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Abstract. In this paper, we present an adaptive data fusion model that
robustly integrates depth and image only perception. Combining dense
depth measurements with images can greatly enhance the performance
of many computer vision algorithms, yet degraded depth measurements
(e.g., missing data) can also cause dramatic performance losses to levels
below image-only algorithms. We propose a generic fusion model based
on maximum likelihood estimates of fused image-depth functions for both
available and missing depth data. We demonstrate its application to each
step of a state-of-the-art image-only object instance recognition pipeline.
The resulting approach shows increased recognition performance over
alternative data fusion approaches.

Despite its tremendous potential, dense depth estimation has fundamental
limitations that must be addressed for robust performance. In many realistic
scenes, depth sensors fail to compute depth measurements on portions of the
associated color data (as shown in Fig. 1). We refer to this phenomenon of
missing depth data as depth fading. Objects close to the camera, reflective or
specular surfaces, poor lighting conditions, and surfaces seen at oblique angles
often suffer from depth fading. These issues arise from fundamental physical
limitations in depth perception, and affect all depth estimation approaches to
varying degrees.

Although some problems are naturally robust to depth fading (e.g., by easily
factoring into subproblems with and without depth [1]), many authors [2–4] re-
sort to interpolating depth data and then propagating the interpolated values.
Common interpolation methods include the recursive median filter [2], inpaint-
ing [3], or optimization techniques that minimize curvature [4]. These methods
are effective when used for interpolation (the small holes in Fig. 1(top)), but
produce severely inaccurate results when used for extrapolation (the moderate
fading in Fig. 1(bottom). This inaccuracy has consequences for end-to-end per-
formance: our results demonstrate that not distinguishing between interpolated
and measured depth can lead to worse performance than not using depth at all.

In contrast to propagating interpolated data, this paper proposes to address
the limitations of depth sensors at an algorithmic level by making the perception
system aware of interpolated data. We propose a general model to adaptively
combine depth and image measurements. We derive joint image-depth measure-
ments as the maximum likelihood estimate given the independent image and
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Fig. 1. Recursive median filter and nearest neighbor succeed at removing small depth
fading (top row), but fail in scenes with stronger depth fading (bottom row). Our
adaptive model yields robust performance under both conditions.

depth measurements. We combine a depth-filling technique with per-pixel confi-
dences to extend depth measurements to areas with depth fading. In this way, we
adaptively combine image and depth measurements for every pixel. To demon-
strate the flexibility and effectiveness of our model, we integrate it into each
of the components of a state-of-the-art image-only object instance recognition
system, MOPED [5]. We use it to derive an adaptive distance metric for feature-
based pose estimation; a prior generation technique based on adaptive 2D/3D
similarity; and a depth-adaptive feature matching scheme.

We evaluate all contributions on a set of realistic scenes with up to 10 ob-
jects per scene, with depth fading ranging from 15% to 85% of the image. Each
proposed algorithm is validated independently, and the adaptive model is eval-
uated in comparison to non-adaptive approaches via an integrated system that
uses all algorithms. Our adaptive model demonstrates substantial gains over the
image-only system with little depth fading present and a seamless transition to
image-only performance with severe depth fading. In contrast, we demonstrate
that under less favorable conditions, non-adaptive approaches (such as simply
propagating interpolated data) can perform substantially worse than not using
depth altogether (a decrease of 15% recall) while not performing any better than
an adaptive approach under favorable conditions.

1 Adaptive 2D/3D Measurement Model

We propose a general model to adaptively combine image and depth measure-
ments into a joint image-depth function. Given partial observations x2D ∈ X2D

(image only) and x3D ∈ X3D (depth only), let φ2D : X2D → R be an image-
only function, and φ3D : X3D → R a depth-only function. Defining the full
observation x = {x2D, x3D} ∈ X = X2D × X3D, the joint image-depth function
φ : X → R is a combination of the partial functions φ2D, φ3D.

The functions φ, φ2D and φ3D are general functions which can model a wide
array of processes, as we show in Sections 4, 5, and 6. For the remainder of this
paper, we assume that φ2D(x2D) and φ3D(x3D) are measured in the same units.
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Fig. 2. The role of confidence values. (a) c(x) vs d(x,N(x)) for ψ = 1 and varying b;
(b) c(x) plotted for Fig. 1(bottom) with ψ = 0 and b = 1, 10, 32 (l. to r.).

We also assume that φ2D(x2D) and φ3D(x3D) are noisy observations, conditioned
on φ(x), of the true values φ̄2D(x2D), φ̄3D(x3D), corrupted with i.i.d. noise with
distributions N (0, σ2D(x2D)) and N (0, σ3D(x3D)) respectively.

