
Cutting through the Clutter: Task-Relevant Features for Image Matching

Rohit Girdhar David F. Fouhey Kris M. Kitani Abhinav Gupta Martial Hebert
Robotics Institute, Carnegie Mellon University

Abstract

Where do we focus our attention in an image? Humans

have an amazing ability to cut through the clutter to the

parts of an image most relevant to the task at hand. Con-

sider the task of geo-localizing tourist photos by retriev-

ing other images taken at that location. Such photos nat-

urally contain friends and family, and perhaps might even

be nearly filled by a person’s face if it is a selfie. Humans

have no trouble ignoring these ‘distractions’ and recogniz-

ing the parts that are indicative of location (e.g., the towers

of Neuschwanstein Castle instead of their friend’s face, a

tree, or a car). In this paper, we investigate learning this

ability automatically. At training-time, we learn how infor-

mative a region is for localization. At test-time, we use this

learned model to determine what parts of a query image

to use for retrieval. We introduce a new dataset, People at

Landmarks, that contains large amounts of clutter in query

images. Our system is able to outperform the existing state

of the art approach to retrieval by more than 10% mAP, as

well as improve results on a standard dataset without heavy

occluders (Oxford5K).

1. Introduction

What tells us that Fig. 1(a) and (b) have been taken at

the same place? We have this amazing ability to hone in

on the parts of an image that are relevant to a task. For

instance, even though most of the image pixels of Fig.1 cor-

respond to faces, we can latch onto the castle to recognize

that both were taken in the same location. Similarly, if we

asked ourselves which season the photos were taken in, we

would instead focus on the trees; if we wanted to identify

the people, we would ignore everything but the faces.

In this paper, we investigate how to build retrieval sys-

tems that focus on regions of an image useful for the task at

hand. Specifically, given a query image of a place we have

not seen before, we would like to know how to compare it

with a corpus for finding similar locations (i.e., which parts

of the image should be used for comparison). In contrast to

many past works: (a) We will predict which regions are of

interest without ever having seen images of that location be-

fore. This enables our model to generalize to a query image

from a completely new location. (b) We will not examine

the corpus at query time. This allows unrestricted growth
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Figure 1. How do we know that images (a) and (b) have been taken

at the same place? Definitely not by the people or the trees, but by

the castle in the far background. In this paper, we automatically

learn a generic model that finds the most promising parts of an

image for localization. This model is learned once on held-out

data, and requires no access to the retrieval corpus at test time.

of the corpus without any increase in the test time for our

method (however the retrieval system will still be affected

by this).

We achieve this by learning a model that predicts how

well an image region will work for localization. This model

is generic and learned on held-out data, satisfying the first

criterion. Additionally, it runs quickly on the query image

and does not touch the retrieval corpus, satisfying the sec-

ond criterion. We can use these predictions to help guide

standard retrieval techniques to achieve better results, es-

pecially on images with severe clutter or where the object

of interest occupies little of the image. We also compare

our performance to using some specific techniques to find

regions of interest - such as face detectors, saliency and

exemplar-SVM (see Fig 2), and find that our approach out-

performs all of them.

We introduce a new dataset, “People at Landmarks”

(PAL), containing natural images taken at various land-

marks across the world. These posed photos naturally con-

tain large amounts of visual clutter, especially but not ex-



Query Image Face Heatmap Saliency Exemplar SVM Ours Human Labeled 

Figure 2. Predicted heatmaps for defining retrieval regions. We use the dense red regions for retrieval. Note how our method closely

resembles what a human would use to localize these images. Saliency and Exemplar-SVM approaches pick out large image edges, and

running a face-detector suppresses faces but is uninformative of the rest of the image.

clusively in the form of people. We demonstrate that our

region-scoring method is able to improve the state-of-the-

art SIFT-keypoint-based approach [32]. We also propose a

new approach to retrieval based on CNN features over im-

age patches, that outperforms the above and various other

approaches by a large margin on PAL. Additionally, we

demonstrate that our region scoring method can also im-

prove both keypoint and CNN features based retrieval sys-

tems on the standard Oxford5K dataset [26]. Hence, this

paper makes the following contributions: (1) We propose a

general technique that can help cut through clutter and find

task-specific regions that are relevant for retrieval; (2) We

propose a new CNN-features based technique to image re-

trieval, by selecting most relevant patches from the image,

and finding matches using those; and (3) We introduce a

new dataset, “People at Landmarks” containing substantial

clutter in the query images.

