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Building an Object Recognition System

“CAR”

CLASSIFIER
FEATURE

EXTRACTOR

IDEA: Use data to optimize features for the given task.

Ranzato



3

Building an Object Recognition System

“CAR”

CLASSIFIER

What we want: Use parameterized function such that
     a) features are computed efficiently
     b) features can be trained efficiently

Ranzato

f  X ;
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Building an Object Recognition System

“CAR”
END-TO-END

RECOGNITION
SYSTEM

– Everything becomes adaptive. 
– No distiction between feature extractor and classifier.
– Big non-linear system trained from raw pixels to labels. 

Ranzato
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Building an Object Recognition System

“CAR”
END-TO-END

RECOGNITION
SYSTEM

Q: How can we build such a highly non-linear system?

Ranzato

A: By combining simple building blocks we can make more and more 
      complex systems.
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Building A Complicated Function

Ranzato

sin x 

cos x 

log x 

exp x 

x3
log cos exp sin3x 

Simple Functions

One Example of 
Complicated Function
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Building A Complicated Function

Ranzato

sin x 

cos x 

log x 

exp x 

x3
log cos exp sin3x 

Simple Functions

– Function composition is at the core of   
   deep learning methods. 
– Each “simple function” will have             
   parameters subject to training.

One Example of 
Complicated Function
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Implementing A Complicated Function

Ranzato

log cos exp sin3x 

Complicated Function

sin x  x3 exp x  cos x  log x 
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Intuition Behind Deep Neural Nets

“CAR”

Ranzato
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Intuition Behind Deep Neural Nets

“CAR”

Ranzato

NOTE: Each black box can have trainable parameters.
             Their composition makes a highly non-linear system.
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Intuition Behind Deep Neural Nets

“CAR”

Ranzato

NOTE: System produces a hierarchy of features.

Intermediate representations/features
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Ranzato

“CAR”

Lee et al. “Convolutional DBN's for scalable unsup. learning...” ICML 2009

Intuition Behind Deep Neural Nets
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Ranzato

“CAR”

Lee et al. ICML 2009

Intuition Behind Deep Neural Nets
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Ranzato

“CAR”

Lee et al. ICML 2009

Intuition Behind Deep Neural Nets
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IDEA  # 1
Learn features from data

IDEA  # 2
Use differentiable functions that produce 

features efficiently

IDEA  # 3
End-to-end learning:

no distinction between feature extractor and classifier

IDEA  # 4
“Deep” architectures:

 cascade of simpler non-linear modules

KEY IDEAS OF NEURAL NETS

Ranzato
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KEY QUESTIONS

- What is the input-output mapping?

- How are parameters trained?

- How computational expensive is it?

- How well does it work?

Ranzato
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Outline
- Neural Networks for Supervised Training

- Architecture
- Loss function

- Neural Networks for Vision: Convolutional & Tiled
- Unsupervised Training of Neural Networks
- Extensions:

- semi-supervised / multi-task / multi-modal

- Comparison to Other Methods
- boosting & cascade methods
- probabilistic models

- Large-Scale Learning with Deep Neural Nets 

Ranzato
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Outline
- Neural Networks for Supervised Training

- Architecture
- Loss function

- Neural Networks for Vision: Convolutional & Tiled
- Unsupervised Training of Neural Networks
- Extensions:

- semi-supervised / multi-task / multi-modal

- Comparison to Other Methods
- boosting & cascade methods
- probabilistic models

- Large-Scale Learning with Deep Neural Nets 

Ranzato
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Linear Classifier: SVM
Input:

Binary label:

Parameters: 

Output prediction:

Loss:

X ∈RD

y

W ∈RD

W T X

Ranzato

L=
1
2
∥W∥

2
max [0,1−W

T
X y ]

L

W T X y

Hinge Loss

1
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Linear Classifier: Logistic Regression

