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Abstract

In this paper we investigate learning visual models for
the steps of ordinary tasks using weak supervision via in-
structional narrations and an ordered list of steps instead
of strong supervision via temporal annotations. At the
heart of our approach is the observation that weakly su-
pervised learning may be easier if a model shares com-
ponents while learning different steps: “pour egg” should
be trained jointly with other tasks involving “pour” and
“egg”. We formalize this in a component model for recog-
nizing steps and a weakly supervised learning framework
that can learn this model under temporal constraints from
narration and the list of steps. Past data does not permit
systematic studying of sharing and so we also gather a new
dataset, CrossTask, aimed at assessing cross-task sharing.
Our experiments demonstrate that sharing across tasks im-
proves performance, especially when done at the compo-
nent level and that our component model can parse previ-
ously unseen tasks by virtue of its compositionality.

1. Introduction

Suppose you buy a fancy new coffee machine and you
would like to make a latte. How might you do this? After
skimming the instructions, you may start watching instruc-
tional videos on YouTube to figure out what each step en-
tails: how to press the coffee, steam the milk, and so on. In
the process, you would obtain a good visual model of what
each step, and thus the entire task, looks like. Moreover,
you could use parts of this visual model of making lattes
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Making Meringue

Pour egg

Add sugar

Whisk mixture

…

Making Pancakes

Pour mixture

Making Lemonade

Pour water

Figure 1. Our method begins with a collection of tasks, each con-
sisting of an ordered list of steps and a set of instructional videos
from YouTube. It automatically discovers both where the steps oc-
cur and what they look like. To do this, it uses the order, narration
and commonalities in appearance across tasks (e.g., the appear-
ance of pour in both making pancakes and making meringue).

to help understand videos of a new task, e.g., making fil-
ter coffee, since various nouns and verbs are shared. The
goal of this paper is to build automated systems that can
similarly learn visual models from instructional videos and
in particular, make use of shared information across tasks
(e.g., making lattes and making filter coffee).

The conventional approach for building visual models
of how to do things [8, 30, 31] is to first annotate each
step of each task in time and then train a supervised clas-
sifier for each. Obtaining strong supervision in the form
of temporal step annotations is time-consuming, unscal-
able and, as demonstrated by humans’ ability to learn from
demonstrations, unnecessary. Ideally, the method should be
weakly supervised (i.e., like [1, 18, 22, 29]) and jointly learn
when steps occur and what they look like. Unfortunately,
any weakly supervised approach faces two large challenges.
Temporally localizing steps in the input videos for each task
is hard as there are a combinatorial set of options for the step
locations; and, even if the steps were localized, each visual
model learns from limited data and may work poorly.

We show how to overcome these challenges by shar-
ing across tasks and using weaker and naturally occurring
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forms of supervision. The related tasks let us learn better
visual models by exploiting commonality across steps as il-
lustrated in Figure 1. For example, while learning about
pour water in making latte, the model for pour also depends
on pour milk in making pancakes and the model for water
also depends on put vegetables in water in making bread
and butter pickles. To help, we assume an ordered list of
steps is given per task and that the videos are instructional
(i.e., have a natural language narration describing what is
being done). As is often the case in weakly supervised video
learning [2, 18, 29], these assumptions constrain the search
for when steps occur, helping tackle a combinatorial search
space.

We formalize these intuitions in a framework, described
in Section 4, that enables compositional sharing across tasks
together with temporal constraints for weakly supervised
learning. Rather than learning each step as a monolithic
weakly-supervised classifier, our formulation learns a com-
ponent model that represents the model for each step as the
combination of models of its components, or the words in
each step (e.g., pour in pour water). This empirically im-
proves learning performance and these component models
can be recombined in new ways to parse videos for tasks
for which it was not trained, simply by virtue of their rep-
resentation. This component model, however, prevents the
direct application of techniques previously used for weakly
supervised learning in similar settings (e.g., DIFFRAC [3]
in [2]); we therefore introduce a new and more general for-
mulation that can handle more arbitrary objectives.

