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Abstract

Hands are the central means by which humans manip-
ulate their world and being able to reliably extract hand
state information from Internet videos of humans engaged
in their hands has the potential to pave the way to systems
that can learn from petabytes of video data.

This paper proposes steps towards this by inferring a
rich representation of hands engaged in interaction method
that includes: hand location, side, contact state, and a box
around the object in contact. To support this effort, we
gather a large-scale dataset of hands in contact with ob-
jects consisting of 131 days of footage as well as a 100K
annotated hand-contact video frame dataset. The learned
model on this dataset can serve as a foundation for hand-
contact understanding in videos. We quantitatively evaluate
it both on its own and in service of predicting and learning
from 3D meshes of human hands.

1. Introduction
The hand is the key to how humans interact with the

world. If machines are to understand our actions and in-
tentions as well as the world we have build for and with our
hands, they must have a deep understanding of our hands.
For instance, in Figure 1, we can readily recognize that there
are two hands (one left and one right), opening a bag and
even imagine how one might pull up the flap. The goal of
this paper is to build the foundation for studying hands en-
gaged in interaction with objects at Internet scale.

Hand analysis is, of course, an area of long-standing in-
terest in the field with work on pose estimation [41, 34], re-
construction [21, 42], and grasp analysis [30, 7]. These ap-
proaches, however, have largely focused on in-lab settings,
often with a pre-localized hand or in settings with limited
variety. While there has been substantial progress, deploy-
ing these on the rich world of Internet videos [3, 39] poses
a challenge due to the dizzying diversity in viewpoint and
context. A single system must handle data ranging from
a fifty pixel high hand in a cooking video to an enormous
thousand pixel high hand closeup showing DIY.

t 100DOH

Figure 1. The goal of this paper is to infer a rich representation
for helping understand hands engaged in contact with the world at
Internet scale. Our system produces a rich output in terms of hand
location (boxes), side (left/right), contact state (here – a portable
object) and what object each hand is in contact with. To support
this, we collect a new large-scale hand video interaction dataset,
100 Days of Hands (100DOH). We use this, plus videos from
VLOG [14], to make a 100K image dataset annotated with our
rich representation.

Our work aims to enable hand analysis at Internet scale
and diversity. To this end, we introduce a model, described
in Section 4 that identifies, for every single hand in a single
RGB image (demonstrated on a wide variety of scales and
contexts): a hand box; its side (left/right); its contact state
(none / self / other person / non-portable object / portable
object); and, for the hand in contact, an object box around
the object or person in contact. These enable crucial down-
stream problems like reconstruction and grasp analysis. For
example, the detection of hand location and side enables the
use of recent mesh reconstruction systems [21, 42].

This system, along with an existing mesh reconstruction
method [21], yields a system that can detect hands, their
contact state, their 3D reconstruction, and what object they
are touching. We believe this output enables large-scale
fine-grained learning about human-object interaction. As
an example, we introduce a method to identify bad mesh
reconstructions (necessary for learning from meshes) and
provide a demonstration of learning on consumer videos.
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Figure 2. Snapshots from our dataset. (Left) Samples from the eleven genres that we use to collect our video dataset 100DOH as well
as a sample from the VLOG dataset that we additionally sample from to produce our 100K frame subset. (Right) Statistics about the hand
frame dataset in terms of hand size (bounding box diagonal length over image diagonal length) and contact state, as well as illustrative
samples of both. Our dataset depicts a wide variety of hands engaged in interaction in a variety of contexts and at a variety of scales.

This effort is backed by a new dataset, 100 Days of
Hands, introduced in Section 3, consisting of a large-scale
(131 days+) video dataset of humans engaged in interaction
that was gathered implicitly [14] (i.e., with a set of rela-
tively generic genre tags as opposed to particular actions).
These videos depict a wide range of activities, viewpoints,
and settings. We use frames from this dataset and a similar
dataset [14] to create a 100K image dataset which has the
rich hand-state annotation to support our model.