Ranzato

L=
1
2
∥W∥

2
 log 1exp −W

T
X y

L

W T X y

Log Loss

X ∈RD

y

W ∈RD

W T X

Input:

Binary label:

Parameters: 

Output prediction:

Loss:
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Logistic Regression: Probabilistic Interpretation

p y=1∣X =
1

1e−W
T X

Ranzato

L=− log  p y∣X 

Q: What is the gradient of     w.r.t.    ?L W

Input:

Binary label:

Parameters: 

Output prediction:

Loss:

X ∈RD

y

W ∈RD

W T X

1
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Logistic Regression: Probabilistic Interpretation

p y=1∣X =
1

1e−W
T X

Ranzato

L= log 1exp −W T X y 

Q: What is the gradient of     w.r.t.    ?L W

Input:

Binary label:

Parameters: 

Output prediction:

Loss:

X ∈RD

y

W ∈RD

W T X

1
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Ranzato

sin x 

cos x 

log x 

exp x 

x3
−log 

1

1e−W
T X


Simple Functions

Complicated Function
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Logistic Regression: Computing Loss

Ranzato

−log 
1

1e−W
T X


Complicated Function

W T X
1

1e−u
−log  p

Lu p
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Chain Rule

Ranzato

dL
dx

x y

Given             and            ,

What is             ?

y  x dL /dy

dL /dx

dL
dy
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Chain Rule

Ranzato

dL
dx

dL
dy

x y

dL
dx

=
dL
dy

⋅
dy
dx

Given             and            ,

What is             ?

y  x dL /dy

dL /dx
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Chain Rule

Ranzato

dL
dx

dL
dy

x y

All needed information is local!

dL
dx

=
dL
dy

⋅
dy
dx

Given             and            ,

What is             ?

y  x dL /dy

dL /dx
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Ranzato

Logistic Regression: Computing Gradients

Ranzato

W T X
1

1e−u
−log p

Lu p

dL
dp

X

−1
p
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Ranzato

Logistic Regression: Computing Gradients

Ranzato

W T X
1

1e−u
−log p

Lu p

dp
du

dL
dp

X

p1− p −1
p
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Ranzato

Logistic Regression: Computing Gradients

Ranzato

W T X
1

1e−u
−log p

Lu p

du
dW

dp
du

dL
dp

dL
dW

=
dL
dp

⋅
dp
du

⋅
du
dW

=  p−1 X

X

−1
p

p1− pX
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Ranzato

What Did We Learn?

Ranzato

Logistic
Regression

- Logistic Regression
- How to compute gradients of complicated functions
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Ranzato

Logistic
Regression

Logistic
Regression

Neural Network
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Neural Network

Ranzato

– A neural net can be thought of as a stack of logistic regression   
  classifiers. Each input is the output of the previous layer.

Logistic
Regression

Logistic
Regression

Logistic
Regression

NOTE: intermediate units can be thought of as linear           
              classifiers trained with implicit target values.
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Key Computations: F-Prop / B-Prop

F-PROP

X Z



Ranzato
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{
∂Z
∂ X

,
∂Z
∂

}

∂ L
∂ X

∂ L
∂Z

∂L
∂

Ranzato

B-PROP

Key Computations: F-Prop / B-Prop
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Neural Net: Training

Ranzato

Layer 3Layer 2Layer 1

A)  Compute loss on small mini-batch
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Neural Net: Training

Ranzato

Layer 3Layer 2Layer 1

F-PROP

A)  Compute loss on small mini-batch
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Neural Net: Training

Ranzato

Layer 3Layer 2Layer 1

F-PROP

A)  Compute loss on small mini-batch
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Neural Net: Training

Ranzato

Layer 3Layer 2Layer 1

F-PROP

A)  Compute loss on small mini-batch
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Neural Net: Training

Ranzato

Layer 3Layer 2Layer 1

A)  Compute loss 
B)  Compute gradient w.r.t. parameters

B-PROP

A)  Compute loss on small mini-batch
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Neural Net: Training