Existing instructional video datasets unfortunately, do
not permit the systematic study of this sharing. We there-
fore gather a new dataset, CrossTask, which we introduce
in Section 5. This dataset consists of ∼4.7K instructional
videos for 83 different tasks, covering 374 hours of footage.
We use this dataset to compare our proposed approach with
a number of alternatives in experiments described in Sec-
tion 6. Our experiments aim to assess the following three
questions: how well does the system learn in a standard
weakly supervised setup; can it exploit related tasks to im-
prove performance; and how well can it parse previously
unseen tasks.

The paper’s contributions include: (1) A component
model that shares information between steps for weakly su-
pervised learning from instructional videos; (2) A weakly
supervised learning framework that can handle such a
model together with constraints incorporating different
forms of weak supervision; and (3) A new dataset that is
larger and more diverse than past efforts, which we use to
empirically validate the first two contributions.

2. Related Work
The goal of this work is to learn the visual appearance

of steps of a task from instructional videos with limited su-

pervision while sharing information across tasks. Broadly
speaking, this is a form of action recognition, an enormous
sub-field of computer vision. Most work in this area, e.g.,
[8, 30, 31], uses strong supervision in the form of direct
labels, including a lot of work that focuses on similar ob-
jectives [9, 11, 14]. We build our feature representations on
top of advances in this area [8], but our proposed method
does not depend on having lots of annotated data for our
problem. Instead, our model jointly discovers and learns
labels via weak supervision directly from the raw data.

We are, of course, not the first to try to learn with
weak supervision in videos and our work bears resem-
blances to past efforts. For instance, we make use of order-
ing constraints in order to obtain supervision, as was done
in [5, 18, 22, 26, 6]. The aim of our work is perhaps closest
to [1, 24, 29] as they also use narrations in the context of
instructional videos. Among a number of distinctions with
each individual work, one significant novelty of our work is
the compositional model used, where instead of learning a
monolithic model independently per-step as done in [1, 29],
the framework shares components (e.g., nouns and verbs)
across steps. This sharing improves performance, as we em-
pirically confirm, and enables the parsing of unseen tasks.

In order to properly evaluate the importance of sharing,
we gather a dataset of instructional videos. These have
attracted a great deal of attention recently [1, 2, 19, 20,
24, 29, 35] since the co-occurrence of demonstrative vi-
sual actions and natural language enables many interesting
tasks ranging from coreference resolution [19] to learning
person-object interaction [2, 10]. Existing data, however, is
either not large (e.g., only 5 tasks [2]), not diverse (e.g.,
YouCookII [35] is only cooking), or not densely tempo-
rally annotated (e.g., What’s Cooking? [24]). We thus col-
lect a dataset that is: (i) relatively large (83 tasks, 4.7K
videos); (ii) simultaneously diverse (Covering car mainte-
nance, cooking, crafting) yet also permitting the evaluation
of sharing as it has related tasks; and (iii) annotated for tem-
poral localization, permitting evaluation. The scale, and re-
latedness, as we demonstrate empirically contribute to in-
creased performance of visual models and we expect that
this data can be used for future study of sharing in weakly-
supervised settings.

Our technical approach to the problem builds particu-
larly heavily on the use of discriminative clustering [3, 32],
or the simultaneous constrained grouping of data samples
and learning of classifiers for groups. Past work in this area
has either had operated with complex constraints and a re-
stricted classifier (e.g., minimizing the L2 loss with linear
model [3, 2]) or an unrestricted classifier, such as a deep
network, but no constraints [4, 7]. Our weakly supervised
setting requires the ability to add constraints in order to
converge to a good solution while our compositional model
and desired loss function requires the ability to use an un-
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Figure 2. Our approach expresses classifiers for each step of each task in terms of a component model (e.g., writing the pour milk as a pour
and milk classifier). We thus cast the problem of learning the steps as learning an underlying set of component models. We learn these
models by alternating between updating labels for these classifiers and the classifiers themselves while using constraints from narrations.

restricted classifier. We therefore propose an optimization
approach that handles both, letting us train with a composi-
tional model while also using temporal constraints.

