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You See…



Unfortunately…



Why Can We Solve It?

Not all factorizations are equally likely!

3D Structure Style



Why Can We Solve It?

…



The Problem
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Representations/Visualization

Surface Normal 
Legend

Sample 
Room

3D Structure Style



Contributions



Our First Contribution

StyleImage

= x

3D Structure

Data-Driven 3D Primitives for Single Image Understanding. 
Fouhey, Gupta, Hebert. In ICCV ‘13.
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Supervised Approach

Data-Driven 3D Primitives for Single Image Understanding. 
Fouhey, Gupta, Hebert. In ICCV ‘13.



Issue #1 – Data

Wasteful: no cross-viewpoint sharing



Solution 

Single Image 3D Without a Single 3D Image. 
Fouhey, Hussain, Gupta, Hebert. In ICCV ‘15.

Style Element Detections

Explicit factorization via style elements:
cross-viewpoint and do not require training data



Issue #2

When do we apply domain knowledge/constraints?



Solution

“Planar”

“Point Contact”

“Cylindrical”

3D Shape Attributes.
Fouhey, Gupta, Zisserman. In CVPR ’16.

Higher-order Shape Properties



Issue #3

World is much more constrained than per-pixel but 
more detailed than global properties.



Solution

Unfolding an Indoor Origami World.
Fouhey, Gupta, Hebert. In ECCV ’14.

Mid-level constraints, discrete scene parses



Dissertation Contributions

3D Structure StyleImage (3D Structure x Style)

1. Local image-based cues

2. Local style-based cues

“Planar”

3. Cues for higher-order 3D structure

4. Constraints on 3D structure

5. Data-driven dense normal estimation as a scene understanding task



RELATED WORK



Human Vision

• Monocular cues are integral to “normal” vision

• Monocular can override binocular: monocular illusions 
persist under binocular conditions

Gehringer and Engel, Journal of Experimental Psychology: Human Perception and Performance, 1986



Human Vision

Higher order properties are not obtained from depthmaps

“It is rather unlikely that the attitudes 
[i.e.,normals] are derived from a 
pictorial depthmap”
-Koenderink, van Doorn, Kappers ‘96 

“Judgements about the curvature of 
local surface patches were too precise to 
be based on a symbolic representation of 
surface orientation ”
-Johnston and Passamore, ‘93

Koenderink, van Doorn, Kappers, Pictorial surface attitude and local depth comparisons. Perception and Psychophysics, 1996
Johnston and Passamore, . Independent encoding of surface orientation and surface curvature, Vision Research, 1994



Recovering 3D Structure

Roberts 1963, Guzman 1968, Huffman 
1971, Clowes 1971, Waltz, 1975, Kanade

1980, Sugihara 1986, Malik 1987, etc. 

Line-Based Primitives

Binford 1971, Brooks 1979,
Biederman 1987, etc. 

Volumetric Primitives



Recovering 3D Structure

Hoiem et al., 2005 Saxena et al., 2005

Qualitative Orientation Quantitative Depth



Image Factorization

Barrow and Tenenbaum 1978

Shape-from-X

Tappen et al., 2002, 
2006, Grosse et al. 
2009, Barron et al. 

2012, etc.  

Malik et al. 1997,  
Criminisi et al., 2000, 

Forsyth 2002, 
Zhang et al. 2014, etc. 

Tenenbaum et al., 1997

Elgammal et al. 2004, Wang et 
al., 2007, Pirsiavash 2009, etc.

Content & Style



SURFACE
NORMALS



Surface Normals

0.82
-0.21
0.53

Quantitative Orientation



Obtaining Normals

NormalsColor Image



Evaluating Normals
Input GT Prediction

10°
Aggregate over the entire dataset, compute:
mean(E), median(E), sqrt(mean(E)), 
mean(E < t), t = 11.25, 22.5, 30



Why Normals?

• Direct modeling produces better results

• Observable from perspective cues as 
opposed to scaling

• Fewer ambiguities than depth



DATA-DRIVEN 3D 
PRIMITIVES

Local image-based cues

3D Structure StyleImage (3D Structure x Style)



Previous Primitives

Segments Rooms Cuboids

Hoiem et al. 2005, 
Saxena et al. 2005, 
Ramalingam et al. 

2008, etc. 

Hedau et al. 2009, 
Flint et al. 2010, 
Flint et al. 2011, 

Satkin et al. 2012, 
Schwing et al. 2012, 

etc. 

Lee et al. 2010, 
Gupta et al. 2010, 
Gupta et al. 2011, 
Xiao et al. 2012, 

Schwing et al. 2013 
etc. 

Kanade 1981, 
Sugihara 1986, 

Liebowitz et al. 1998, 
Criminisi et al. 1999, 
Lee et al., 2009, etc. 