Ranzato

Layer 3Layer 2Layer 1

B-PROP

A)  Compute loss 
B)  Compute gradient w.r.t. parameters
A)  Compute loss on small mini-batch
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Neural Net: Training

Ranzato

Layer 3Layer 2Layer 1

B-PROP

A)  Compute loss 
B)  Compute gradient w.r.t. parameters
A)  Compute loss on small mini-batch
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Neural Net: Training

Ranzato

Layer 3Layer 2Layer 1

A)  Compute loss 
B)  Compute gradient w.r.t. parameters
C) Use gradient to update parameters −

dL
d 

A)  Compute loss on small mini-batch
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NEURAL NET: ARCHITECTURE

Ranzato

W j∈R
M×N , b j∈R

N

h j h j1
h j1=W j1

T h jb j1

h j∈R
M , h j1∈R

N
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Ranzato

h j h j1
h j1=W j1

T h jb j1

 x =
1

1e−x

NEURAL NET: ARCHITECTURE

x

 x 
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Ranzato

NEURAL NET: ARCHITECTURE

 x = tanh  x 

h j h j1
h j1=W j1

T h jb j1

x

 x 
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is equivalent to

Ranzato

Graphical Notations

f  X ;W 

W

X h

hk is called feature, hidden unit, neuron or code unit
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MOST  COMMON  ARCHITECTURE

yX

Error
y

NOTE: Multi-layer neural nets with more than two layers are    
                nowadays called deep nets!!

Ranzato
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NOTE: User must specify number of layers, number of hidden  
                units, type of layers and loss function.

Ranzato

MOST  COMMON  ARCHITECTURE

yX

Error
y

NOTE: Multi-layer neural nets with more than two layers are    
                nowadays called deep nets!!
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MOST  COMMON  LOSSES

L=
1
2∑i=1

N
 y i− y i

2

Square Euclidean Distance (regression):

Ranzato

yX

Error
y

y , y∈RN
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Cross Entropy (classification):

L=−∑i=1

N
y i log y i

Ranzato

MOST  COMMON  LOSSES

yX

Error
y

y , y∈[0,1]N , ∑i=1

N
y i=1, ∑i=1

N
y i=1
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1: User specifies loss based on the task.

Ranzato

NEURAL NETS FACTS

2: Any optimization algorithm can be chosen for training.

3: Cost of F-Prop and B-Prop is similar and proportional to the     
      number of layers and their size.
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Toy Code: Neural Net Trainer
% F-PROP
for i = 1 : nr_layers - 1
  [h{i}  jac{i}]  =  logistic(W{i} * h{i-1} +  b{i});
end
h{nr_layers-1}  =  W{nr_layers-1} * h{nr_layers-2}  +   b{nr_layers-1};
prediction  =  softmax(h{l-1});

% CROSS ENTROPY LOSS
loss  =  -  sum(sum(log(prediction)  .*  target));

% B-PROP
dh{l-1}  =  prediction  -  target;
for i = nr_layers – 1 : -1 : 1
  Wgrad{i}  =  dh{i} * h{i-1}';
  bgrad{i}  =  sum(dh{i}, 2);        
  dh{i-1}  =  (W{i}' * dh{i})  .*  jac{i-1};        
end

% UPDATE
for i = 1 : nr_layers - 1
  W{i}  =  W{i}  –  (lr / batch_size)  *  Wgrad{i}; 
  b{i}  =  b{i}  –  (lr / batch_size)  *  bgrad{i}; 
end Ranzato
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TOY EXAMPLE:  SYNTHETIC DATA
1 input & 1 output
100 hidden units in each layer

Ranzato
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1 input & 1 output
3 hidden layers

Ranzato

TOY EXAMPLE:  SYNTHETIC DATA
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1 input & 1 output
3 hidden layers, 1000 hiddens 
Regression of cosine

Ranzato

TOY EXAMPLE:  SYNTHETIC DATA
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1 input & 1 output
3 hidden layers, 1000 hiddens 
Regression of cosine