Finally, our sharing between tasks is enabled via the
composition of the components of each step (e.g., nouns,
verbs). Since this benefits from shared data and enables
transfer to new tasks, this is similar to attributes [12, 13],
which have been used in action recognition in the past
[23, 33]. Our components are meaningful (representing,
e.g., “lemon”) but also automatically built; they are thus dif-
ferent than pre-defined semantic attributes (not automatic)
and the non-semantic attributes (not intrinsically meaning-
ful) as defined in [12]. It is also related to methods that
compose new classifiers from others, including [25, 34, 15]
among many others. Our framework is orthogonal, and
shows how to learn these in a weakly-supervised setting.

3. Overview
Our goal is to build visual models of a set of tasks from

instructional videos. Each task is a multi-step process such
as making latte consisting of multiple steps, such as pour
milk. Our goal is to learn a visual model for each of these
steps. Our approach uses component models that repre-
sent each step in terms of its constituent components as op-
posed to a monolithic entity, as illustrated in Figure 2. For
instance, rather than build a classifier solely for whisk mix-
ture in the context of make pancakes, we learn a set of clas-
sifiers per-component, one for whisk, spread, mixture and
so on, and represent whisk mixture as the combination of
whisk and mixture and share mixture with spread mixture.
This shares data between steps and enables the parsing of
previously unseen tasks, which we both verify empirically.

We make a number of assumptions. Throughout, we as-
sume that we are given an ordered list of steps for each task.
This list is our only source of manual supervision and is
done once per-task and is far less time consuming than an-
notating a temporal segmentation of each step in the input
videos. At training time, we also assume that our train-
ing videos are instructional and contain audio that explains
what actions are being performed. At test time, however, we

do not use the audio track: just like a person who watches
a video online, once our system is shown how to make a
latte with narration, it is expected to follow along without
step-by-step narrations.

4. Modeling Instructional Videos

We now describe our technical approach for using a list
of steps to jointly learn the labels and visual models on a set
of narrated instructional videos. This is weakly supervised
since we provide only the list of steps, but not their temporal
locations in the training videos.
Problem formulation. We denote the set of narrated in-
structional videos V . Each video v ∈ V contains a sequence
of Nv segments of visual features Xv = (x1, . . . , xNv ) as
well as narrations we use later. We assume we are also given
for every task τ : the set of videos Vτ of that task and a set
of Kτ ordered natural language steps.

Our goal is then to discover a set of classifiers F that can
identify the steps of the tasks. In other words, if τ is a task
and k a step in it, the classifier fτk determines whether a vi-
sual feature depicts step k of τ or not. In order to do this, we
also simultaneously aim to learn a labeling Y of the training
set for the classifiers, or for every video v depicting task τ ,
a binary label matrix Y v ∈ {0, 1}Nv×Kτ where Y vtk = 1 if
time t depicts step k and 0 otherwise. While jointly learning
labels and classifiers leads to trivial solutions, we can elim-
inate these and make meaningful progress by constraining
Y and by sharing information across the classifiers of F .

4.1. Component Classifiers

One of the main focuses of this paper is in the form of
the step classifier f . Specifically, we propose a component
model that represents each step (e.g., “pour milk”) as a com-
bination of components (e.g., “pour” and “milk”). Before
explaining how we formulate this, we place it in context by
introducing a variety of alternatives that vary in terms of
how they are learned and formulated.

The simplest approach, a task-specific step model, is
to learn a classifier for each step in the training set (i.e., a



model for pour egg for the particular task of making pan-
cakes). Here, the model simply learns

∑
τ Kτ classifiers,

one for each of the Kτ steps in each task, which is simple
but which permits no sharing.

One way of adding sharing would be to have a shared
step model, where a single classifier is learned for each
unique step in the dataset. For instance, the pour egg clas-
sifier learns from both making meringues and making pan-
cakes. If there are any duplicates, one learns fewer than∑
τ Kτ classifiers. This shares, but only for exact dupli-

cates of steps, and so while whisk milk and pour milk both
share an object, they are learned entirely separately.