We believe that this model and data (along with existing
past work, especially in reconstruction) enable the field to
collectively tackle new and important problems in human-
object interaction in general consumer videos and demon-
strate this concretely in Section 5. We show that: (1) Our
new hand dataset yields high performance detectors (90%
VOC [12] AP) that generalize well across datasets, occa-
sionally outperforming training and testing on the same
dataset; (2) Our new hand state model and dataset serves
as an enabling technology that lets the community deploy
exciting hand-mesh reconstruction systems like [21] on
YouTube videos; (3) Our system may provide a stepping
stone towards important tasks like grasp analysis by show-
ing how to use it to build a proof-of-concept system that
maps objects to 3D meshes of hands engaged in interaction.

2. Related Work

Our work focuses on identifying a rich state of hands
in an ordinary RGB image with the goal of using it as a
foundation for understanding human-object interaction in
Internet videos. It therefore touches on many papers in the
area of understanding human-object interaction.

Human-object interaction, and understanding the af-
fordances (opportunities for interaction [16]) has been a

long-term interest of computer vision. Recent work has
largely taken the approach of recognizing verb-noun pairs
[17, 9, 10, 19, 6]. In terms of technical approach, our
method is most related to the approach of Gkioxari et al
[17]. As an output, however, we propose an alternate repre-
sentation based on physical contact and interaction.

In the process, we gather a video dataset of humans en-
gaged in interaction that we annotate and learn from. Of the
many works in video human-object interaction [11, 39, 33,
24, 40], ours is most clearly related to VLOG [14], which
also gathers data of interaction, and AVA [18], which in-
vestigates atomic (i.e., base-level) actions. We build on the
ideas and part of the data of VLOG, but expand it to a wider
and more diverse dataset and far more thoroughly investi-
gate and annotate contact. Like AVA, we also investigate a
representation below activities, but is different and comple-
mentary (in contact with a box) compared to AVA’s seman-
tic actions (e.g., “write”, “play instrument”).

Hands have long been the subject of study in computer
vision. In this area, our data and approach sit between
image-based hand detection datasets like [1, 25, 5, 14, 28]
and efforts at understanding contact with richer annota-
tion but requiring more specialized devices or more con-
strained environments such as [7, 35, 30, 15, 36]. We ex-
pect that fully understanding hands may require a variety of
approaches; our approach tries to strike a balance between
potential for scalability and richness of annotation. We note
that while there has been progress in full body pose estima-
tion (e.g., [8]), our approach works even in highly truncated
settings like Internet videos.

One particularly important line of work in understanding
human hands is extracting the pose of hands from images.
A full survey of this literature is beyond the scope of this
paper and we refer the reader to [41, 34]. Most recently,



Table 1. Comparison of 100DOH with existing datasets for
human-object interaction. While only a small fraction of it is la-
beled compared to more densely annotated datasets, the proposed
large-scale video dataset is a rich source for unsupervised learning
about hands.
Name Length Annotation Source

100DOH 131D 100K frames per-hand state YouTube
AVA 2D 3s-level atomic Actions Movies
HowTo100M [24] (5.6K)D None / Captions YouTube
Moments [26] 34D, 17H Vid. Class Misc
VLOG [14] 14D, 8H Vid Class, Sparse Annots YouTube
YouCook2 [39] 7D, 8H Action Segments YouTube
Charades [33] 3D, 8H Action Segments Home
EPIC-KITCH. [11] 2D, 7H Actions Segments, Object BBs Home

this has taken the form of systems that can, given a cropped
hand with known side, such as [21, 42], infer a mesh via
a low-dimensional model like MANO [31]. Our approach
provides the necessary input for this reconstruction and thus
enables the large-scale deployment of these techniques to
Internet videos (including a self-supervised learning-based
system that can detect reconstruction failures).

One of the applications we demonstrate is mapping an
image of an object not being interacted with to a 3D mesh
of the hand. This work has tackled previously using RGBD
sensors [20, 2] or thermal data [7]; our work is able to learn
this simply by mining examples via the rich representation
our approach can infer. Most existing work in this area that
can learn from Internet videos [27, 13] focuses on interac-
tion hotspots, while our work infers a mesh.