Ranzato

TOY EXAMPLE:  SYNTHETIC DATA
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Outline
- Neural Networks for Supervised Training

- Architecture
- Loss function

- Neural Networks for Vision: Convolutional & Tiled
- Unsupervised Training of Neural Networks
- Extensions:

- semi-supervised / multi-task / multi-modal

- Comparison to Other Methods
- boosting & cascade methods
- probabilistic models

- Large-Scale Learning with Deep Neural Nets 

Ranzato



59

Example:  1000x1000 image
                  1M hidden units

         10^12 parameters!!!

- Spatial correlation is local
- Better to put resources elsewhere!

Ranzato

FULLY CONNECTED NEURAL NET
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LOCALLY CONNECTED NEURAL NET

Ranzato

Example: 1000x1000 image
                1M hidden units
                Filter size: 10x10

      100M parameters
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LOCALLY CONNECTED NEURAL NET

Ranzato

Example: 1000x1000 image
                1M hidden units
                Filter size: 10x10

      100M parameters
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LOCALLY CONNECTED NEURAL NET

Ranzato

STATIONARITY? Statistics is 
similar at different locations

Example: 1000x1000 image
                1M hidden units
                Filter size: 10x10

      100M parameters
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CONVOLUTIONAL NET

Share the same parameters across 
different locations:
 Convolutions with learned kernels

Ranzato
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Learn multiple filters.

E.g.: 1000x1000 image
         100 Filters
         Filter size: 10x10

    10K parameters

Ranzato

CONVOLUTIONAL NET
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NEURAL NETS FOR VISION

A standard neural net applied to images:
- scales quadratically with the size of the input
- does not leverage stationarity

Solution:
- connect each hidden unit to a small patch of the input
- share the weight across hidden units
This is called: convolutional network.

LeCun et al. “Gradient-based learning applied to document recognition” IEEE 1998

Ranzato
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Let us assume filter is an “eye” detector.

Q.: how can we make the detection robust 
to the exact location of the eye?

Ranzato

CONVOLUTIONAL NET
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By “pooling” (e.g., max or average) filter
responses at different locations we gain
robustness to the exact spatial location
of features.

Ranzato

CONVOLUTIONAL NET
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CONV NETS: EXTENSIONS
Over the years, some new modules have proven to be very 
effective when plugged into conv-nets:

- L2 Pooling

- Local Contrast Normalization

h i1, x , y=∑ j , k ∈N x , y 
h i , j , k
2

h i1, x , y=
hi , x , y−mi , N x , y

 i , N  x , y

layer i1layer i

x , y
N x , y 

layer i1layer i

x , y
N x , y 

Jarrett et al. “What is the best multi-stage architecture for object 
recognition?” ICCV 2009 Ranzato
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CONV NETS: L2 POOLING

-1
 0
 0
 0
 0

 +1

Kavukguoglu et al. “Learning invariant features ...” CVPR 2009 Ranzato

h i h i1
∑i=1

5
⋅i

2

L2 Pooling
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CONV NETS: L2 POOLING

 0
 0
 0
 0
+1

 +1

Kavukguoglu et al. “Learning invariant features ...” CVPR 2009 Ranzato

h i h i1
∑i=1

5
⋅i

2

L2 Pooling
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LOCAL CONTRAST NORMALIZATION

h i1, x , y=
hi , x , y−mi , N x , y

 i , N  x , y

0

 1

 0

 -1

 0

0

 0.5

 0

 -0.5

 0

LCN

Ranzato
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1

 11

 1

 -9

 1

LCN

0

 0.5

 0

 -0.5

 0

Ranzato

h i1, x , y=
hi , x , y−mi , N x , y

 i , N  x , y

LOCAL CONTRAST NORMALIZATION
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L2 Pooling & Local Contrast Normalization
help learning more invariant representations!