Our goal is to find φ(x) that maximizes P (φ(x)|φ2D(x2D), φ3D(x3D)). Using
Bayes’ Rule and assuming no prior on the function distributions, the optimal
fused function φ∗(x) corresponds to the Maximum Likelihood Estimate (MLE)

φ∗(x) = arg max
φ(x)

P (φ2D(x2D), φ3D(x3D)|φ(x)). (1)

Following [6], the MLE φ∗(x) is computed as

φ∗(x) =
σ2
2D(x2D)

σ2
2D(x2D) + σ2

3D(x3D)
φ3D(x3D) +

σ2
3D(x3D)

σ2
2D(x2D) + σ2

3D(x3D)
φ2D(x2D).

(2)
Parameterizing Eq. 2 in terms of a depth confidence function c(x), and defining

the ratio of variances γ2(x) =
σ2
3D(x3D)

σ2
2D(x2D)

, then

c(x) =
1

1 + γ2(x)
, φ∗(x) = c(x)φ3D(x3D) + [1− c(x)]φ2D(x2D). (3)

In this formulation, c(x) reflects the confidence of the depth function relative
to the image function. The value of c(x), and thus φ∗(x), depends only on the
ratio of variances γ2 of the noise distributions of φ2D(x2D), φ3D(x3D).

We now extend the model in Eq. 3 to depth-filling methods (e.g., nearest
neighbor, recursive median filter) by estimating the ratio of variances γ2(x) in
areas with depth fading. Let INT be an interpolation method which computes
depth zx for a point x with missing depth from a set of support datapoints N(x)
with depth measurements, such that zx = INT(N(x)). We assume that the vari-
ance σ2

3D(x) for an interpolated datapoint x is higher than for support datapoints
N(x), i.e., σ2

3D(x) > σ2
3D(N(x)). Then, given that the variance σ2

2D(x) remains
constant, the ratio of variances γ2(x) > γ2(N(x)), and thus c(x) < c(N(x)).
The resulting dense depth map contains depth values and confidences for every
datapoint, with decreasing confidences c(x) for areas with depth fading.

We estimate the ratio of variances γ2 of interpolated datapoints from ones
with measured depth. For a known datapoint: γ2(x) = ψ2(x) where ψ2(x) is
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from a sensor model or is a fixed value (effectively a prior). For an interpolated
datapoint x,

γ2(x) ≈ ψ2(N(x)) + d(x,N(x))2/b2, (4)

where d(x,N(x)) is a distance function between the interpolated datapoint x
and its support datapoints N(x) in the image plane. The scalar parameter b
encodes the trust in interpolated values with respect to measured values.

The confidence model c(x) for dense depth depends exclusively on the inter-
polator INT, the scalar b, and ψ2(x) for known datapoints. For the remainder
of this paper, we use simple Nearest Neighbor as our interpolator, but other
alternatives (e.g., recursive median filter) are also possible.

The ratio of variances for known datapoints ψ2 depends on the particular
task and sensor. ψ2 can be estimated empirically in some cases, but it is hard
in the general case. The alternative is to set ψ2 to a fixed value: c(x) is constant
for known datapoints, but c(x) adapts for datapoints with unknown depth. If
both noise distributions are believed to have equal variances, ψ2 = 1; then
c(x) = 0.5 for all datapoints with known depth, weighing both functions equally.
An alternative, useful when the depth function is more informative than the
image function, is ψ2 = 0; then c(x) = 1 for all datapoints with known depth,
thus exclusively using the depth function when depth is known, and adaptively
reverting to the image function when depth is not available.

We illustrate common values of parameters ψ2 and b in Fig. 2. In Fig. 2(a), we
show c(x) for a variety of values of b as the interpolation distance increases. The
scalar b parameterizes the confidence decrease rate as a function of interpolation
distance; analytically, for a fixed ψ2, a point b pixels away from the known value
has confidence (ψ2 + 1)/(ψ2 + 2). Fig. 2(b) shows maps of c(x) plotted for Fig. 1
(bottom) for b ranging from 1 to 32 pixels.

Setting ψ and b for a new algorithm is straightforward. Sensible values of
ψ are ψ = 1 (for balanced image and depth measurements), ψ = 0 (for no
information in the image), or values from a depth sensor model. To find a suitable
b, we perform a logarithmic grid search over the validation set for a fixed ψ. We
establish the stability of b in extensive experiments detailed in Section 7.