3. Dataset

We gathered a large and rich dataset of everyday inter-
actions from YouTube that serves as a basis for our subse-
quent investigation. This dataset consists of two parts that
play complementary roles: (i) a massive, unlabeled video
dataset that is source for unsupervised learning; and (ii) a
100K frame subset that has been labeled.

We follow the principles outlined in [14], where we
search implicitly for hands engaged in interactions rather
than explicitly. We see a few advantages to frames from im-
plicitly gathered video data: (a) still photos require an inten-
tional decision to take and upload the photo, meaning that
the transitional fossils of daily life (e.g., a half-ajar refrig-
erator with a hand resting on it) usually go undocumented,
a form of selection bias [37]; (b) explicitly gathered data
(e.g., searching “playing tuba” for Kinetics [23]) tends to
capture unusual activities since these are easy to find.

3.1. Gathering a Large-Scale Video Dataset

Gathering implicitly consists of two rough stages: identi-
fying an overcomplete set of candidate videos using generic
queries and filtering out irrelevant videos.

Table 2. Comparison of 100DOH with hand datasets. Our dataset
is far larger and has a rich annotation of contact state with objects.
Name # Im # Hands Side Contact Objects Source
100DOH 100K 189.6K X X X YouTube
VLOG [14] 5K 26.1K X Per-Image X YouTube
VIVA [1] 5.5K 13.2K X X X Capture
Ego [5] 4.8K 15K X X X Capture
VGG [25] 2.7K 4.2K X X X Flickr, TV
TV-Hand [28] 9.5K 8.6K X X X TV
COCO-Hand [28] 26.5K 45.7K X X X Flickr

Generating a set of query candidates: We began with
a set of 11 categories: boardgames, DIY, making drinks,
making food, furniture assembly, gardening, doing house-
work, packing, doing puzzles, repairing, and studying. We
generated 13.2K queries using frequent words, Wordnet hy-
ponyms and templated queries (e.g., “DIY cookies home
2014”), and searched YouTube. These queries yield∼6.5M
video responses (an estimated 86 years), which we must fil-
ter for containing hands interacting with objects.

Filtering: Manually screening such a large dataset is im-
practical and we therefore use a learned model based on
video thumbnails. In particular, we use three learning tar-
gets: (a) what fraction of 100 evenly-spaced frames have
high responses from a Faster-RCNN hand detector trained
on [14]; and (b) what fraction of frames are judged as
containing interaction by human workers; (c) whether the
frames are cartoons.

These cannot be evaluated on the whole dataset, so we
train models (see supplemental material) that map thumb-
nails to a prediction of each. This can be rapidly evaluated
at scale on our full dataset’s thumbnails and our final dataset
is the intersection between the datasets that are likely to
contain hands and depict interaction, with likely cartoons
removed. These systems are not used in the future and all
subsequent annotations are at a frame-level and are inde-
pendent of video-level filtering mechanism.

3.2. Image Dataset

This yields a video dataset – 100 Days of Hands
(100DOH) – of 27.3K videos across 11 categories with 131
days of footage of everyday interaction. We use this to build
a new 100K frame-level dataset, that is primarily (∼ 85%)
a subset of 100DOH and (∼ 15%) a 3× extended and re-
labled version of the hand dataset in [14]. We chose ran-
domly among frames, filtering out (and retaining for later
use) images containing no hands. We include VLOG be-
cause we tried building off of VLOG, but realized that we
needed more diverse underlying data.

Annotation: For every hand in each image, we obtained
the following annotations: (a) a bounding box around the
hand; (b) side: left / right, which is crucial for mesh re-
construction; (c) the hand contact state ({no contact, self-
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Figure 3. Our system can act as a foundation to understand interacting hands on the Internet. Our system takes a single RGB image and
detects hands (irrespective of scale) and for every hand predicts: a box, side, contact state, and a box around the object it is touching. We
can then (1) obtain a parse of hand state; and (2) use the hand box and side to feed a reconstruction system like [21]. To help make better
use of Internet reconstructions, we introduce a self-supervised system that assesses mesh quality that we train on our data.

contact, other person contact, in contact with portable ob-
ject, in contact with a non-portable object}), which provides
insights into what the person is doing; and (d) a bounding
box around the object the person is contacting irrespective
of name. The annotation of non-named bounding boxes
is crucial: in-the-wild data is known to have a heavy tail,
dooming categorization.