Lines + Planes



Objective

Visually
Discriminative

Image

Geometrically
Informative

Surface Normals

Similar ideas presented concurrently at ICCV ‘13: 
Owens et al., Shape Anchors for Data-Driven Multi-view Reconstruction
Dollar et al., Structured Forests for Fast Edge Detection ; 



Representation

InstancesDetector

Canonical Form



Representation

InstancesDetector

Canonical Formw



Representation

N Canonical Form

InstancesDetector



Representation

y Canonical Form

InstancesDetector



Objective

Primitive Patch



Objective

Primitive Patch

Regularized classifier; loss for 
labels determined by geometry



Objective

Primitive Patch

Minimize intra-cluster 
geometric distance



Objective

Primitive Patch

Solve with an approach similar to 
block-coordinate descent



Learned Primitives



Interpretation from Primitives



Interpretation from Primitives



Interpretation from Primitives



Interpretation from Primitives



Interpretation from Primitives



Interpretation from Primitives



Interpretation from Primitives



Results – Quantitative
% Good Pixels
(Higher Better)

11.25° 22.5° 30°

Summary Stats (°)
(Lower Better)

Mean Median RMSE

Karsch et al., ECCV 2012; Hoiem et al., ICCV 2005; Saxena et al. NIPS 2005

Karsch et al. 8.1 25.9 38.240.7 37.8 46.9

Hoiem et al. 9.0 31.2 43.541.2 35.1 49.2

Saxena et al. 10.7 27.0 36.348.0 43.1 57.0

RF+SIFT 11.4 31.4 44.536.0 33.4 41.7

3DP 18.6 38.6 49.934.2 30.0 41.4

Fouhey, Gupta, Hebert, ICCV ‘13.



Issues

Pure memorization: no sharing between views

Learning requires a specialized sensor



STYLE 
ELEMENTS

Local style-based cues

3D Structure StyleImage (3D Structure x Style)



A Different Idea

= x

Image 3D Structure Style

These are easy 
to get in bulk

We can put 
priors on this



Style Elements



Factorization

= x

Image 3D Structure Style



Solving for Style

Image 3D Structure

Vanishing Points

Style



Solving for 3D Structure

Style 
Element

Input
Image

HOG, Dalal and Triggs ’05; ELDA from Hariharan et al. ‘12



Rectified Images

Solving for 3D Structure

Style 
Element

Input
Image Detection +

Orientation



Solving for 3D Structure over a Dataset

…

Set of Images

Style 
Element

Detection + 
Orientation



2 Key Assumptions

Style and 3D structure are independent

On average, 3D structure is a box



Plotting Detections

Surface 
Orientation

X Location



Box Assumption

Surface 
Orientation

X Location



Verifying Style Elements

Surface 
Orientation

X Location



Verifying Style Elements

Surface 
Orientation

X Location



Verifying Style Elements

X Location

෍
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Verifying Style Elements

Surface 
Orientation

X Location



Verifying Style Elements

Surface 
Orientation

X Location



Hypothesize and Verify Pipeline

…



Discovered Style Elements

Element Detections Element Detections
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Interpreting

…



Results

Input

GT

Output



Results

Input

GT

Output



Quantitative Results

All Pixels

Pixels 
< 30°

Median
Error

Style Elements 21.7° 55.4%

Pixels 
< 11.25°

36.8%
3DP 19.2° 57.8%39.2%

Origami World 17.9° 58.9%
Disc. Coding 23.5° 58.7%

40.5%
27.7%

3DP: Fouhey et al. ICCV ’13;  Origami World: Fouhey et al. ECCV ’14; Disc. Coding: Ladicky et al. ECCV ‘14

(Lower Better) (Higher Better)

Vertical

Pixels 
< 30°

58.8%

59.7%

(Higher Better)



Scaling Up To The World

RGBD Datasets Internet Images

Images from Places-205, Zhou et al. NPS ‘15



Results on Internet Images

Supermarket

Museum

Laundromat

Locker Room

Automatically Discovered Style Elements



Quantitative Results

3DP: Fouhey et al. ICCV ‘13. Images from Places-205, Zhou et al. NPS ‘15

59.2%

62.9%

3DP

Pixels < 30 Degrees

Style Elements

10 categories from Places-205 Dataset
Images sparsely manually annotated



The Story So Far

Unconstrained Outputs Constrained Outputs



3D SHAPE 
ATTRIBUTES 

Cues for higher-order 3D structure

3D Structure StyleImage (3D Structure x Style)

Planar



Goal: 3D Shape Attributes

Not Planar
Smooth surface
1 point of contact
Not point contact
Has Hole
Not thin structures
…



Data



3D Shape Attributes

Planar
Surfaces

Cylindrical
Surfaces

Point or 
Line

Multiple

Thin
Structures

Has
Hole

Curvature
(4 Total)