Our proposed component model fixes this issue. We au-
tomatically generate a vocabulary of components by taking
the set of stemmed (e.g., removing plurals) words in all the
steps. These components are typically objects and verbs as
well as a handful of prepositions and we combine classifiers
for each component to yield our steps. In particular, if there
is a vocabulary of M components, we define a per-task ma-
trix Aτ ∈ {0, 1}Kτ×M where Aτk,m = 1 if step k involves
componentsm and 0 otherwise and then learnM classifiers
g1, . . . , gM such that:

fτk (x) =
∑
m

Aτkmgm(x)/
∑
m

Aτkm, (1)

or the classifier prediction of a step is the average of its com-
ponent classifier predictions. For instance, the score of pour
milk is the average of the output of the gpour and gmilk. In
other words, when optimizing over the set of functions F ,
we optimize over the parameters of {gi} so that when com-
bined together in step models via (1), they produce the de-
sired results. Finally, we note that the previous two models
can be written as special cases of this component model by
defining Aτ appropriately.

4.2. Objective and Constraints

Having described the setup and classifiers, we now de-
scribe the objective function we minimize. Our goal is to
simultaneously optimize over a step location labels Y and
classifiers F over all videos and tasks, or

min
Y ∈C,F∈F

∑
τ

∑
v∈V(τ)

h(Xv, Y v;F ), (2)

where C is the set of temporal constraints on Y defined
shortly and F the family of classifiers considered. Our ob-
jective function per-video is a standard cross-entropy loss,
or

h(Xv, Y v;F ) = −
∑
t,k

Y vtk log

 exp (fτk (x
v
t ))∑

k′
exp(fτk′(x

v
t ))

 .

(3)

Optimizing (2) leads to trivial solutions (e.g., Y v = 0
and F outputting all zeros). We thus constrain our labeling
of Y to avoid this and ensure a sensible solution. In partic-
ular, we impose three constraints:
At least once. We assume that every video v of a task de-
picts each step k at least once, or

∑
t Y

v
tk ≥ 1.

Temporal ordering. We assume that steps occur in the
given order. While not always strictly correct, this dramati-
cally reduces the search space and leads to better classifiers.
Temporal text localization. We assume that the step is
mentioned in the narration near its occurrence (e.g., the nar-
rator of a grill steak video may say “just put the marinated
steak on the grill”). We automatically compare the text de-
scription of each step to automatic YouTube subtitles. For
a task with Kτ steps and video with Nv frames, we con-
struct a [0, 1]Nv×Kτ matrix of the cosine similarity between
the step and a sliding window word vector representation
of the narration. This matrix indicates if the phrase is men-
tioned. Since narrated videos contain spurious mentions of
tasks (e.g., ”before putting the steak on the grill, we clean
the grill”) we do not directly use this matrix, but instead
find an assignment of steps to locations that maximizes to-
tal similarity while following ordering constraints. The vi-
sual model must then more precisely identify when the ac-
tion appears. We then impose a simple hard constraint of
disallowing labelings Y v where any step is outside of the
text-based interval (average length 9s)

4.3. Optimization and Inference

We solve problem (2) by alternating between updating
assignments Y and the parameters of the classifiers F .
Updating Y . When F is fixed, we can minimize (2) w.r.t.
Y independently for each video. In particular, fixing F fixes
the classifier scores, meaning that minimizing (2) with re-
spect to Y v is a constrained minimization of a linear cost in
Y subject to constraints.
Updating F . When Y is fixed, our cost function reduces
to a standard supervised classification problem. We can
thus apply standard techniques for solving these, such as
stochastic gradient descent.
Initialization. Our objective has bad local minima since
it is non-convex, and thus a proper initialization is impor-
tant. We obtain such an initialization by treating all assign-
ments that satisfy the temporal text localization constraints
as ground-truth and then optimizing for F for 30 epochs,
each time drawing a random sample that satisfies the con-
straints. Once F is initialized, the iterative procedure con-
tinues.
Inference. Once the model has been fit to the data, infer-
ence on a new video v of a task τ is simple. After extract-
ing features, we run each classifier f at each temporal seg-
ment. This produces a Nv × Kτ score matrix. To obtain
a hard labeling, we use dynamic programming to find the



Table 1. A comparison of CrossTask with existing instructional
datasets. Our dataset is both large and more diverse while also
having temporal annotations.

Num. Total Num. Not only Avail.
Vids Length Tasks Cooking Annots

[2] 150 7h 5 Y Windows
[29] 1.2K+85 100h 17 Y Windows
[35] 2K 176h 89 X Windows
[24] 180K 3,000h X X Recipes
Us 4.7K 375h 83 Y Windows

best-scoring labeling that respects the given step order.