2 Problem Formulation

We demonstrate the application of our model to each step of a feature-based
object instance recognition system [5]. In this section, we briefly introduce the
structure of its pipeline. The input to the system is a calibrated RGBD image
I = {Rgb, z} such that each color pixel value has a corresponding depth zi. The
output of the system is a set of object hypotheses H represented by an object
identity and the pose of the object in the camera’s reference frame. Each object
model to be recognized is represented as a set of features Fo; each feature is
represented by a 3D point location P = [X, Y, Z]T in the object’s reference
frame and a feature descriptor D, (e.g., SIFT [7]).

The general approach is to find object poses by solving the Perspective-N-
Point (PnP) problem on a set of image-model matches. The system first detects
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features and matches them to the stored database of model. Nearby matches are
grouped together to generate priors for object poses in order to efficiently han-
dle multiple object instances and reject outliers. Given that objects are mostly
continuous in image space, clustering feature locations in image space produces
good object priors. Using these priors as an initialization, the resulting PnP
problems given the image-model matches are solved using RANSAC and non-
linear minimization of the reprojection error.

In the image-only system [5], matching is done with the standard 2-nearest
neighbors ratio test [7], clustering with mean-shift in the image plane, and pose
estimation optimizes the reprojection error [8] with Levenberg-Marquardt mini-
mization. In Sections 4-6, we add depth data to each approach with our adaptive
model: we adapt the match acceptance threshold, integrate depth features into
prior generation, and derive an adaptive pose estimation error function.

3 Data Sets

Scenes in common RGBD datasets [3, 4] are captured by a human operator in
the sensor’s recommended operating range, but still miss up to 85% [3] and 83%
[4] of their depth data in some cases. In fact, 2.5−3.8% of the scenes in [3, 4] are
missing over half of their depth data. In applications where sensor position and
scene composition cannot be controlled (e.g., in mobile robotics), depth fading
becomes a critical factor to address for robust perception [9].

We replicate this spectrum with two datasets with varying depth quality. We
captured all scenes using a Microsoft Kinect RGBD sensor with registered RGB
and depth data. Additionally, we gathered a smaller training set that contains
the same objects in 79 scenes of various environments.

Offices Dataset: In this first set, we aim to represent optimal operating
conditions for RGBD sensors; most scenes show little or no depth fading. These
scenes only depict small gaps due to partial occlusion or shadowing, with an
average depth coverage of 66% of the image; most fading is due to registering
the depth and color images and does not fall on the objects. We captured 350
scenes with an average of 4.4 objects per scene.

Tables Dataset: In the second set, we captured 200 scenes with large sec-
tions of depth fading. These scenes show, among other anomalies, missing sur-
faces due to steep viewing angles and objects at short distances away from the
sensor which cause heavy depth fading. These 200 scenes contain an average of
5.2 objects and have 35% average depth coverage.

4 Depth-Adaptive Pose Estimation

In the first demonstration of the model, we derive an adaptive algorithm for
feature-alignment-based pose estimation. In general, the estimation of an object
pose given a set of 2D/3D correspondences between image features and a known
model is the well-known PnP problem. The most accurate solutions are usually
found by non-linear least squares minimization of pose parameters using the
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reprojection or backprojection errors [5]. To adaptively use depth information,
we introduce a 2D/3D distance metric, or φ.

Given a set of features F with 2D positions pi and 3D positions Pi, we
parameterize Pi as a line Li through pi and the camera center, as well as a
depth zi. Given a pose hypothesis with transformation T , we define PT ;i as the
position of the corresponding feature of the hypothesis that matches Pi. Let
P̂T ;i be the projection of PT ;i onto L. Using P̂T ;i we derive two common image-

only errors: the backprojection error is the 3D distance ||P̂T ;i − PT ;i||2 and the
reprojection error is the distance when projected on the image plane.

To formulate our adaptive model φ, we select the backprojection error as
φ2D, and introduce an orthogonal penalty in depth ||Pi− P̂T ;i||2 to serve as φ3D.
Our objective function is the sum of φ∗(i) = c(i)φ3D(i) + [1 − c(i)]φ2D(i), ∀ i.
We set ψ(i) = 1 and use our validation set to determine b = 0.1, which is held
constant throughout the experiments.

Validation: On the Offices data set, optimizing the adaptive error results
in lower average relative translation error (1.5% vs. 3.7%) and rotation error
(5.6◦ vs. 7.6◦) with respect to the ground-truth when compared to optimizing
the standard reprojection error.