2. Related Work

Image retrieval is a mature field, and many of the exist-

ing approaches use local descriptors in variants of the Bag

of Words (BoW) paradigm [30, 26]. BoW models each im-

age as a bag of visual words, where the words are com-

puted by assigning feature descriptors to large visual vocab-

ularies [23, 5]. This, combined with inverted file indexes,

makes the search highly efficient. The retrieval quality can

be further improved by using techniques such as geomet-

ric re-ranking [26, 24, 31], query expansion [9, 2, 1], mul-

tiple assignment [27, 18] and better descriptor representa-

tions [24, 2].

Other approaches for retrieval use a global or aggregated

representation for images by using encoding schemes such

as Fisher kernels [25] or VLAD [19, 3]. Such schemes al-

low for compressed representation for images, which en-

ables them to scale to even larger datasets. Most re-

cently, Tolias et al. [32] proposed an approach to combine

these local (matching-based) and aggregated representa-

tions, achieving state of the art results on multiple datasets.

Our approach is complementary to all these approaches:

we demonstrate that it can help these existing retrieval ap-

proaches cut through clutter to get better results.

Recently, there has been a rising interest in using activa-

tions from deep convolutional neural network as a generic

image representation. Apart from getting substantial im-

provements in various recognition tasks, this has been

shown to perform well in retrieval as well [28]. Using

the VLAD feature aggregation approach over deep features,

[14] demonstrated near state of the art performance in re-

trieval on the Holidays dataset.

Our approach can be interpreted as a type of feature

reweighting. The basic idea is that by looking at data, one

can determine that certain parts of an image are not likely

to be informative and can thus be down-weighted or sup-

pressed entirely. For instance, an important component in

all retrieval pipelines, including the method [32] we help

improve, is the notion of ‘term frequency-inverse document

frequency’ [30]. Others have improved on this by learning

which features are important for retrieval on the database

side. For instance, Knopp et al. [20] learn to identify place-

specific features that are confusing and can be suppressed

in the database, and similar ideas have been pursued by

[33, 15, 7, 4]. There has also been some recent work on

discovering “burstiness” of visual words [17] and on detect-

ing feature co-occurrences (co-ocsets) [8] that harm BoW

type retrievals. Our approach is complementary to these ap-

proaches since we analyze only the query image; whereas

the other approaches, with the exception of [4], require ac-

cess to the retrieval corpus to model the required statistics.

In contrast, we can pre-train our model on one dataset (e.g.,

our People at Landmarks train dataset), and test it on new

data (e.g., Oxford5K). Also, statistics like “burstiness” can

only get rid of highly co-occurring low-level features result-

ing from repeating patterns in the image, such as that of a

forest, river, people or faces. In fact, one of the retrieval ap-

proaches we help improve [32], already incorporates many

of these ideas, including burstiness. Our method operates

on a much higher level understanding of the image, and

can even ignore parts of a buildings that it believes are not



Figure 3. Predicted heatmaps for some test images from the PAL dataset. Note how it can even extract out parts of monuments/buildings,

that are most relevant in identifying them. Also, note that the same model works for both indoor and outdoor images.

discriminative enough. Other high level methods include

Exemplar-SVM based method by Shrivastava et al. [29],

which learns a query-specific re-weighting of HoG features.

However, our method is substantially faster as it requires

only the query image and produces more useful regions for

retrieval than E-SVM.

3. Scoring Parts of Image

We now describe our approach to predict parts of image

most relevant for localization. We first introduce the set

of regions and representation. We then describe how we

determine whether a region is useful for retrieval, how we

can learn a mapping to this at training time, and how we can

use this learned mapping at test time.

3.1. Representation

We need a way to model the parts of an image in order to

understand what parts of an image are useful for retrieval.

Ideally, this representation should let us learn to distinguish

distinctive things like the castle in Fig. 1 from undistinc-

tive things like faces or trees. We adopt the approach of

decomposing an image into rectangular regions and using

the activations from a convolutional neural network (CNN)

as features, because of their success on various recognition

and other tasks [12, 28].

