, 40], there has been considerable work on reconstructing hands (for instance
with a known shape model like [36]) along with outputs such as poses [12] or 3D meshes [20, 19, 7].
While these approaches can often produce meshes, they usually rely on strong supervision. In contrast,
our approach derives its signal from using a small amount of information to make sense of optical
flow in videos. While our approach resembles work on human-object relationship detection [45, 17],
our relationship is specifically physical contact (e.g., in HOI [45] a person may be using a monitor if
they are holding a mouse while we would only segment the monitor if it were physically grasped).
Robots accomplish similar object-in-contact tasks [14], but can be challenged by the need to collect
large scale interactions. The most related work is understanding objects in contact, ranging from
detailed contact models like [5] to bounding boxes like [40]. Our work produces a richer per-pixel
segmentation compared to [40] while also requiring less supervision.

We extract this information from optical flow, which has been known as a signal for perceptual
organization since the Gestaltists [47] and Gibson [16]. Optical flow at inference time has been
used, for instance for doing motion segmentation ([41, 6, 35, 26, 11, 25] among many others). When
coupled with learning machinery, the optical flow provides a supervisory signal that can be absent at
inference time; our work falls into this category. This signal has been used to learn representations
e.g., for pure recognition [34], but our approach is most related to its use for perceptual organization,
for instance learning correspondence [46, 24, 48] or boundaries [50, 27]. Our work is most similar to
works learning boundaries but focuses on a specific type of boundary – those of hand-held objects.
Rather than learning to segment everything, we learn to group hands and the objects they hold. To the
best of our knowledge, there is no work that does this; the closest is [4], that finds important objects
for an egocentric user based on gaze (as opposed to what object is in a person’s hand).

Our approach for learning uses attention for prediction and contrastive learning for grouping. We use
attention as a means of relating query points against an entire image. This mechanism is common
in methods that solve visual question answering [1, 30], though our use of attention aims to instead
discover unknown object extents. In this regard, our work is loosely related to [49], an attention-
based visual question answering method. Contrastive learning has become a standard formalism for
self-supervised learning, including remarkable performance [8, 33, 2]. We use a formulation inspired
by [44], which uses saliency as a grouping signal on Internet image data. In our method, we use
optical flow, hands and people instead. Our approach also combines self-supervised learning for
per-pixel embeddings with supervision that aims to directly predict which object goes with the hand.
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Figure 1:COHESIVarchitecture (left) and responsibility generation (right). First, a homography
capturing hand movement is �t between hand vertices in frame t and hand vertices transformed by
�ow from t to t+i. Then, responsibility for each hand and the background is computed by Equation 1.
COHESIVtakes an RGB image and hand location p as input, uses a UNet to get embeddings for
each pixel, conducts contrastive losses between objects, people, and background on the embeddings,
and �nally inputs embeddings to hand and object branches to relate query points to held-objects in
producing a predicted responsibility mask.

3 Method

Our approach learns to map the image and an on-hand query point to a prediction of what parts of
the scene move with the hand at the query point. While the system requires a single image at test
time, it makes use of the rich temporal signal found in video for training. At the core of our approach
is the notion ofresponsibilitiesfor hands, inspired by the notion of responsibilities when �tting a
GMM [15]: the responsibility of a pixel for a hand is how well that hand explains the pixel's motion
compared to other hands and the background (Section 3.1).

At test time, we aim to predict the hand and hand-held object masks for the queried hand. Our
network (Section 3.2) predicts this by mapping the image to a shared embedding, which is in turn
converted into per-pixel object features that are attended to by per-pixel hand detectors. At training
time, the responsibilities provide the basis (along with the pixel locations of humans) for a set of
losses (Section 3.3) that we use to train our network, using both direct supervision on the outputs
with responsibility maps as well as a constrastive loss on the embeddings.

Throughout, we assume access to systems that can estimate between-frame optical �ow, landmarks
on the hand, and which pixels belong to people. We use optical �ow from RAFT [43], projected
hand joints from FrankMocap [37] (to get a set of points on the hands), and people masks from an
off-the-shelf people segmentation system [23].