Annotation began by counting hands, then marking hand
bounding boxes and sides simultaneously; in addition to
standard qualification, consensus, and sentinel techniques,
hand bounding boxes were annotated, then verified, then
re-annotated if hands were missing. Catching these missing
boxes is crucial since with data of this scale, hand detection
performance can reach a mAP of 90%. Then hand state and
object bounding box were annotated, again using qualifica-
tions, consensus, and sentinels. We only included images
on which we could get conclusive judgments from work-
ers. In total, in the 100K images, there are 189.6K hands
annotated which are in contact with 110.1K objects.

Splits: We split by YouTube uploader id to make a
80/10/10% train/val/test split where each uploader appears
in only one split. This split is backwards compatible with
the VLOG hand data: no VLOG test appears in the trainset.

Comparison to existing data: We compare our dataset in
raw statistics with other comparable datasets of videos in
Table 1 and image-based datasets for studying hands in Ta-
ble 2 (empirical cross-dataset evaluations demonstrating the
utility of the dataset appear in Section 5). While unlabeled,
our video dataset provides a valuable source of large-scale
demonstrations of hands engaged in interaction. Our image
dataset fills a gap of providing object contact and side in-
formation at vast scale. Additionally, as seen in the paper,
100DOH hands appear at a wide variety of scales.

4. Finding Hands & Objects in Interaction
Equipped with this data, we show how to build a sys-

tem that can produce a fine-grained understanding of the
scene. Our base system (Sec. 4.1) can predict, from a sin-
gle image: (1) a box around any visible human hands in the
scene as well as their side (left-vs-right) and contact state
(none/self/person/portable/non-portable); (2) the box of an
object the hand is in contact with; and (3) a link between
each hand and an object it is in contact with. Our outputs
can be directly plugged into machinery for hand reconstruc-
tion (Sec. 4.2) [21, 31], also enabling (4) a 3D mesh re-
construction; (5) and whether that reconstruction was likely
correct. We believe this output can enable many exciting
downstream applications, and we show a proof of concept
of mapping objects to grasps (Sec. 4.3).

4.1. Hand and Object Detection

We build our system on top of a standard object detection
system, Faster-RCNN [29] (FRCNN) by adding auxiliary
predictions and losses per-bounding box. We deliberately
chose FRCNN for its reputation as a standard foundation
for detection tasks; we see additional improvements to the
base network as orthogonal to our contributions. Specifi-
cally, we build on FRCNN trained to identify two objects –
human hands and contacted objects. As in standard Faster-
RCNN, the network predicts, for each anchor box, whether
the anchor box is an object, what its category is, and bound-
ing box regression adjustments to the anchor box; these re-
main unchanged. We predict a series of auxiliary outputs
directly from the same ROI-pooled features as the standard
classification outputs. We now report these outputs and the
losses we use to train these additional layers:

We predict hand side s ∈ R2 and contact state c ∈ R5

via two additional fully connected layers. The outputs rep-
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Figure 4. Selected results from our full hand state detection system. Here we show our results on 100DOH as well as generalizing
(untrained) to VIVA [1], EgoHands [5], and VGG [25]. Our system is able to reliably extract hands at a variety of scales, poses, and
contexts as well as identify contact state and which object is in contact.

resenting left-vs-right and {none / self / other / portable
/ non-portable}. Both are trained by minimizing standard
cross-entropy losses Lside and Lstate.

To link up boxes between hands and objects, we predict
an association from a hand to an object, similar to Gkioxari
et al. [17], by predicting an offset vector, factored into
a unit vector v ∈ R2 plus a magnitude m ∈ R by two
fully connected layers. Given the ground-truth vector be-
tween the center of the bounding box of a hand to the cen-
ter of the bounding box of the object the hand is contact-
ing, we write it as a unit vector v′ ∈ R2 and magnitude
m ∈ R. We minimize the distance between the two vectors
Lori(v,v

′) = ||v − v′||22 as well as the squared difference
between the magnitudes Lmag(m,m′) = (m −m′)2. For-
mulating the relationship as predicting an object per-hand
allows multiple hands to contact the same object; while it
does preclude a hand contacting multiple objects, we find
this is rarer and leave it to future work.