CONV NETS: EXTENSIONS

Ranzato
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CONV NETS: TYPICAL ARCHITECTURE

Filtering Pooling LCN

One stage (zoom)

Linear
Layer

Whole system

1st stage 2nd stage 3rd stage

Input 
Image

Class
Labels

Ranzato
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CONV NETS: TRAINING

Algorithm:
Given a small mini-batch
- FPROP
- BPROP
- PARAMETER UPDATE

Since convolutions and sub-sampling are differentiable, we can use 
standard back-propagation.

Ranzato



76

CONV NETS: EXAMPLES

- Object category recognition   
   Boureau et al. “Ask the locals: multi-way local pooling for image       
   recognition” ICCV 2011
- Segmentation
   Turaga et al. “Maximin learning of image segmentation” NIPS 2009
- OCR   
  Ciresan et al. “MCDNN for Image Classification” CVPR 2012
- Pedestrian detection
   Kavukcuoglu et al. “Learning convolutional feature hierarchies for    
   visual recognition” NIPS 2010
- Robotics
   Sermanet et al. “Mapping and planning..with long range perception”  
    IROS 2008

Ranzato



77

LIMITATIONS & SOLUTIONS

- requires lots of labeled data to train

- difficult optimization

- scalability

Ranzato

+ unsupervised learning

+ layer-wise training

+ distributed training
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Outline
- Neural Networks for Supervised Training

- Architecture
- Loss function

- Neural Networks for Vision: Convolutional & Tiled
- Unsupervised Training of Neural Networks
- Extensions:

- semi-supervised / multi-task / multi-modal

- Comparison to Other Methods
- boosting & cascade methods
- probabilistic models

- Large-Scale Learning with Deep Neural Nets 

Ranzato
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BACK TO LOGISTIC REGRESSION

Ranzato

Error

input

target

prediction
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Unsupervised Learning

Ranzato

Error

input prediction

?
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Unsupervised Learning

Ranzato

Q: How should we train the input-output mapping 
      if we do not have target values?

A: Code has to retain information from the input
      but only if this is similar to training samples.

    By better representing only those inputs that are similar to       
    training samples we hope to extract interesting structure 
    (e.g., structure of manifold where data live).

input code
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Unsupervised Learning

Ranzato

Q: How to constrain the model to represent training                 
     samples better than other data points?
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Unsupervised Learning

Ranzato

– reconstruct the input from the code & make code compact          
  (auto-encder with bottle-neck).

– reconstruct the input from the code & make code sparse             
 (sparse auto-encoders)

– add noise to the input or code (denoising auto-encoders)

– make sure that the model defines a distribution that normalizes 
  to 1 (RBM).  

see work in LeCun, Ng, Fergus, Lee, Yu's labs

see work in Y. Bengio, Lee's lab

see work in Y. Bengio, Hinton, Lee, Salakthudinov's lab
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AUTO-ENCODERS NEURAL NETS

Ranzato

encoder

Error

input reconstruction
decoder

code

– input higher dimensional than code 
- error: ||reconstruction - input|| 
- training: back-propagation

2
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SPARSE AUTO-ENCODERS

Ranzato

encoder

Error

input

code

– sparsity penalty: ||code||
- error: ||reconstruction - input|| 

- training: back-propagation

Sparsity
Penalty

1

- loss: sum of squared reconstruction error and sparsity 

decoder
reconstruction

2
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SPARSE AUTO-ENCODERS

Ranzato

encoder

Error

input

code

– input:      code:

- loss:

Sparsity
Penalty

Le et al. “ICA with reconstruction cost..” NIPS 2011

h=W T XX

L  X ;W =∥W h−X∥2∑ j
∣h j∣

decoder
reconstruction



87

How To Use Unsupervised Learning

Ranzato

1) Given unlabeled data, learn features
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How To Use Unsupervised Learning

Ranzato

1) Given unlabeled data, learn features
2) Use encoder to produce features and train another layer on 
     the top
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How To Use Unsupervised Learning