3.1 Responsibility

We formalize the notion of synchronous motion (or common fate [47]) for hand and in-hand object
via the notion ofresponsibility. Given an optical �ow mapO 2 RH � W � 2 and a set ofN handsH,
we aim to produceN responsibility mapsR 2 RH � W � (N +1) with

P N +1
k=1 R i;j;k =1 that explain

how well each pixel is explained by each hand's motion model or the background. For the kth hand,
we formally model the responsibility as a temperature-softened softmax per-pixel, or:

R i;j;k =
expt (� dk (O i;j; :))

expt (� dBG(O i;j; :)) +
P N

k 0=1 expt (� dk 0(O i;j; :))
(1)

whereexpt (x) = exp( � x=t) is an exponential with a tunable temperature (set to 2 based on a small
held-out set) anddBG anddk compute distances between an optical �ow vector and a model (namely
a background model and a model for the kth hand respectively). Equation 1 requires building and
evaluating distances between the movement seen in a �ow vectoro 2 R2. We treat the background
as static and thus the modeldBG(o) is simplyjjojj2. This is not the best model for egocentric data,
but we �nd it to be effective, potentially due to the high frame rate of the dataset [9] we use.
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Figure 2: Responsibility maps. Images and responsibility maps from 100DOH (top row) and EPICK
(bottom row).

Our hand modelsdk (o) assume aplanar motion because it is simple to solve for, can handle out
of image-plane rotation, and is a reasonable approximation at the distances and timescales the
data shows. This entails �tting a homographyM k 2 R3� 3 on hand landmarks. Supposingproj(�)
converts homogeneous to normal coordinates ([x; y; z] ! [x=z; y=z]), then the landmarks should
satisfy[i + o1; j + o2]T = proj(M k [i; j; 1]T ) for a pixeli; j with �ow o. We tried with a variety of
options, but found simply �ttingM k to the estimated �ow at FrankMocap [37] vertices to be most
effective. Using [37] to provide correspondence proved worse, likely since the resulting hand motion
model also included disagreement about the landmark locations in each frame. Then, given a model
M k and pixeli; j with �ow o, the models' prediction isproj(M k [i; j; 1]T ). We de�ne the distance
as the difference between the actual �ow and the predicted �ow,

dk (O i;j ) =
�
�
�
� [i; j ]T + O i;j � proj(M k [i; j; 1]T )

�
�
�
�
2 : (2)

While simple, the planar model has a counter-intuitive catch. By handling out of plane rotation,
the planar model will produce many points that match optical �ow by accident specially for static
cameras:proj(M k [i; j; 1]T ) often has zeros in the image. While a learning system could learn to
ignore these accidental matches by training on a large dataset, we accelerate this by averaging it out:
we calculate responsibility maps to the next and previous 3 frames, and then average them.

Techniques: We estimate optical �ow with RAFT [43] and hand vertices with FrankMocap [37].
FrankMocap fuses a hand detector [40] with a network that predicts 2D and 3D hand joints. This
information is used to compute homographies and then responsibility maps. Once responsibilities are
computed, they serve as pseudo-labels at training time and are then discarded. At test time, we aim to
predict hands and held-objects for new images.

Data Selection and Implementation Details:The data we use is challenging non-scripted videos
that include vast amounts of non-interaction. We select our training and validation data so that the
network primarily sees hands that are visible and in contact. We select clips where hands appear in
10 consecutive frames as well as hands are moving within the clip. In 100DOH, the clips are detected
as visible hands holding reasonably sized objects using [40]. We note that we only have to do this
selection since the data used is large and non-scripted. In EPICK, we use their action segments. (see
the supplemental for more details)

3.2 Architecture

Our approach aims to take an image2 RH � W � 3, a query pointp = [ x; y], and produce a segmenta-
tion of the hand and object that the hand atp is in contact with. Our architecture produces a query
feature mapQ 2 RH � W � A representing per-hand detectors and a key feature mapK 2 RH � W � A

representing object features. At test time, one can extractQx;y; : and produce a detection score at any
i; j by qT K k;l; :. Thus, a forward pass can be used to parse multiple hands by extracting different
locations.

We produceQ andK from a common backbone that produces an embeddingZ = RH � W � F . We
predict the embeddingZ with a standard U-Net-style [38] network with a SE-Net [22] (se-resnext50-
4d) backbone and ImageNet [39] pretrained encoder weights. Then, we use two lightweight paths
(two 3 � 3 Conv layers) fromZ to headsQ andK (see the supplemental for a full description).

The use of an intermediate embedding plus the attention heads enables the heads to handle integration
of hand-speci�c information (e.g., given this hand, this particular object goes with it) while the
embedding captures how people, object, and background pixels are distinct. The asymmetry via two
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