Our regions must be sufficiently dense to cover the rel-

evant parts of the scene but sparse enough for fast infer-

ence. We thus use a region proposal generator, Selective

Search [34], that proposes regions that are more likely to be

useful than random samples. We use the fast mode, which

yields on average ∼ 2000 proposals per image and which

generally covers most objects of interest. We discard pro-

posals smaller than 25× 25 pixels, because they tend to be

uninformative.

For learning, we represent each patch with the activa-

tion of a standard CNN. Specifically, we take the fc7 acti-

vations of AlexNet [21] trained for ImageNet [10] classi-

fication. Since regions may be of arbitrary dimension, we

warp them to a canonical shape (256× 256). For matching,

we represent the patches using the activations from the last

convolutional layer (pool5) as it preserves the spatial struc-

ture, and define the similarity between 2 patches ri, rj as

the cosine similarity, sim(ri, rj) = xTi xj , where xi, xj are

the corresponding L2 normalized pool5 features.

3.2. Learning

Given a train image, how do we determine which patches

are relevant for localization, and how do we infer this on a

new test image? We first identify how useful a patch is for

localization by trying it on a training corpus and scoring its

retrievals with discounted cumulative gain (DCG). We then

learn a mapping from image features to this DCG.

Labeling: Our definition of a patch’s usefulness is its abil-

ity to retrieve images taken at the same location. There-

fore, for each training patch, we perform nearest neighbor

search into a database of patches from the training set of

images (scaling this search using technique described later

in Sec. 4.2). These images can depict the query location,

other locations, as well as distractors. We sort the database

images (im) by its similarity to the query patch (q), where

sim patch img(q, im) = maxr∈Pim
sim(q, r), where r is

a patch and Pim denotes patches in im. We quantify

a patch’s retrieval using DCG at position 10, defined as

DCG10 = rel1 +
∑10

i=2
reli

log
2
(i) . The relevance (rel) of a

retrieval (im) is defined as 0 if it is not the same location

as the query and as 0.95+0.05sim patch img(q, im) other-

wise. The first term rewards correct retrievals and the sec-

ond rewards highly similar retrievals.

Learning: We then learn to predict this DCG for a new

patch using a regressor. Previous recognition work has

shown good generalization with a simple linear model using

fully connected layer activations [12]. We therefore train a

L2-regularized/L2-loss linear support vector regression on

fc7 features. We use the implementation from [11].

Inference: Given a new image, inference is straightforward

– we extract selective search proposals and corresponding

features, and then regress for their DCG10 . For an approach

using these regions, this prediction can be used directly. For

other keypoint based approaches, we accumulate the predic-

tions over each pixel and sum overlapping boxes to generate

a heatmap. This prediction can be thresholded to define a re-
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Figure 4. This figure shows the prowess of our method compared to state of the art keypoint based approach [32], and CNN full image

features based approach. It shows the query on the top-left, and the top few retrievals using each of the approaches. Even when very little

of the Angkor Wat is visible, our method can hone in on the domes, and find other images taken at that place. Notice how the other methods

end up retrieving images of people, which are not really helpful in determining the location of the query image. Green and red borders

indicate correct and incorrect matches respectively.

gion of interest, just as query boxes are used on Oxford5K.

We show some results of these predictions in Fig. 3 and 9.

4. Retrieval Approaches

We now describe how the scoring method described

above can help improve an existing state-of-the art retrieval

approach [32]. We also propose a new approach to retrieval

using patches with the above scores that outperforms the

previous approaches by a large margin on our newly intro-

duced dataset, PAL.

4.1. Keypoint Features Based Retrieval

We use the recent approach from Tolias et al. [32] (using

the provided code) with the hessian affine detector [24] as

the baseline keypoint features based retrieval approach. It

already incorporates various recent advancements to mini-

mize the effect of ‘boring’ parts of image, such as handling

‘bursty’ [17] visual words. It has shown strong performance

on various datasets, including Oxford5K and Holidays. We

improve this base system using the scoring technique de-

scribed above in Sec. 3.

We improve [32] by defining a region-of-interest (RoI)

in the image, using the predicted heatmaps. Only fea-

tures inside the above RoI are used for retrieval. The

threshold for clipping the heatmap is learnt through grid

search over the training set. We define the region of in-

terest given a threshold t as area of the image satisfying

score > t × (max(hmap) − min(hmap)). We learn the

threshold for this (and other baseline methods, described in

Sec. 5.3) by computing the score heatmaps for the occluded

training images using a 10-fold cross validation output, and

performing retrieval over the complete train set. We per-

form grid search over threshold values (t) from 0 to 1, at

increment of 0.1, and for mean value of the heatmap, to

maximize mAP. We use these learnt thresholds directly for

Oxford5K as well.