Ranzato

Layer-wise training of a feature hierarchy

1) Given unlabeled data, learn features
2) Use encoder to produce features and train another layer on 
     the top



90

How To Use Unsupervised Learning

Ranzato

1) Given unlabeled data, learn features
2) Use encoder to produce features and train another layer on 
     the top
3) feed features to classifier & train just the classifier

Reduced overfitting since features are 
learned in unsupervised way!

input

label

prediction
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How To Use Unsupervised Learning

Ranzato

1) Given unlabeled data, learn features
2) Use encoder to produce features and train another layer on 
     the top
3) feed features to classifier & jointly train the whole system

Given enough data, this usually yields the 
best results: end-to-end learning!

input

label

prediction
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Outline
- Neural Networks for Supervised Training

- Architecture
- Loss function

- Neural Networks for Vision: Convolutional & Tiled
- Unsupervised Training of Neural Networks
- Extensions:

- semi-supervised / multi-task / multi-modal

- Comparison to Other Methods
- boosting & cascade methods
- probabilistic models

- Large-Scale Learning with Deep Neural Nets 

Ranzato
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Semi-Supervised Learning

Ranzato

airplane

truck

deer

frog

bird
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Semi-Supervised Learning

Ranzato

airplane

truck

deer

frog

bird

LOTS & LOTS OF UNLABELED DATA!!!
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Ranzato

Semi-Supervised Learning

input

prediction

Weston et al. “Deep learning via semi-supervised embedding” ICML 2008

label

Loss = supervised_error + unsupervised_error
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Multi-Task Learning

Ranzato

Face detection is hard because 
of lighting, pose, but also 
occluding goggles.

Face detection could made be 
easier by face identification.

The identification task may help the detection task.



97

Multi-Task Learning
- Easy to add many error terms to loss function.
- Joint learning of related tasks yields better representations.

Example of architecture:

Collobert et al. “NLP (almost) from scratch” JMLR 2011 Ranzato



98

Multi-Modal Learning

Ranzato

Audio and Video streams are 
often complimentary to each 
other.

E.g., audio can provide important 
clues to improve visual recognition, 
and vice versa.
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Multi-Modal Learning

- Weak assumptions on input distribution
- Fully adaptive to data

Ngiam et al. “Multi-modal deep learning” ICML 2011 Ranzato

Example of architecture:
modality #1

modality #2

modality #3
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Outline
- Neural Networks for Supervised Training

- Architecture
- Loss function

- Neural Networks for Vision: Convolutional & Tiled
- Unsupervised Training of Neural Networks
- Extensions:

- semi-supervised / multi-task / multi-modal

- Comparison to Other Methods
- boosting & cascade methods
- probabilistic models

- Large-Scale Learning with Deep Neural Nets 

Ranzato
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Boosting & Forests

Deep Nets:
- single highly non-linear system
- “deep” stack of simpler modules
- all parameters are subject to learning 

Boosting & Forests:
- sequence of “weak” (simple) classifiers that are linearly combined 
to produce a powerful classifier
- subsequent classifiers do not exploit representations of earlier 
classifiers, it's a “shallow” linear mixture

- typically features are not learned 
Ranzato
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Properties Deep Nets Boosting

Hierarchical features

Easy to parallelize

End-to-end learning

Fast training

Fast at test time

Leverage unlab. data

Adaptive features

Ranzato
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Deep Neural-Nets VS Probabilistic Models
Deep Neural Nets:
- mean-field approximations of intractable probabilistic models
- usually more efficient
- typically more unconstrained (partition function has to be              
  replaced by other constraints, e.g. sparsity).