4.4. Implementation Details

Networks: Due to the limited data size and noisy super-
vision, we use a linear classifier with dropout for regular-
ization. Preliminary experiments with deeper models did
not yield improvements. We optimize using ADAM [21],
using learning rate 10−5. Features: We represent each seg-
ment of the video xi using RGB I3D features [8] (1024D),
Resnet-152 features [16] (2048D) extracted at 25 frames
per second and averaged over a one second temporal win-
dow, and audio features from [17] (128D). Components:
We obtain the dictionary of components by finding the set
of unique stemmed words over all step descriptions of all
training steps. The total number of components is 383. Hy-
perparameters: Dropout and learning rate are optimized on
a validation data set.

5. CrossTask dataset

One goal of this paper is to investigate whether sharing
improves the performance of weakly supervised learning
from instructional videos. To do this, we need a dataset cov-
ering a diverse set of interrelated tasks and annotated with
temporal segments. Existing data fails to satisfy at least
one of these criteria and we therefore collect a new dataset
(83 tasks, 4.7K videos) related to cooking, car maintenance,
crafting, and home repairs. These tasks and their steps
are derived from wikiHow, a website that describes how to
solve many tasks, and the videos come from YouTube.

CrossTask dataset is divided into two sets of tasks to
aid experiments investigating sharing. The first is primary
tasks, which are the main focus of our investigation and
the backbone of the dataset. These are completely anno-
tated and form the basis for our evaluations. The second
is related tasks with videos gathered in a more automatic
way to share some, but not all, components with the pri-
mary tasks. One main goal of our experiments is to assess
whether these related tasks improve learning on the primary
tasks, and whether one can learn a good model only on re-
lated tasks.

5.1. Video Collection Procedure

We begin the collection process by defining our tasks.
These must satisfy three criteria: they must entail a se-
quence of physical interactions with objects (unlike e.g.,
how to get into a relationship); their step order must be de-
terministic (unlike e.g., how to play chess); and they must
appear frequently on YouTube. We asked annotators to re-
view the tasks in five sections of wikihow to get tasks sat-
isfying the first two criteria, yielding ∼ 7K candidate tasks,
and manually filter for the third criteria.

We select 18 primary tasks and 65 related tasks from
these 7K candidate tasks. The primary tasks cover a va-
riety of themes (e.g., auto repair to cooking to DIY) and
include building floating shelves and making latte. We find
65 related tasks by finding related tasks for each primary
task. We generate potential related tasks for a primary task
by comparing the wikiHow articles using a TF-IDF on a
bag-of-words representation, which finds tasks with similar
descriptions. We then filter out near duplicates (e.g., how to
jack up a car and how to use a car jack) by comparing top
YouTube search results and removing candidates with over-
laps, and manually remove a handful of irrelevant tasks.

With our tasks defined, we then define steps and their or-
der for each task by examining the wikiHow articles, begin-
ning with the summaries of each step. Using the wikihow
summary itself is insufficient, since many articles contain
non-visual steps (e.g., about where to purchase something)
and some steps combine multiple physical actions. We thus
manually correct the list, splitting and merging and deleting,
yielding a set of tasks with 7.4 steps on average for primary
tasks and 8.8 for related tasks.

We then obtain videos for each task by searching
YouTube. Since the related tasks are only to aid the pri-
mary tasks, we take the top 30 results from YouTube. For
primary tasks, we ask annotators to filter a larger pool of
top results while examining the video, steps, and wikiHow
illustrations, yielding at least 80 videos per task.

5.2. Annotations and Statistics

Task localization annotations. Since our focus is the pri-
mary tasks, annotators mark the temporal extent of each pri-
mary task step independently. We do this for our 18 primary
tasks and will make these annotations public.
Dataset. This results in a dataset containing 2763 videos
of 18 primary tasks comprising 213 hours of video; and
1950 videos of 65 related tasks comprising 161 hours of
video. We contrast this dataset with past instructional video
datasets in Table 1. Our dataset is simultaneously large
while also having precise temporal segment annotations.