4.2. CNN Feature Based Retrieval

In this section, we propose a novel approach to retrieval

using CNN features over patches of the image. To show

that its strong performance is not just because of the CNN

representation, we show that it can outperform a variety of

CNN-feature based baselines, including [14] that recently

introduced a new multiscale pooled feature representation

(MOP-CNN). This representation has been shown to per-

form well on various retrieval and recognition tasks, includ-

ing retrieval on the Holidays dataset.

CNN Patches Based Retrieval System Given a query

image, we decompose it into regions the exact same way as

at training time. We can perform two operations on each re-

gion: predict the DCG scores of the patch using the learned

model, and find similar patches in the corpus for the top

scoring patches. The question then becomes: How do we

use these to perform retrievals?

We propose the following model. Each query region

casts votes for each corpus image in proportion to the max-

imum similarity to the corpus image’s patches. We also in-

clude a vote from the full image retrieval, i.e. without using

patches. Hence, for a given image im1, the matching score

of each database image im2 is

sim img(im1, im2) +
∑

p∈Pim1

sim patch img(p, im2)

where sim img(im1, im2) = sim(im1, im2), i.e. taking

the full image as a patch. This improves performance be-

cause it models global information, however as results in

Table 1 show, most of the improvement is obtained through

the patches. Thus, all that remains is to determine which



regions perform the lookups and vote. We select these re-

gions according to an objective that maximizes our rele-

vance subject to diversity, similar to [6]. Given a set of

regions S = {r1, . . . , r|S|}, our objective is

F (S) =
∑

i

ψ(ri) + λ

(

max
j 6=i

sim(ri, rj)

)

where ψ(ri) is the unary score of a patch obtained from

the regressor, representing importance of that patch. In

other words, our set should have a high total score, but also

be diverse. Optimizing this is NP-hard, so we optimize it

greedily. We stop this procedure when we reach a pre-

determined number of patches (in all experiments, 5 – using

more patches gave better performance, but was slower). The

diversity trade-off parameter λ is learned via grid-search

from -5 to +5 with increments of 0.2 on the training set. We

observe through our experiments on PAL that λ is learned to

be -0.4, which means it penalizes similar patches. To avoid

over-fitting, the unaries used while learning λ are 10-fold

cross-validated output on the train set, same as in Sec 4.1.

Fig. 4 illustrates our approach and compares it to using only

full image features.

Scalability: Using CNN activations on patches is mem-

ory intensive: at 2000 per image, storing the pool5 fea-

tures of only a 1000 image dataset in memory would require

150GB of space. Hence, we use a dimensionality reduction

technique, Iterative Quantization [13] to hash the deep fea-

tures into 256-bit codes. This helps prune the search space

by actually matching the deep features only for the top-

1000 patches with least hamming distance in the hashed

space. We compress and store the actual features using a

read-optimized B+ tree implementation, LMDB, enabling

queries into a 3 million patch database within a few hun-

dred milliseconds on a single server. Note that this hashing

is only performed for our proposed patch based approach;

the baseline approaches (full image/MOPCNN) are unaf-

fected by this hashing.

5. Experiments and Results

We now present results to validate our approach. We

first introduce the “People at Landmarks” dataset, which

contains significant query image occlusion. We then show

that our patch scoring method can both improve [32], as

well as significantly outperform it using our CNN patch-

based approach on this dataset. Finally, we report results on

Oxford5K [26] which does not have heavy occlusion, but

still our method is able to improve the performance of [32]

and CNN-based method when not using the provided query

boxes.