We obtain a final discrete parse in terms of a set of hands
in contact/correspondence with a set of objects through a
greedy optimization on network output. Given a new image,
we infer all the hand and object boxes, as well as their side
and contact scores and association vector. We convert these
soft predictions into a discrete prediction by suppressing un-
likely hand/object detections and then associating each con-
fident hand with the object whose center closest matches the
hand’s bounding box center plus its offset vector.

Training details. The standard FRCNN losses are mini-
mized as usual; we minimize Lside, Lstate over anchor boxes
corresponding to ground-truth hands and Lori and Lmag over
anchor boxes corresponding to ground-truth hands in con-
tact. We scale the loss terms to handle wide variance in
the loss scale but otherwise did not tune loss scales (details
in supplemental material). We use a ResNet-101 [22] back-
bone, initialized with Imagenet [32] and train it for 8 epochs
with a learning rate of 10−3 with batch size of 1.

4.2. Applications to Reconstruction

Our system, out-of-the-box, directly enables the large-
scale automatic deployment of techniques for mapping
hands to 3D meshes which supplement our outputs. As a
concrete demonstration, we build off of the technique of
[21] that maps images to the MANO [31] low-dimensional
parameterization of hands via a Resnet-18 [22]; this pa-
rameterization comprises [θ,β] representing hand pose and
shape, which can be converted to a 3D mesh via the differ-
entiable MANO model. Our system provides the necessary
inputs (locations plus side); building a more complex sys-
tem that integrates with the detection system is an interest-
ing future direction and technically feasible but beyond the
scope of a single paper.

While this enables many interesting downstream tasks,
these tasks would be harmed by incorrect reconstructions
and so we present a simple technique for recognizing these
failures. We use the ideas of checking a network’s equivari-
ance as a signal for confidence from [4]. Specifically, given
an image, we reconstruct the hand from six rotated copies
of the image, reproject joints, rotate them and computed the
the mean L2 distance of corresponding joints. We generate
these for 3 frames per training video (70.9K images), sort
by consistency and set the examples in the top 30% as posi-
tives and the bottom 30% as negatives. We train a two layer
multilayer perceptron (hidden layer sizes 100, 50) on [θ],
minimizing the binary cross-entropy; this classifier can be
run at inference time to quickly identify poorly estimated
frames. We quantify its effectiveness in Section 5.3.

4.3. Proof of Concept: From Object to Grasp

Once we can identify hands in contact in videos and re-
construct them, we can generate training data for identify-
ing how hands might contact an object. After associating
hands to tracks, we search our training set for moments in
time where a hand makes contact with an object. On either



Table 3. Cross-dataset performance: training Faster-RCNN [29]
on our dataset ensures near-equal performance to training and test-
ing on other datasets; other datasets usually generalize poorly. For
each train set, we report the minimum ratio (across test sets) be-
tween its performance and the best-performer.

Test→ 100 VLOG VIVA Ego VGG TV+Co min
Train ↓ DOH [14] [1] [5] [25] [28] ratio

100DOH 90.1 86.4 86.5 90.8 73.9 65.4 92.9
VLOG 78.6 77.5 76.6 83.2 64.6 59.2 81.1
VIVA 23.6 27.7 90.8 56.8 21.5 10.1 14.5
Ego 40.7 32.6 44.9 90.7 17.4 8.0 11.5
VGG 61.4 61.7 78.8 63.0 79.6 66.6 68.1
TV+Co 56.2 61.5 74.9 62.4 77.4 69.6 62.4

side are a timestamp tbefore where a hand is not in contact
and a timestamp tafter where the hand is in contact. At tafter,
our system provides side, bounding box for both hand and
object, a mesh (via [21]), and our self-supervised mesh as-
sessment score. We can use the object box at tafter to crop
the image pre-contact at time tbefore. We apply a number
of filters, including removing examples with overlapping
hands and scenes where the object appeared to move (de-
tected by change in appearance).