To give a sense of the videos, we report a few summary
statistics about the primary task videos. The videos are
quite long, with an average length of 4:57, and depict fairly
complex tasks, with 7.4 steps on average. Less complex



Video Dataset Primary Tasks Related Tasks

Make Bread & Butter Pickles Can Tomato Sauce
Boil tomatoes, remove tomato skin, cut tomato, …

Make Latte

Cut cucumber, cut onion, add salt, pour water, …

Make Caramel Macchiato

Build Simple Floating Shelves Build a Desk

Figure 3. Our new dataset, used to study sharing in a weakly supervised learning setting. It contains primary tasks, such as make bread and
butter pickles, as well as related tasks, such as can tomato sauce. This lets us study whether learning multiple tasks improves performance.
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Figure 4. Predictions on unseen data as well as typical failure modes. Our method does well on steps with distinctive motions and
appearances. Failure modes include (top) features that cannot make fine-grained distinctions between e.g., egg and vanilla extract; and
(bottom) models that overreact to particular nouns, preferring a more visible lemon over a less visible lemon actually being squeezed.

tasks include jack up a car (3 steps); more complex ones
include pickle cucumbers and change tire (both 11).
Challenges. In addition to being long and complex, these
videos are challenging since they do not precisely show the
ordered steps we have defined. For instance, in add oil to
car, 85% of frames instead depict background information
such as shots of people talking or other things. This is not an
outlier: on average 72% of the dataset is background. On
the other hand, on average 31% of steps are not depicted
due to variances in procedures and omissions (pickle cu-
cumber has 48% of steps missing). Moreover, even if steps
are depicted, they do not necessarily appear in the correct
order: to calculate order consistency, we computed an up-
per bound on performance using our given order and found
that the best order-respecting parse of the data still missed
14% of steps.

6. Experiments

Our experiments aim to address the following three ques-
tions about cross-task sharing in the weakly-supervised set-
ting: (1) Can the proposed method use related data to im-
prove performance? (2) How does the proposed component
model compare to sharing alternatives? (3) Can the compo-

nent model transfer to previously unseen tasks? Through-
out, we evaluate on the large dataset introduced in Section 5
that consists of primary tasks and related tasks. We address
(1) in Section 6.1 by comparing our proposed approach with
methods that do not share and show that our proposed ap-
proach can use related tasks to improve performance on
primary asks. Section 6.2 addresses (2) by analyzing the
performance of the model and showing that it outperforms
step-based alternatives. We answer (3) empirically in Sec-
tion 6.3 by training only on related tasks, and show that we
are able to perform well on primary tasks.

6.1. Cross-task Learning

We begin by evaluating whether our proposed compo-
nent model approach can use sharing to improve perfor-
mance on a fixed set of tasks. We fix our evaluation to be
the 18 primary tasks and evaluate whether the model can
use the 65 related tasks to improve performance.
Metrics and setup. We evaluate results on 18 primary tasks
over the videos that make up the test set. We quantify per-
formance via recall, which we define as the ratio between
the number of correct step assignments (defined as falling
into the correct ground-truth time interval) and the total



Table 2. Weakly supervised recall scores on test set (in %). Our approach, which shares information across tasks, substantially and
consistently outperforms non-sharing baselines. The standard deviation for all reported scores does not exceed 1%.
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Task-Specific Step-Based 13.2 17.6 19.3 19.3 9.7 12.6 30.4 16.0 4.5 19.0 29.0 9.1 29.1 14.5 22.9 29.0 32.9 7.3 18.6
Proposed 13.3 18.0 23.4 23.1 16.9 16.5 30.7 21.6 4.6 19.5 35.3 10.0 32.3 13.8 29.5 37.6 43.0 13.3 22.4

Gain from Sharing 0.2 0.4 4.1 3.8 7.2 3.9 0.3 5.6 0.1 0.6 6.3 0.9 3.2 -0.7 6.6 8.7 10.1 6.0 3.7

Table 3. mAP (%) averaged over 18 tasks and ten runs. The stan-
dard deviation for all reported scores does not exceed 0.3%