5.1. People at Landmarks Dataset

To the best of our knowledge, no standard re-

trieval/localization dataset is composed of query images

(a) Example query images from People At Landmarks
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Figure 5. (b) shows the distribution of images in the database into

various locations, and into occluded or not. (c) shows a histogram

over ratio of area of 277 test query images marked by humans as

relevant for localization (also used as a baseline in Sec. 5.2). Note

that for most of the test query images, only 20-30% area is covered

by the object of interest.

with significant occlusions. To better model how people

often take photos, we introduce a new dataset of images

containing large amounts of occlusion and visual clutter,

especially in the form of humans, which we refer to as the

“People and Landmarks” (PAL) dataset. We downloaded

the dataset by searching for 33 different locations such as

“Abu Simbel”, “Louvre Museum”, etc. on Flickr, Google

Images and other web search engines. We manually filtered

the images for candid, posed and selfie-style images, which

were significantly occluded by humans. These were used

as training and testing query images. This led to 4711 im-

ages, out of which 377 contain significant occlusions. We

split the locations in this dataset randomly into 15 train and

18 test, leading to 1892 training (with 100 occluded) and

2819 test (with 277 occluded) images. We augmented the

train set with 6000 random outdoor images from [29] as

distractors, taking the total training retrieval corpus to 7892

images. We show some sample query images and statis-

tics from our dataset in Fig. 5. As illustrated in that figure,

the object of interest in our test images occupies < 30%
of the area on average, in stark contrast to existing retrieval

datasets. A visualization of the complete dataset is in the

supplementary materials.

5.2. Baselines

Retrieval based on [32] As described in Sec. 4.1, one of

the goals of our paper is to help existing retrieval systems

improve performance when query images are heavily clut-



tered. We therefore apply our method to [32] and compare

with the following approaches for determining the impor-

tant image regions. We show a qualitative comparison of

each approach in Fig. 2.

(1) ESVM: Although it does not satisfy our computational

efficiency criterion (as scoring the query image takes many

hours), we use [29] to learn an exemplar-SVM that sepa-

rates the query image from background dataset. We then

convert the learned weights into a heatmap. We trained each

test image against the negative set containing 6000 random

outdoor images from [29]. The threshold was calibrated by

similarly computing heatmaps for the train images.

(2) Saliency: We use graph-based visual saliency (GBVS)

[16], which obtains strong performance. This checks

whether a non-task-specific notion of visual importance is

sufficient to identify informative regions for localization.

(3) Face-Detector: One large source of clutter in PAL is

faces; to verify our method is not just suppressing facial

clutter, we run a recent DPM-based face detector that ob-

tained state-of-the-art performance as of ECCV 14 [22]. We

tried two ways to suppress features. The first is within face

bounding boxes in order of score (Faces-BB). The second

is in order of distance to the nearest bounding box (Faces-

Dist).

(4) Human-Labeler: To attempt a comparison against hu-

mans, we asked two unaffiliated people to label a bounding

box they thought was most useful to recognize the place.

The images were shown in a random order and the subjects

were not familiar with the corpus.

CNN patches-based retrieval We compare our approach

described in Sec. 4.2 to using full image global CNN fea-

tures (layer pool5) over cosine distance metric. We also

compare with representations proposed in [14]: Layer-1

(full image fc7 features over Euclidean distance), Layer-

1+2 (full image, concatenated with 128 × 128 patches fea-

tures pooled using VLAD), and MOP-CNN (concatenation

of L-1+2 and 64× 64 patch features pooled similarly). We

used the provided code for [14].

5.3. Experimental Protocol

Performance Metrics: We use a variety of evaluation met-

rics. In addition to mean average precision (mAP) that

quantifies performance over all recall regimes, we use mean

precision (mP) at n for n = 1, 5, 10, 20 to characterize per-

formance among the top retrievals. For computing mP, we

ignore the exact match (query).

Protocol: Our method is learning-based and thus requires

held-out data. We train our models exclusively on the train-

ing set of PAL and test on the testing set of PAL. When test-

ing on Oxford5K, we apply models and thresholds learned

on PAL directly.

5.4. Results on People At Landmarks

We show some qualitative results of our method’s predic-

tions in Figure 6. It compares (a) MOPCNN with our CNN

← Top-Ranked Regions Bottom-Ranked Regions →

(a) Top and Bottom-Ranked Patches on PAL
Positive Weight Negative Weight

(b) Top activations of two positive and negatively ranked fc7 units

Figure 7. Analysis of our learned model. Note that our model

learns to reject faces, pavements, and gives high score to discrim-

inative parts of buildings.

patches based approach, and (b) keypoint based approach

[32] over full images with the same approach over image

regions determined by our method. Our method helps [32]

focus on the parts of the image that can help better localize

it, hence matching it to other images taken at the same loca-

tion. Our CNN patch based approach also gets much better

matches compared to MOPCNN [14].