We can then learn a mapping from an image of an un-
contacted object to a hand-in-contact. We use 203.4K train-
ing samples to build a system. We fine-tuned an Imagenet-
pretrained [32] Resnet-18 [22] capped by a MLP to predict,
for each mesh, hand pose and side, supervised by standard
L2 losses along with supervision from hand vertices simi-
lar to [21]. We found that this, like many regression for-
mulations (e.g., see [38]), averaged out between the mul-
tiple modes. To prevent averaged hands, we generated a
10-hand codebook from training samples, represented each
hand with the nearest of 10 classes and predicted these.
For simplicity, trained another Resnet-18 to predict these
classes, minimizing a cross-entropy loss.

5. Experiments

We conduct a series of experiments that aim to quantify:
(a) how well the dataset allows the hand detection relative to
other hand detection datasets? (b) how well our full model
for hand-state works? (c) how much our full hand model
assists reconstruction? (d) how well our model infer inter-
acting hands for isolated objects? We conduct our experi-
ments on both our newly introduced datasets, as well as on
other hand detection datasets [14, 1, 25, 5].

5.1. Hand Bounding-Box

We evaluate the merit of our new dataset of hands by
evaluating cross-dataset performance for hand detection
with a standard fixed detector, and a comparison with full-
body pose estimation.

Table 4. Average Precision when we vary definitions of correct
detection. Using 15K samples dramatically degrades performance
on any category, and 45K samples produces a large drop on getting
all outputs correct.

Hand Obj H+Side H+State H+O All

Full 89.6 63.9 78.9 64.0 46.9 38.5
45K 88.4 61.0 77.3 62.7 39.3 31.3
15K 80.9 54.2 66.8 53.3 27.3 19.7

Cross-dataset hand detection analysis: We begin by train-
ing the same base model – a standard F-RCNN [29] with
a Resnet-101 [22] backbone – on a number of datasets
and evaluating same and cross-dataset performance. We
use F-RCNN for simplicity and due to its widespread use
as a commodity detection system. We only evaluate on
datasets where all hands in a frame are annotated with boxes
[1, 5, 25, 14]. We do not compare with [15] since it only an-
notates one hand (and note [11] has no hand boxes). We
evaluate hand detection results using an IoU of 0.5 (i.e.,
PASCAL [12]) since unlike objects with clear boundaries
e.g., fire hydrants, cars, precise boundary between hand and
wrist is unclear in the wild.

Table 3 shows that a model trained on 100DOH gener-
alizes well across datasets and nearly matches performance
obtained training and testing on every other hand datasets:
at worst, it obtains 92.9% of the mAP of training and test-
ing on the same data (on VGG). VLOG and VGGHands
(both gathered from large-scale diverse data) generalize rea-
sonably well, but far worse than 100DOH with minimum
relative mAP of 81.1% and 68.1% respectively; models
trained on VIVA and EgoHands perform well on egocen-
tric datasets but generalize poorly to non-egocentric views
(which is unsurprising but worth quantifying). The annota-
tion format of VGG and TV is a quadrilateral rather than an
axis-aligned rectangle, and we preprocess the labels to be
axis-aligned to make all annotations consistent; this dimin-
ishes results slightly. We show some sample cross-dataset
results in Figure 4.

Comparison to full-body pose estimation: One common
question (also asked by [28]) is whether we need special-
ized hand-detection given the success of full-body pose es-
timation systems and datasets [8]. We evaluate this by com-
puting precision/recall for hand detection using OpenPose
[8]. We convert body joint configuration and hand detection
to a common evaluation scheme by defining true positives
as: ([8]) when a pose detector places the hand (estimated
as w + 0.2(w − e) where w and e are wrist and elbow
locations) within a ground truth box with the same center
but twice the width and height; (ours) when the bounding
box detector puts its center point inside the ground-truth box
(a higher accuracy standard). Due to truncated people, [8]
achieves a low average precision of around 43.0% and ef-



fectively maxes out recall at 49.5%. At this recall, a Faster
RCNN still has a precision of 99.7%. While current pose
estimators trained on current datasets are effective when the
body is mainly visible, dedicated hand detectors appear to
still be necessary.

