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A. Implementation Details

We implemented our approach in the PyTorch frame-
work [6] and it is made publicly available.! Below we
present more details on our network architectures and train-
ing procedure.

A.1l. Network Architecture

We present the architectures of our Shape, 2D Readout,
and Discriminator networks. Our Shape Network consists
of 3 components: 2D Encoder, 3D UNet, and projection
layers. Unless otherwise stated, each convolution and linear
layer is followed by batch normalization [3] and a leaky
ReLU activation with a negative slope of 0.01.

2D Encoder Our encoder consists of 3 successive
double_conv modules. Each double_conv consists of
2 convolution layers with a kernel size of 3 x 3 and padding
of 1. Each double_conv doubles the number of features
(with the exception of the first one going from 3 to 8), and
reduces the size of the map by a factor of 2 in each spatial
dimension using max pooling. The final encoding has a size
of batch x F' x N x N where F' = N = 32.

Projection We re-implement the projection layers pro-
posed by Kar ef al. [4] in PyTorch. We use an orthographic
projection to back-project the 2D feature maps to a 3D grid
of size ' X N x N x N, where N = F = 32. We
use tri-linear sampling to determine the features for each
voxel when doing back-projection. When projecting from
3D back to 2D, we sample Z slices along the depth dimen-
sion (Z = 64) and concatenate all the features along the
feature dimension. We use a 1 x 1 convolution to aggregate
the features back from Z x F' to I features for every pixel
location. After aggregation, our feature map has the same
size as the output of the 2D encoder.
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3D UNet We extend the UNet architecture into 3D by ex-
tending the kernels along the depth dimension. The 3D
UNet architecture is very similar to the 2D Encoder, with
the exception of having 3D convolutional kernels and us-
ing skip connections between the encoder and the decoder.
One difference is that we only use 3 scales for the 3D UNet
instead of 4 scales as done by the encoder.

2D Readout The 2D readout network takes as input the
projected 2D features and converts them into either a depth
map or an object mask. We do this by applying 2 3 x 3
convolution layers with an 8 x bi-linear up-sampling step in
between. The 2D readout has an input feature dimension of
32, which gets reduce to 16 after the first layer, and finally to
1 for the output prediction. We do not apply normalization
or activation to the final layer.

Discriminator We implement the discriminator as a 3D
CNN. Our architecture makes use of the inception module
proposed by Szegedy et al. [8], adapting it to 3D by expand-
ing the kernels along the depth dimension. Our network
architecture consists of two inception modules followed by
two fully-connected layers. Each inception module consists
of 3 convolution layers and a max-pooling layer that are ap-
plied separately to the input. The convolution layers have
kernel sizes of 1, 3, and 5. Max pooling has a kernel size
of 3. We use zero-padding to ensure that all 4 operations
have the same sized output. All the outputs are concate-
nated, and are followed by a linear layer that aggregate each
voxel’s features from 4F back to F' features. The first in-
ception modules maps the features of each voxel from 32 to
16, while the second reduces it to 1.

Our network uses 2 inception modules, with 3D average
pooling between them to scale down the voxel grid by a
factor of 2. After both inception modules, the voxel grid
has size of 16 and feature dimension of 1. We flatten the
output and use two linear layers to reduce the number of
features to 512, then to 4 (magnitude and Euler angles). We
do not apply normalization or activation to the final layer.
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A.2. Training Procedure

We initialize all of our networks using Kaiming initial-
ization as proposed in [2]. We use a uniform distribution
for linear layers, and a normal distribution for convolutional
layers. All the networks are trained using the Rectified
Adam optimizer [5] with a learning rate as 103, epsilon
as 1074, weight decay as 1075, and beta values as 0.9 and
0.999. We use Rectified Adam with its default parameters
as it has been shown to be robust to choice of learning rate.
While we do not observe overfitting to the training set due
to the large variance in the dataset as previously observed
for rendered datasets [7], we do observe a general trend of
diminishing improvements after 20k iterations. As a result,
we train for 100k epochs and choose the best performing
model on the validation set. While we use a batch size of
16 for our networks due to GPU size considerations, we ob-
serve that increasing the batch size for the baselines to 32
improved their performance, so we report those results in-
stead.

B. Rendered Datasets

We use the same rendering pipeline for all of our datasets
which is adapted from the Render For CNN pipeline [7]
which uses Blender [!]. We uniformly sample azimuth and
elevation angles for each model to ensure minimal bias in
the dataset. For training and evaluating our models, we ran-
domly pick a subset of all possible pairs or triplets. The dis-
tribution of views over azimuth and elevation is presented
in Figure 1. We use object materials for rendering when
possible, and overlay all images with backgrounds from the
SUN dataset [9].

Furthermore, we present visualizations of our instances
with the predicted 3D view mask for ShapeNet (Figure 2),
Pix3D (Figure 3), and ThingilOK (Figure 4). While the
model sees the objects with an overlaid background, we
omit the background here for better visibility. Examples
with overlaid background can be seen in the paper. The re-
sults reveal some failure modes such as missing thin objects
(eg, chair legs), failing to register an object part that was
occluded in one of the reference views, and filling in small
holes in the object.
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Figure 2. Visualization Results for ShapeNet. We visualize the results of the model trained on ShapeNet for mask prediction on ShapeNet.
Background is removed for better visibility.
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Figure 3. Visualization Results for Pix3D. We visualize the results of the model trained on ShapeNet for mask prediction on Pix3D.

Background is removed for better visibility.
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Figure 4. Visualization Results for Thingil0K. We visualize the results of the model trained on ShapeNet for mask prediction on
ThingilOK. Background is removed for better visibility.



