

Predicting Object Dynamics in Scenes

David F. Fouhey¹, Larry Zitnick²

¹Robotics Institute, Carnegie Mellon University, ²Microsoft Research

Carnegie Mellon

Overview

Goal: Learn mapping

Input: bounding boxes at time T Output: bounding boxes at time T+1

How can we learn spatiotemporal common-sense to predict that:

- The woman will probably move right?
- The woman's hat will probably go with her?
- The trees will stay still?

Problems:

- How can we model and satisfy these constraints?
- How can we do this if we cannot detect people and hats reliably?

Datasets

Prediction models were trained on Abstract Scenes Data and applied to both abstract and natural scenes.

Abstract Scenes Data:

5,000 sequences of 5 scenes Gathered via Amazon Mechanical Turk (AMT)

Interface

Sample Stories

Natural Images:

225 natural images from flickr.com with bounding-boxes labeled Only one image; ground-truth predictions labeled by AMT

Method

CRF Scene Model

CRF Potentials learned by Random Forest

Learned Motion Potentials

Distribution on Jenny's motion vector in the same scene with and without a bear present.

Without Bear

P(motion) as a function

of Mike's position

Results

Compare with:

Global Prediction: BoW + Motion Vector Transfer; Independent Prediction: Use RF on same features; **Humans**: Ask another Turker to complete.

Human Evaluation

Another human rates pairs of predictions win/loss/tie.

Natural Image Results

Who moves and how? Hot color: likely to move. Line: moves together.

Do X and Y

move together?

Quantitative Evaluation

Ask yes/no question about scene; compare original sequence and prediction.

Abstract Scenes Dataset					Natural Scenes Dataset		
F1 Score:	Does X move?	Do X and Y move together?	Does X move Left or Right?	What are X's Attributes?	F1 Score:	Does X move?	Do X and move togetl
Proposed	49.3	42.9	66.6	61.9	Proposed	91.2	45.2
Indep.	49.0	11.9	<u>75.1</u>	61.5	Indep.	87.5	14.4
Humans	48.8	31.8	70.0	52.3	Humans	<u>97.8</u>	<u>75.3</u>
Global	39.6	16.2	61.9	29.1	Global	69.3	5.7

Conclusions

- Neither global nor independent prediction models produce accurate joint motion: joint motion must be modeled explicitly.
- Our models are short-term common-sense only; long-term prediction with narratives is an interesting future direction.