Statistical Baselines: We additionally test whether the
dataset can be solved with simple statistical baselines. We
computed the median box for all hands as well as a median
box for left and right hands. These get an AP of 0.08% and
0.11%, which shows that the hands are widely distributed
across the image and vary in size.

5.2. Full Hand State

We next evaluate our full hand state detection system in
isolation. Here, we show that the scale of our datasets is
beneficial by comparing with results obtained by training
on smaller subsets of the data.

Qualitative Results: We show some results of the full sys-
tem in Figures 4 and 5. In general, our system does a good
job at recognizing hands and sides despite a wide variety of
scales and contexts present in the data. While it often gets
the full state right, this is a clearly harder task with lots of
room for improvement.

Failure modes: Common failure modes include: getting
the precise contact state right, especially when the hand is
near an object, which video may improve; associating the
correct object with the hand, especially with multiple peo-
ple interacting with multiple objects, which a more complex
inference technique might improve; and getting the correct
hand side for egocentric hands (e.g., on [11]), which more
egocentric training data may improve.

Metrics: We evaluate the full prediction using mAP by
modifying the criterion for a true positive. We begin by
evaluating hand (Hand) and interacted object (Obj) individ-
ually. We then count a hand as a true positive only if it also
has the correct hand side (H+Side), state (H+State), and
has the correct object associated with it (H+O). Finally, we
count a hand as a true positive only if it has all correct (All).

Quantitative Results: We are the first to tackle this prob-
lem, and therefore there are no methods to compare with.
We therefore test to what extent our large-scale data is im-
portant and compare to the same method trained on a sub-
sets of data: Full (90K trainval), 45K (50% of trainval); and
15K (17% of trainval). We report results in Table 4. In any
category, tripling from 15K to 45K produces large gains,
while further doubling to 90K produces more incremental
gains. However, when looking to correctly identify all hand
state, these mistakes combine to yield a steep performance
hit (7% AP) compared to using the full data. Together, these
underscore the need for large-scale data, especially as one
looks to tackle tasks requiring correct estimation of multiple

Figure 5. Random results on video frames from our 100 DOH
dataset. Our approach detects hands reliably in a variety of scales,
configurations, and contexts.

aspects of hands.

Analysis as a Function of Scale: We evaluate the perfor-
mance on different hand scales. We separate images into
different bins according to the average hand size (measured
as the square-root of the percent of pixels) and evaluate each
bin. Tiny hands are naturally harder to find and hand AP
rapidly goes up from 78.2% to 90.3% as scale goes from
10% to 20%; performance however remains stable until
70%, where it slightly drops. Additional results appear in
the supplemental.

5.3. Hand State for Reconstruction

One of the exciting outcomes of having a system that
can reliably identify hand state is that it directly enables
automatically applying mesh reconstruction techniques to
consumer videos. We present two experiments that assess
our method’s contributions to this future – identifying side
and our self-supervised mesh assessment technique. We use
human judgments to evaluate success.

Data: We use 2K images from the test set. Our system
produced 3,861 detections, which we reconstructed using
[21] for both the correct hand side and the incorrect hand
side resulting in 7,722 meshes. Crowdsourced workers re-
annotated the detected hand to preclude mistakes and then
assessed each mesh five times as correct/incorrect (defini-
tions in the supplemental). Workers were deliberately not
told to inspect sides of hands. Workers passed a qualifi-
cation test; we used sentinels to monitor performance; and
results from all reconstructions were annotated simultane-
ously and in randomized order.

Quantitative Results (Side): We first tested whether hav-
ing the side was important – an alternate hypothesis is that
MANO might repurpose thumbs for pinkies, for instance.
We show a few select qualitative examples in Figure 6. Un-
surprisingly, despite not being told to examine side, workers
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Figure 6. Mesh reconstruction and assessment. Our system detects
the location and side of hands in Internet videos, that [21] uses
to predict a mesh. Many predictions do not succeed. Our self-
supervised system for mesh assessment identifies plausible (useful
for downstream tasks) and implausible hands (worth discarding).

were far more likely to think hands reconstructed with the
detected side were correct (57.8%) compared to the oppo-
site side (29.1%).