5 Depth-Adaptive Priors for Object Recognition

Model-based object recognition and pose estimation from local features requires
solving two sub-problems: data association and pose optimization. In simple
scenes, RANSAC and a PnP solver are sufficient. However, realistic scenarios
may contain large numbers of outliers and multiple instances of the same object.
In this case, it is vital to compute object priors to limit the otherwise over-
whelming search space of potential hypotheses. A number of approaches have
been used to generate priors, both from depth and image data. Collet et al. use
estimate spatial feature density with Mean Shift to find plausible regions for
objects in [10]. Other approaches [11, 12] use an horizontal plane detector to
generate priors.

In this work, we use clustering for prior generation akin to [5]. We partition
the set of matches for a object into clusters and search only within the poses
supported by these clusters. An ideal cluster contains only matches supporting
one object instance and no outliers.

To provide a prior generation algorithm that is robust to depth fading, we
propose an agglomerative clustering scheme based on 2D/3D feature similarity.
Here, we extend our model to pairs of measurements and fuse a 2D-similarity
function φ2D : X × X → R with a 3D-similarity function φ3D : X × X → R. To
model the confidence of a pair of points, we assume their independence and set
c({i, j}) = c(i)c(j). Our similarity function is then:

φ∗(i, j) = c(i)c(j)φ3D(i, j) + [1− c(i)c(j)]φ2D(i, j) (5)

We build each term of our similarity function using simple features. We denote pi
and Pi as the 2D and 3D positions of image feature Fi, respectively; P̂i is the 3D
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position of the corresponding feature in the model; and d(·, ·) is the Euclidean
distance between two vectors.

Spatial Proximity. Objects are generally continuous; we thus use the fea-
ture S2E(i, j) = exp(−d(pi, pj)

2/σ2D), and equivalently S3E in 3D using Pi, Pj .
Depth Discontinuity. Two matches are unlikely to belong to the same

object if there is a significant depth discontinuity between them. We formalize
this intuition by sampling N points along the line through pi and pj in the
image plane, and measuring the change in depth as an angle over each segment
compared to the global change in depth θ of line pipj . This yields a penalty on
strong changes in depth: SD(i, j) = exp(−max1≤k≤N{(θk − θ)}/σdisc).

Distance Consistency. The availability of depth measurements enables us
to check the consistency of the distance between points in the world and their
locations in the model coordinate frame: we can prevent the clustering of two
matches if they are at inconsistent distances and thus cannot support the same
pose. The consistency similarity function is defined as:

SC(i, j) = exp(−
(
|d(Pi, Pj)− d(P̂i, P̂j)|/d(P̂i, P̂j)

)
/σcons). (6)

To combine these features into similarity functions, we choose φ2D(i, j) =
S2E(i, j) and φ3D(i, j) = 1

2SC(i, j)(SD(i, j) + S3E(i, j)). We enforce the SC fea-
ture more strongly as it is a hard requirement for clustering, rather than a
preference (such as spatial proximity). We set ψ(i) = 1 and use our validation
set to determine b = 25, which is held constant throughout for all experiments.
We use Agglomerative Clustering with group-average linkage to cluster.

Validation: We define a match as an inlier if the match has reprojection
error 2 pixels or less with regards to a correctly detected object. We define cluster
precision as the fraction of matches in any clusters that are inliers and cluster
recall is the fraction of inlier matches appearing in any cluster. On the Offices
data set, while obtaining similar cluster recall, the proposed adaptive clustering
approach obtains 82% cluster precision, in comparison to 28% with Mean Shift
in the image plane; further, since it can reject mismatches on objects, it even
achieves 2% higher precision than using the ground-truth outlines of objects.

6 Adaptive Feature Matching

We demonstrate the application of our method to situations in which the function
depends only on 3D. For instance, depth can constrain the scale at which one
searches for objects (e.g., [13]). However, such techniques are problematic when
depth data is largely absent. Our model transitions between aggressive scale
constraining during optimal conditions and cautious behavior when depth data
is unavailable. To achieve this, we let φ2D be a constant function and set ψ(i) = 0.

One way to constrain the search scale for objects is to adjust the number of
feature matches that are accepted by adjusting the threshold used in the ratio
test. The ratio test [7] is a common criterion to evaluate whether a pair of local
features are sufficiently similar to be considered a match. A match between a
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Fig. 3. (a) The threshold θ(z) as a function of depth. (b) A qualitative illustration:
our adaptive approach provides more matches in relevant regions while not increasing
the number of matches in the background. (c) Quantitative results on the Offices data
set; when one replaces each fixed threshold with an adaptive one that retains the same
number of relevant matches, one achieves a higher fraction of relevant matches.

local feature Fi and its nearest neighbor N(Fi) in a database is only made if
the ratio between that distance and the distance to the second nearest neighbor
d(Fi, N2(Fi)) is less than a threshold τ . The only parameter in the ratio test
is the threshold τ . In the absence of a priori information, an educated guess is
used. With RGBD sensors, however, we have depth measurements for each local
feature, and we know the scale of the objects in the database. Thus, we can
use the working ranges at which we expect to detect our objects based on the
object’s size and density of features.