Hierarchical Probabilistic Models (DBN, DBM, etc.):
- in the most interesting cases, they are intractable
- they better deal with uncertainty
- they can be easily combined

Ranzato
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Example: Auto-Encoder

E [Z∣X ]= W T Xbe

Neural Net:

Probabilistic Model (Gaussian RBM):

X=W d Zbd

Z= W e
T Xbe

E [ X ∣Z ]=W Zbd

Ranzato

code

reconstruction
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Properties Deep Nets Probab. Models

Hierarchical features

Models uncertainty

End-to-end learning

Fast training

Fast at test time

Leverage unlab. data

Adaptive features

Ranzato
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Outline
- Neural Networks for Supervised Training

- Architecture
- Loss function

- Neural Networks for Vision: Convolutional & Tiled
- Unsupervised Training of Neural Networks
- Extensions:

- semi-supervised / multi-task / multi-modal

- Comparison to Other Methods
- boosting & cascade methods
- probabilistic models

- Large-Scale Learning with Deep Neural Nets 

Ranzato
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Tera-Scale Deep Learning @ Google

Observation #1: more features always improve                          
                                performance unless data is scarce.

Observation #2: deep learning methods have higher capacity     
                                 and have the potential to model data better.

Q #1: Given lots of data and lots of machines, can we scale up      
             deep learning methods?

Q #2: Will deep learning methods perform much better?

Ranzato
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The Challenge

– best optimizer in practice is on-line SGD which is naturally           
   sequential, hard to parallelize.

– layers cannot be trained independently and in parallel, hard to      
   distribute

– model can have lots of parameters that may clog the network,      
   hard to distribute across machines 

A Large Scale problem has: 
– lots of training samples (>10M)
– lots of classes (>10K) and 
– lots of input dimensions (>10K).

Ranzato
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Our Solution

input

1st layer

2nd layer

Le et al. “Building high-level features using large-scale unsupervised learning” ICML 2012 Ranzato
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1st 
machine

2nd

machine
3rd 

machine

Ranzato

Our Solution

input

1st layer

2nd layer
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MODEL 
PARALLELISM

Ranzato

Our Solution

1st 
machine

2nd

machine
3rd 

machine
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Distributed Deep Nets

Deep Net MODEL 
PARALLELISM

input #1

RanzatoLe et al. “Building high-level features using large-scale unsupervised learning” ICML 2012
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Distributed Deep Nets

MODEL 
PARALLELISM

+
DATA

PARALLELISM

RanzatoLe et al. “Building high-level features using large-scale unsupervised learning” ICML 2012

input #1
input #2

input #3
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Asynchronous SGD

PARAMETER SERVER

1st replica 2nd replica 3rd replica
Ranzato
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Asynchronous SGD

PARAMETER SERVER

1st replica 2nd replica 3rd replica
Ranzato

∂ L
∂1
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Asynchronous SGD

PARAMETER SERVER

1st replica 2nd replica 3rd replica
Ranzato

1
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Asynchronous SGD

PARAMETER SERVER
(update parameters)

1st replica 2nd replica 3rd replica
Ranzato



118

Asynchronous SGD

PARAMETER SERVER

1st replica 2nd replica 3rd replica
Ranzato

∂ L
∂2
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Asynchronous SGD

PARAMETER SERVER

1st replica 2nd replica 3rd replica
Ranzato

2
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Asynchronous SGD

PARAMETER SERVER
(update parameters)

1st replica 2nd replica 3rd replica
Ranzato
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Unsupervised Learning With 1B Parameters

DATA: 10M youtube (unlabeled) frames of size 200x200.

RanzatoLe et al. “Building high-level features using large-scale unsupervised learning” ICML 2012
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Deep Net:
– 3 stages

– each stage consists of local filtering, L2 pooling, LCN 
- 18x18 filters
- 8 filters at each location
- L2 pooling and LCN over 5x5 neighborhoods

– training jointly the three layers by:
- reconstructing the input of each layer
- sparsity on the code

RanzatoLe et al. “Building high-level features using large-scale unsupervised learning” ICML 2012

Unsupervised Learning With 1B Parameters
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Deep Net:
– 3 stages

– each stage consists of local filtering, L2 pooling, LCN 
- 18x18 filters
- 8 filters at each location
- L2 pooling and LCN over 5x5 neighborhoods

– training jointly the three layers by:
- reconstructing the input of each layer
- sparsity on the code

RanzatoLe et al. “Building high-level features using large-scale unsupervised learning” ICML 2012

Unsupervised Learning With 1B Parameters

1B parameters!!!
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Validating Unsupervised Learning

RanzatoLe et al. “Building high-level features using large-scale unsupervised learning” ICML 2012

The network has seen lots of objects during training, but 
without any label. 