Contact
(2 Total)

Occupancy
(6 Total)



Examples

Positives: Has Planar Surfaces



Examples

Negatives: Has Planar Surfaces



Examples

Positives: Has Point/Line Contact



Examples

Negatives: Has Point/Line Contact



Examples

Positives: Has Thin Structures



Examples

Negatives: Has Thin Structures



Data

Princeton Columbus Toronto

YorkshireMalagaLondon



Data



Data

R. Serra

H. Moore

…

A. Calder

…

Two Forms

The Arch

Knife Edge

5 Swords

Eagle

Gwenfritz …

…

…

…

…
242 2187 143K



Learning To Predict

12D Shape 

Attributes

Conv. Layers FC LayersInput 

VGG-M

1024D Shape

Embedding

Triplet loss as in Schults and Joachims ’04, Schroff et al. ’14, Wang et al. ‘15, Parkhi et al. ‘15



Qualitative Results
Point/Line ContactMost Least

Rough Surface

…

…



Indirect Baselines

Z

• SIRFS  (Barron et al. ’15)
• CNN (Eigen et al. ’14)

Planar = Yes
Holes = Yes
…
2+ Contacts = No
…

• KDES+SVM (Bo et al. ‘11)
• HHA+CNN (Gupta et al. ‘14)



Quantitative Results

KDES

Eigen ‘14

58.5

HHA

Barron ‘15

59.461.2 62.5 72.3

End-to-end

KDES HHA

Criterion: mean AUC of ROC.



PASCAL VOC Results

PlanarityMost Least

…

Planarity Least

…

Most



PASCAL VOC Results

Rough SurfaceMost Least

…

Point/Line ContactMost Least

…



The Story So Far

Planar

?



CONSTRAINTS ON
3D STRUCTURE

Mid-level constraints on 3D Structure

3D Structure StyleImage (3D Structure x Style)



Mid-level in the Past

Huffman 71, Clowes 71, Kanade 80, 81 Sugihara 86, Malik 87, etc. 



Our Mid-Level Constraints



Our Output
Input: 

Single Image
Output:

Discrete Scene Parse



Parameterization



Parameterization

vp1

vp2

vp3

VP Estimator from Hedau et al., 2009



Parameterization

Two VPs give grid cell



Encoding Surface Normals



Encoding Surface Normals



Encoding Surface Normals



Encoding Surface Normals

x1,…, x400 x401,…, x800 x801,…, x1200



Formulation



Constraints



Unaries



Unaries

Low cUnary Evidence: 
(1) 3DP

(2) Room Box Fitting

High c



Binaries



Convex/Concave Constraints

Detected Concave (-)



Convex/Concave Constraints

Detected Concave (-)



Convex/Concave Constraints

Detected Concave (-)



Convex/Concave Constraints

Detected Concave (-)



Convex/Concave Constraints

Detected Concave (-)



Detecting Convex/Concave

Ground-Truth Discontinuities similar to Gupta, Arbelaez, Malik, 2013
3DP from Fouhey, Gupta, Hebert, 2013

Input 3D Primitive Bank

…

Use 3DP to Transfer Convex/Concave



Smoothness



Solving the Model



Qualitative Results



Qualitative Results



Qualitative Results



Results – Quantitative

Summary Stats (°)
(Lower Better)

% Good Pixels
(Higher Better)

11.25° 22.5° 30°

Proposed 40.5 54.1 58.9

Mean Median

3DP 39.2 52.9 57.836.3 19.2

Ladicky ‘14 27.7 49.0 58.733.5 23.1

35.2 17.9

Fouhey et al. ICCV ’13; Ladicky et al. ECCV ‘14



CONCLUSIONS & 
FUTURE WORK



Today
3D Structure StyleImage (3D Structure x Style)
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Today
3D Structure StyleImage (3D Structure x Style)



Today
3D Structure StyleImage (3D Structure x Style)

Planar

Non-Planar

Cylindrical

Rough Surf

Pnt/L Contact

Mult. Contact

Empty

Mult. Pieces

Holes

Thin

Mirror Sym.

Cubic Aspect

“Planar”



Today
3D Structure StyleImage (3D Structure x Style)



Future Work



Further Factorization

Image

3D Structure

Style



Further Factorization

Image

3D Structure

Style

Viewpoint

True 3D



Reuniting 3Ds (Multiview)

+

E.g., Concha et al. Autonomous Robots ‘15, Hadfield et al. ICCV ‘15, Hane et al. CVPR ‘15

Monocular and multi-view cues

Supervised and unsupervised models

RGB

RGBD



Reuniting 3Ds (Single View)

Texture

Top-down

Semantics

Occlusion

Shading



Thank you

3D Structure StyleImage (3D Structure x Style)

“Planar”