Quantitative Results (Quality): We then used this data
to evaluate whether we can successfully identify correct
reconstructions. We binarized worker judgments by ma-
jority vote and computed AUROC. The proposed method
(a MLP trained on positives/negatives identified by self-
consistency) obtains an AUROC of 90% on this data. We
compared with a two baselines to put this result in con-
text. Gaussian Näive Bayes on the same training data does
similarly (89%), showing that the positive/negative labels
are important, not the learning algorithm. Simply fitting a
multivariate Gaussian on all generated hands and using the
log-likelihood does far worse (60%), which underscores the
importance of the labels.

5.4. Future prediction

We took our networks trained on the training set of
100DOH and tested them on videos from the test set, find-
ing points at which contact changes. We then reconstruct
3K examples, showing both qualitative results and comput-
ing quantitative results via human judgment.

Qualitative Results: We show a few select qualitative ex-
amples in Figure 7. Overall we observe that our method
often does a good job of identifying the angle from which
the hand should grasp the object. While our approach of-
ten finds plausible grasps, the myriad of ways a human
can grasp an object and difficulty of predicting a full mesh

Figure 7. Hand prediction results. Our system enables extract-
ing pairs of images of uncontacted objects and good reconstructed
meshes. We show results of a system trained to infer meshes from
images. (Rows 1,2): Selected Results. (Row 3,4): Random results
that crowd workers liked/preferred over a random grasp (Row 3)
or did not like (preferring random grasp over it).

makes this a challenging task.

Human Judgment: We showed 3K results to crowd-
workers in a two-choice test, comparing the result to a ran-
dom hand from the training set to examine if our system ex-
tracts the signal. Note that random is very frequently correct
by chance since usually very many grasps suffice (consider
how many ways your hand can touch a soda can). Work-
ers selected which they thought was more plausible given
the image. Presentation order was randomized, and we em-
ployed qualifications and sentinels; examples where work-
ers could not come to an agreement were considered ties.
Of the 60% with a conclusive result (some inconclusive re-
sults are due to the input not depicting a clear object), our
system was preferred 72% of the time.

6. Conclusion

We have presented a method for obtaining information
about hand contact state in the scene, a large-scale dataset
for training this method, and demonstrated applications of
our technique. We are barely scratching the surface in terms
of what can be learned in the world of large-scale Internet
video and we hope that our rich representation can help the
field collectively explore this area.
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Casas, Antti Oulasvirta, and Christian Theobalt. Real-time
joint tracking of a hand manipulating an object from rgb-d
input. In ECCV, 2016. 2

[36] Bugra Tekin, Federica Bobo, and Marc Pollefeys. H+o: Uni-
fied egocentric recognition of 3d hand-object poses and in-
teractions. In CVPR, 2019. 2

[37] A. Torralba and A. A. Efros. Unbiased look at dataset bias.
In CVPR, 2011. 3

[38] Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful
image colorization. In ECCV, 2016. 6

[39] Luowei Zhou, Chenliang Xu, and Jason J. Corso. To-
wards automatic learning of procedures from web instruc-
tional videos. In AAAI, 2018. 1, 2, 3

[40] Dimitri Zhukov, Jean-Baptiste Alayrac, Ramazan Gokberk
Cinbis, David Fouhey, Ivan Laptev, and Josef Sivic. Cross-
task weakly supervised learning from instructional videos.
In CVPR, 2019. 2

[41] C. Zimmerman and T. Brox. Learning to estimate 3d hand
pose from single rgb images. In ICCV, 2017. 1, 2

[42] Christian Zimmermann, Duygu Ceylan, Jimei Yang, Bryan
Russell, Max Argus, and Thomas Brox. Freihand: A dataset
for markerless capture of hand pose and shape from single
rgb images. In IEEE International Conference on Computer
Vision (ICCV), 2019. 1, 3