We show qualitative analysis of our learned model in Fig.

7. In Fig. 7(a), we show the top-and bottom-ranked regions

on the training set: the top-ranked patches are not just non-

human, but also distinctive (e.g., the Leaning Tower, the

domes of Sacré-Coeur); the bottom-ranked patches natu-

rally correspond to people. We dig further into the model

in Fig. 7(b) by looking at the activations of two highly pos-

itive or negative feature dimensions. We scan the training

set for windows that most activate neurons corresponding

to highly positive and negatively-ranked dimensions. Di-

mensions with positive weight often contain buildings with

enough context to identify them; ones with negative weights

often contain people or regions that are too small to be dis-

tinguished.

We report quantitative results in Table 1. Our region

scoring method improves both base systems by a signifi-

cant margin, and our proposed CNN patch based approach

outperforms the state of the art retrieval approach of [32] by

> 10% mAP. Note that our performance is especially strong

in the high recall regimes (mP10 and mP20), presumably

because focusing on the landmark retrieves images where

the object of interest is not prominent, and hence is typically

missed when using the full image features. Improving [32]

using our predicted heatmaps, it also outperforms a number

of other schemes to determine a region-of-interest. A pre-

defined notion of importance, like saliency [16], harms per-

formance (because faces are typically predicted as impor-

tant by [16]). Similarly, the approach of [29] hurts perfor-

mance as it picks up on the coarse edges of the image (e.g.,

the edges of the Taj Mahal as opposed to its interior). Re-

moving faces and nearby regions helps, but only by a small

margin. Presumably, this is because [32] already accounts

for the frequency of faces through tf-idf and burstiness. On

the other hand, our method not only suppresses faces, but

determines what parts of the rest of the image to focus on.



Query Image MOP-CNN Our Approach (CNN) 

Query Image Full Image (Keypoints) Our Approach (Keypoints) 

(a) 

(b) 

Figure 6. This figure compares various retrieval approaches on the PAL dataset. (a) compares top retrievals using MOPCNN [14] and our

CNN patch based approach. (b) compares top retrievals using [32] and the same over regions selected using our method. Correct matches

are bordered with green.

Table 1. Results on PAL dataset. Using ESVM and Saliency to de-

fine a region-of-interest for [32] was found to harm performance

during cross-validation. Our proposed approach for [32] was de-

scribed in Sec. 4.1 and for CNN patches (Top-5 patch + full) in

Sec. 4.2.

mP1 mP5 mP10 mP20 mAP

Results using [32]

Full Image 91.7 85.2 78.5 68.5 29.6

Saliency [16] 91.7 85.2 78.5 68.5 29.6

Faces-BB 92.0 86.6 81.0 70.9 30.9

Faces-Dist 92.4 84.0 78.4 69.0 30.2

E-SVM [29] 91.7 85.2 78.5 68.5 29.6

Proposed 93.1 86.6 81.3 72.3 31.9

Human 91.7 88.4 83.1 73.9 33.0

Results using CNN patch-based retrieval

L-1 (fc7) [14] 57.0 47.4 41.0 35.3 21.3

L-1 (pool5) 61.4 51.5 45.4 39.9 21.6

L-1+2 [14] 61.0 51.0 45.1 38.5 23.1

MOP-CNN [14] 69.7 57.2 50.2 43.5 25.1

Top-1 patch 89.5 82.7 79.7 73.4 32.4

Top-5 patch 91.7 89.6 85.6 80.0 39.6

Top-5 + Full 92.8 89.2 85.7 80.5 40.3

Random-5 49.1 40.0 35.9 32.6 18.7

All Patches 75.1 65.3 60.9 55.6 31.5

For instance, our method prefers landmark-like structures

as opposed to generic buildings and definitely not pavement

or grass. As expected, human-marked boxes produce the

best results, but our method performs on par.

When using the CNN-patch based retrieval pipeline,

we outperform full image retrievals by 19%, and

MOPCNN [14] by 15% mAP. This shows that our improve-

ment can not solely be attributed to the CNN representa-

tion. It performs the best overall, outperforming [32] by

10.7%. We also ablatively compare our approach to using

just the top patch, and to top-5 patches without the full im-

age vote. We observe that most of the improvement is ob-

tained through the patches. Using random-5 patches or all

the patches performs worse, because a large part of the im-

age is irrelevant and their retrievals overwhelm the informa-

tive parts.

