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Overview Method Results

. Global Prediction: BoW + Motion Vector Transfer:;
Compare with:

Independent Prediction: Use RF on same features;

Input: Time T Output: Time T+1
| Humans: Ask another Turker to complete.
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Goal: Learn mapping CRF Scene Model

Input: bounding boxes at time T
Output: bounding boxes at time T+1
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How can we learn spatiotemporal common-sense to predict that: // \ face: 9 Z: ( M3 03) +wi(®i, 8300) + mi(Wi, 5 6r)
e The woman will probably move right? @ - ” @ el location ol motion
e The woman’s hat will probably go with her? —_———
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How can we mode.l z?nd satisfy these constraints: . ; Another human rates pairs of predictions Who moves and how?
* How can we do this if we cannot detect people and hats reliably? win/loss/tie. Hot color: likely to move. Line: moves together.

Full model vs. baselines
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CRF Potentials learned by Random Forest
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Datasets

Prediction models were trained on Abstract Scenes Data and applied to
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5,000 sequences of 5 scenes © % Qua Nntitative Eva | uation
Gathered via Amazon Mechanical Turk (AMT) L a
Ask yes/no question about scene; compare original sequence and prediction.
-- RF on Scene Features
R - Y] Abstract Scenes Dataset Natural Scenes Dataset
5 EmmEN G o . Does X Do XandY Does X move What are X’s _ Does X Do XandY
b o %‘-\;Aﬂz .i? I_ d M t P t t I F1 Score: move?  move together?  Left or Right? Attributes? F1 Score: move?  move together?
N.c e €arnea viotion rotentials oroposed  49.3 42.9 66.6 61.9 oroposed  91.2 45.2
: : -— Distribution on Jenny’s motion vector in the same scene P(motion) as a function ndep. 49.0 11.9 75.1 61.5 ndep. 87.5 14.4
Interface Sample Stories with and without a bear present. of Mike’s position Humans 48.8 31.8 70.0 52.3 Humans 97.8 75.3
Global 39.6 16.2 61.9 29.1 Global 69.3 5.7
Natural Images:
225 natural images from flickr.com with bounding-boxes labeled .
Only one image; ground-truth predictions labeled by AMT CO NC I USIONS

 Neither global nor independent prediction models produce accurate joint
motion: joint motion must be modeled explicitly.

* Our models are short-term common-sense only; long-term prediction with
narratives is an interesting future direction.
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