Q.: how can we validate unsupervised learning?

Q.: Did the network form any high-level representation? 
       E.g., does it have any neuron responding for faces?

– build validation set with 50% faces, 50% random images
- study properties of neurons
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Validating Unsupervised Learning

1st stage 2nd stage 3rd stage

n
eu

ro
n

 resp
o

n
ses

RanzatoLe et al. “Building high-level features using large-scale unsupervised learning” ICML 2012
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Top Images For Best Face Neuron

Ranzato
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Best Input For Face Neuron

RanzatoLe et al. “Building high-level features using large-scale unsupervised learning” ICML 2012
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Unsupervised + Supervised (ImageNet)

1st stage 2nd stage 3rd stage

Input 
Image y

COST

y

RanzatoLe et al. “Building high-level features using large-scale unsupervised learning” ICML 2012
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Object Recognition on ImageNet

IMAGENET v.2011 (16M images, 20K categories)

METHOD ACCURACY %

Weston & Bengio 2011

Deep Net (from random)

Deep Net (from unsup.)

9.3

13.6

15.8

Linear Classifier on deep features 13.1

RanzatoLe et al. “Building high-level features using large-scale unsupervised learning” ICML 2012
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Top Inputs After Supervision

Ranzato
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Ranzato

Top Inputs After Supervision
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Experiments: and many more...

- automatic speech recognition

- natural language processing

- biomed applications

- finance

Generic learning algorithm!!

Ranzato
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Deep Learning website 

Matlab code for R-ICA unsupervised algorithm 

Python-based learning library 

C++ code for ConvNets 

Lush learning library which includes ConvNets

Torch7: learning library that supports neural net training
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Software & Links

Code used to generate demo for this tutorial

Ranzato

- http://cs.nyu.edu/~fergus/tutorials/deep_learning_cvpr12/
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Visualizing Learned Features

Ranzato et al. “Sparse feature learning for DBNs” NIPS 2007 Ranzato

Q: can we interpret the learned features?
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Visualizing Learned Features

Ranzato et al. “Sparse feature learning for DBNs” NIPS 2007 Ranzato

W h=W 1h1W 2h2reconstruction:

0.9 + 0.7 + 0.5 + 1.0 + ...=≈

Columns of       show what each code unit represents.W
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Visualizing Learned Features

Ranzato et al. “Sparse feature learning for DBNs” NIPS 2007 Ranzato

1st layer features
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Visualizing Learned Features

Ranzato et al. “Sparse feature learning for DBNs” NIPS 2007 Ranzato

Q: How about the second layer features?

A: Similarly, each second layer code unit can be visualized by   
      taking its bases and then projecting those bases in image    
      space through the first layer decoder.
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Visualizing Learned Features

Ranzato et al. “Sparse feature learning for DBNs” NIPS 2007 Ranzato

Q: How about the second layer features?

Missing edges have 0 weight.
Light gray nodes have zero value.

A: Similarly, each second layer code unit can be visualized by   
      taking its bases and then projecting those bases in image    
      space through the first layer decoder.
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Visualizing Learned Features

Ranzato et al. “Sparse feature learning for DBNs” NIPS 2007 Ranzato

1st layer features

2nd layer features

Q: how are these images computed?
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Example of Feature Learning

Ranzato et al. “Sparse feature learning for DBNs” NIPS 2007

1st layer features

2nd layer features

Ranzato
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