Random
Richard’18

[27]
Alayrac’16

[1]
Ours

no sharing
Ours

with sharing

4.3 5.5 6.9 8.9 11.0

Stir

Cut

Ground Truth

Make Lemonade

Stir Mixture

Make Shelves

Cut Shelf

Predicted

Make Lemonade

Stir Mixture

Make Shelves

Cut Shelf

Related Task

Make Tomato Rice

Stir Rice

Grill Kabobs

Cut Ingredients

Figure 5. Components that share well and poorly: while stir shares
well between steps of tasks, cut shares poorly when transferring
from a food context to a home improvement context.

number of steps over all videos. In other words, to get a
perfect score, a method must correctly identify one instance
of each step of the task in each test video. All methods
make a single prediction per step, which prevents the triv-
ial solution of assigning all frames to all actions. We report
the average recall over all tasks. We also report the mean
averaged precision (mAP), which is computed by, first, ob-
taining an average precision for each step of the task, and
then averaging over the steps.

We run experiments 20 times, each time making a train
set of 30 videos per task and leaving the remaining 1863
videos for test. We report the average. Hyperparameters are
set for all methods using a fixed validation set of 20 videos
per primary task that are never used for training or testing.
Baselines. Our goal is to examine whether our sharing ap-
proach can leverage related tasks to improve performance
on our primary task. We thus compare with a number
of baselines in addition to a method variant that does not

share. (1) Uniform: simply predict steps at fixed time in-
tervals. Since this predicts steps in the correct order and
steps often break tasks into roughly equal chunks, this is
fairly well-informed prior. (2) Alayrac’16: the weakly
supervised learning method for videos, proposed in [1].
This is similar in spirit to our approach except it does not
share and optimizes a L2-criterion via the DIFFRAC [3]
method. (3) Richard’18: the weakly supervised learn-
ing method [27] that does not rely on the known order of
steps. (4) Task-Specific Steps: Our approach trained inde-
pendently for each step of each task. In other words, there
are separate models for pour egg in the contexts of making
pancakes and making meringue. This differs from Alayrac
in that it optimizes a cross-entropy loss using our proposed
optimization method. It differs from our full proposed ap-
proach since it performs no sharing. The difference between
this and Alayrac reveals to what extent the proposed opti-
mization improves results in our settings. Note, that the full
method in [1] includes automatic discovery of steps from
narrations. Here, we only use the visual model of [1], while
providing the same constraints as in our method. This al-
lows for a fair comparison between [1] and our method,
since both use the same amount of supervision.
Qualitative results. We show qualitative results of our full
method in Figure 4. We show a parses of unseen videos
of Build Shelves and Make Banana Ice Cream and failure
modes. Our method struggles with identifying small details
(e.g., vanilla vs. egg) and can overreact to objects (e.g.,
focusing exclusively on lemons as opposed to the verbs).
Quantitative results. Table 2 shows results broken down
by category as well as summarized across steps. The uni-
form baseline provides a surprisingly strong lower bound,
achieving an average recall of 9.7%. While [1] improves
on this (13.3%), it does substantially poorer than our task-
specific step method (18.6%). We found that predictions
from [1] often had several steps with similar scores, lead-
ing to poor parse results, which we attribute to the convex
relaxation used by DIFFRAC. This was resolved in past se-
tups by the use of instructional subtitles at test time; our



approach and setup, however, does not depend on these.
Our full approach, which shares across tasks, produces

substantially better performance (22.4%) than the task-
specific step method. More importantly, this is not the re-
sult of fluctuations canceling out in favor of the component-
based approach, but rather due to a systematic improve-
ment: the full method improves on the task-specific step
baseline in 17 tasks out of 18.