5.5. Natural Landmarks

Even though the PAL dataset already contains diverse

landmarks such as Trevi Fountain, Hollywood sign and Abu

Simbel, we explicitly verify our model’s ability to general-

ize to natural landmarks. To that end, we collect 1512 im-

ages from 3 natural landmarks, Grand Canyon, Half Dome

at Yosemite and Mount Rainier, and designate 25 images

with significant occlusion as test images. We use the PAL

trained model, without any re-training with identical pa-

rameters, to select regions on these images. Results are

in Table 2. We observe that our model trained on com-

pletely different data still gets similar or better performance

for both the baseline methods. We present some qualitative

results in the supplementary.

5.6. Results on Oxford5K

To further test whether our system can identify regions

that are useful for localization, we evaluate our approach

on Oxford5K [26] since it is well-known and dissimilar to

PAL. Oxford5K comes with manually marked query boxes

that identify objects of interest. Since these boxes already

identify useful regions and remove distractors, it is impossi-

ble to evaluate the system’s ability to identify useful regions



Table 2. Results on Natural Landmarks

mP1 mP5 mP10 mP20 mAP

Results using [32]

Full Image 96.0 81.6 73.6 67.6 40.1

Proposed 100.0 88.8 78.8 71.6 40.5

Results using CNN patch-based retrieval

L1 (pool5) 64.0 51.2 58.4 58.0 42.2

Top-5 + Full 84.0 79.2 79.6 78.6 45.0
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Border Color Key: Good OK Junk Bad 

Figure 8. Top few retrievals for a sample query image in Oxford

Buildings, using (in order) [32], [32] with our predicted heatmaps

(proposed), CNN full image and CNN patch-based (proposed).

A ‘junk’ match in Oxford5K refers to matching images where

< 25% of the object is present.

while using the boxes: the task has already been done in

advance by the annotator. We therefore evaluate the system

on the full image, on which the base system performs worse

due to the distracting regions of image. We also note that in

many real-world applications, the user will not provide this

annotation. We show a qualitative result on an image more

similar to our PAL dataset in Fig. 8: the method success-

fully identifies the building as important, enabling the CNN

patch based approach to find 4 good matches, and using the

predicted heatmap with [32] gets three good matches. Com-

pared to using full image CNN and keypoint methods, this

performance is much better. We show some other heatmap

predictions on Oxford5K test images in Fig. 9.

Quantitatively, we observed a 77.37% mAP without us-

ing the query box, on modifying the provided code for [32]

to use our heatmaps, compared to 76.76% when using the

full image. The small gain on this dataset can be attributed

to the fact that most Oxford queries have the object of inter-

est covering most of the image, un-occluded. In the CNN

patches based approach, we observed an improvement of

Figure 9. Heatmaps predicted by our method on Oxford5K test

images using the model trained on PAL. It focuses on the main

object for localization, getting rid of people, cars, bicycles, generic

buildings and other boring parts of the image.

Table 3. Results on Oxford5K: Applying our PAL-learned model

directly to Oxford5K for selecting regions of the image, improves

retrieval performance by 0.61% for [32] and 22.2% for CNN.

Results using [32]

Without query box 76.76

Without query box, with histogram thresholding 77.37

With query box 80.64

Results using CNN patch-based retrieval

Full Image 37.74

Top-1 patch 50.30

Top-5 patch + Full 59.97

Top-50 patches 72.11

about 22% mAP over using full image features. Note that

for both the cases, the model was learned on PAL and ap-

plied directly to Oxford5K without any re-training and with

identical parameters. This shows the ability of our ap-

proach to easily and safely generalize across datasets, while

at worst preserving the original performance.

6. Conclusion

We have presented an approach that can zoom in and

determine which parts of the image are most useful for a

task and applied it to the task of localization through re-

trieval. We have also presented a novel approach to per-

forming retrieval using CNN features over patches of the

image. To help evaluate the approach, we introduced a new

dataset containing lots of visual clutter in the query images.

We showed that our proposed approach outperforms exist-

ing state of the art by more than 10% mAP for our newly

introduced dataset. Also, it improves the state of the art on

the Oxford5K dataset when not using the provided query

boxes.
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