To maximize recognition and speed performance, our goal is to find just
enough matches for an object to be detected throughout the object’s entire
working range (determined by physical size), and no matches outside this range.
We approximate this behavior by replacing the fixed τ with a function φ∗ that
depends on the depth measurement zi and the confidence score c(i). When depth
information is present, a function θ(z) maps depth z to a threshold. The form
of θ(z) is illustrated in Fig. 3(a). To make this approach robust to imperfect
depth data, we set φ3D(i) to θ(zi) and φ2D(i) to a default ratio θ(z0), where z0
is a default depth. In our experiments, z0 is fixed at 1m. Since φ3D completely
determines φ with known depth, we set ψ(i) = 0; we use our validation set to de-
termine b = 75, which is held constant throughout the experiments. Parameters
l, u are fixed using grid search to maximize recall on a validation set; they are
not sensitive to particular values, and are in the vicinity of usually used values.

Validation: We evaluate the matching performance by counting the fraction
of relevant matches; we define a feature as relevant if it falls on any ground-
truth object. Higher thresholds yield more relevant features at the cost of more
irrelevant ones. Since our approach reverts to a per-object fixed threshold in the
absence of depth data, we only consider matches with sufficiently high confidence
(above 0.5) to focus the evaluation on the depth-dependent scheme. Fig. 3(b,c)
demonstrates that one can replace a fixed ratio with an adaptive ratio that yields
the same number of relevant matches, but fewer irrelevant matches.
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Fig. 4. (a) Average area under the precision-recall curve (AUPRC) for adaptive vs.
non-adaptive approaches, relative to image-only. The range of the image-only system
on 10 runs is plotted with black lines. (b) True and false positive rate at maximum F1
score for Adaptive (A), Non-Adaptive (NA), and 3D-Only (3DO). (c) Average AUPRC
for individual algorithms for fixed ψ2 and varying b (log scale) on the validation set.

7 Integrated Testing

We evaluate our adaptive model applied to an integrated system using all pro-
posed algorithms, which we refer to as MOPED-RGBD. To evaluate the adap-
tive model, we compare to using two non-adaptive models on the integrated
system: 3D Only, which uses only data points for which there is depth data,
and Non-Adaptive, which just propagates interpolated values, thus trusting
all depth values (interpolated and measured) equally. All results are reported
relative to the image-only system, MOPED [5].

We process each image 5 times to account for the non-determinism of RANSAC.
A detection is correct if translation and rotation to the ground truth is less than
10 cm and 20◦. Precision is the fraction of correct objects in the hypotheses,
and recall is the fraction of ground-truth objects with a correct hypothesis.

Our results demonstrate the importance of an adaptive approach to depth
fading. These results are summarized in Fig. 4(a,b) via area under the precision-
recall curve (AUPRC) relative to the image-only system MOPED, as well as true
and false positive rates; detailed graphs and qualitative examples apppear in the
supplementary materials. Under optimal conditions (Fig. 4(a) Offices Full), all
approaches to depth fading perform similarly, outperforming the image-only sys-
tem. With moderate to severe depth fading (Tables Full), the non-adaptive
approaches (including propagating interpolated values) perform sub-
stantially worse than the image-only baseline. In contrast, our adaptive
model performs comparably.

To distinguish performance changes due to depth fading from those due to
scene composition, we perform experiments, shown in Fig. 4(a), with synthet-
ically degraded data. We remove data within circles with varying radii (5-30
pixels) to produce scenes with 35% depth coverage (average coverage of Tables)
and 15% depth coverage (the lowest coverage in our data and in [3]) for each
RGBD image in each dataset, yielding Offices 15%, etc. Again, only the adaptive
approach consistently performs comparably to the image-only baseline.
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Finally, we show the stability of b for each algorithm by showing the AUPRC
of a system using only each algorithm for varying b and fixed ψ(i) in Fig. 4(c).
Performance is not sensitive to specific values, and only the order of magnitude is
relevant. The best-performing b are small (b < 1) for tasks needing precise values
(pose estimation), and larger for those needing rough values (e.g., clustering).

8 Conclusions

We have introduced an adaptive model to robustly integrate depth data into
image-only perception and have applied it to object recognition. The adaptive
model outperforms the image-only baseline under optimal conditions and tran-
sitions to image-only performance under severe depth fading; in contrast, non-
adaptive approaches lead to worse performance than not using depth altogether.
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