We illustrate some qualitative examples of steps benefit-
ing and least benefiting from sharing in Figure 5. Typically,
sharing can help if the component has distinctive appear-
ance and is involved in a number of steps: steps involve
stirring, for instance, have an average gain of 15% recall
over independent training because it is frequent (in 30 steps)
and distinctive. Of course, not all steps benefit: cut shelf
is harmed (47% independent → 28% shared) because cut
mostly occurs in cooking tasks with dissimilar contexts.
Verifying optimizer on small-scale data. Even the non-
shared version of the proposed proposed approach outper-
forms [1] on our new dataset. We now evaluate our ap-
proach on the smaller 5-task dataset of [1]. Since here there
are no common steps across tasks, we are able to test only
the basic task-specific step-based version. To make a fair
comparison, we use the same features, ordering constraints,
as well as constraints from narration for every K as pro-
vided by the authors of [1], and we evaluate using the F1
metric as in [1]. As a result, the two formulations are on
par, where [1] versus our approach result in 22.8% versus
21.8% for K=10 and 21.0% versus 21.1% for K=15, re-
spectively. While these scores are slightly lower compared
to those obtained by the single-task probabilistic model in
Sener [28] (25.4% at K=10 and 23.6% at K=15), we are
unable to compare using our full cross-task model on this
dataset. Overall, these results verify the effectiveness of the
optimization technique, an important building block of our
cross-task formulation.

6.2. Experimental Evaluation of Cross-task Sharing

Having verified the framework and the role of sharing,
we now more precisely evaluate how sharing is performed
to examine the contribution of our proposed compositional
model. We vary two dimensions. The first is the granularity,
or at what level sharing occurs. We propose sharing at a
component level, but one could share at a step level as well.
The second is what data is used, including (i) independently
learning primary tasks; (ii) learning primary tasks together;
(iii) learning primary plus related tasks together.

Table 4 reveals that increased sharing consistently helps
(performance increases across columns) and component-
based sharing extracts more from sharing than step-based
(performance increases across rows). This gain over step-
based sharing is because step-based sharing requires ex-
act matches. Most commonality between tasks occurs with

Table 4. Performance changing the sharing in columns (per-task,
shared on 18 primary tasks, shared on all tasks) and mechanism in
rows (monolithic step-based, proposed component-based).

Unshared Shared Shared Primary
Primary Primary + Related

Step-based 18.6 18.9 19.8
Component-based 18.7 20.2 22.4

Unseen Task: Make 

French Strawberry Cake

Cut Strawberry

Add Strawberry 

To Cake

Source Steps 

From Related Tasks

Cut Steak Cut Tomato

Add

Tomato

Add Cherries 

to Cake

Figure 6. Sample localizations on an unseen task. While the model
has not seen these steps or even strawberries, its knowledge of
other components leads to sensible predictions.

slight variants (e.g., cut is applied to steak, tomato, pickle,
etc.) and therefore a component-based model is needed to
maximally enable sharing.

6.3. Novel Task Transfer

One advantage of shared representations is that they can
let one parse new concepts. For example, without any mod-
ifications, we can repeat our experiments from Section 6.1
in a setting where we never train on the 18 tasks that we
test on but instead on the 65 related tasks. For instance, af-
ter building a visual model on related tasks like can tomato
sauce, we can test on primary tasks like make strawberry
cake. The only information given about these primary tasks
is a single ordered list of steps.
Setup. As in Section 6.1, we quantify performance with re-
call on the 18 primary tasks. However, we train on a subset
of the 65 related tasks and never on any primary task.
Qualitative results. We show a parse of steps of Make
Strawberry Cake in Figure 6 using all related tasks. The
model has not seen cut strawberry before but has seen other
forms of cutting. Similarly, it has seen add cherries to cake,
and can use this step to parse add strawberries to cake.
Quantitative results. Figure 7 shows performance as a
function of the number of related tasks used for training.
Increasing the number of tasks used for training improves
performance on the primary tasks, and does not plateau even
when 65 tasks are used. Doing the same with a step-based
model resulted in poor performance because even with 65
tasks, many tasks still lack exact matches for many steps.
In contrast, as illustrated by cut strawberries – even if the
component model has not seen strawberries, it can use the
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Figure 7. Recall while transferring a learned model to unseen tasks
as a function of the number of tasks used for training. Our compo-
nent model approaches training directly on these tasks.

distinctive motion of cutting.

7. Conclusions

We have introduced an approach for weakly supervised
learning from instructional videos and a dataset for evaluat-
ing the role of sharing in this setting. Our component model
proved be able to exploit common parts of the tasks to im-
prove performance and was able to parse previously unseen
tasks. Future work would benefit from improved features as
well as from improved versions of sharing – e.g., that can
share for cut steak and cut tomato, but not for cut wood.
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