CVPR 2012 Tutorial
Deep Learning Methods for Vision

(draft)

Honglak Lee
Computer Science and Engineering Division
University of Michigan, Ann Arbor



Feature representations

pixel 1

» | Learning
algorithm

pixel 2
Input

2k Motorbikes
Input space | = “Non"-Motorbikes

pixel 2
Lt
Ul




Feature representations

handle

._ > Feature
@ wheel representation

Input

=% Motorbikes
Input space | = “Non"-Motorbikes

N - + o
[ O
2| b = 2
< -
= P
+ -
pixel 1

5 | Learning
algorithm

Feature space




How is computer perception done?

State-of-the-art:
“hand-crafting”

l’ Feature Learning
Input data : —> :
P = representation algorithm
Object ‘
detection -
~ Low-level Object detection
vision features / classification

(SIFT, HOG, etc.)

classification A 8 SRS
Eéu
| o Low-level
Audio audio features Speaker
identification

(spectrogram, MFCC, etc.)



Computer vision features

Normalized patch Spin image

Pt =l M EE AN
/,f Nl Ed
7

= xf; I

I e U Sy e

e "/"x‘k,( =3
e e B R

N o4 e = LS

Image gradients Keypoint descriptor

SIFT

Orientation Voting

T~ ~«~— Overlapping Blocks
S -

Input Image

-~ ~ -

HoG

EEEBEEE S3RE 1.

ESND@E - - /- r 7 <

DEEEEE === 2 .
ESNIEE=SN 172 73\

ENNIAE=ENNNAZ
E!Illlf~‘-f/ (a) (b) ©) @ (@
L

Textons GLOH



Computer vision features

rmalized patch Spin image

Spin image

RIFT

4d-

Hand-crafted features:

1. Needs expert knowledge

2. Requires time-consuming hand-tuning
3. (Arguably) one of the limiting factors of
computer vision systems




Learning Feature Representations

e Key idea:

— Learn statistical structure or correlation of the data from
unlabeled data

— The learned representations can be used as features in
supervised and semi-supervised settings

— Known as: unsupervised feature learning, feature learning,
deep learning, representation learning, etc.
* Topics covered in this talk:
— Restricted Boltzmann Machines
— Deep Belief Networks
— Denoising Autoencoders
— Applications: Vision, Audio, and Multimodal learning



Learning Feature Hierarchy

* Deep Learning

3rd layer

— Deep architectures can be “Objects”
representationally efficient.

— Natural progression from 2nd layer
low level to high level “Object parts”
structures.

1st layer
— Can share the lower-level “edges”

representations for

multiple tasks. Input
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Learning Feature Hierarchy

[Related work: Hinton, Bengio, LeCun, Ng, and others.]

! n m Higher layer: DBNs

(Combinations
‘ of edges)

¥, First layer: RBMs

(edges)
ESCAN

‘ Input image patch
(pixels)
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Restricted Boltzmann Machines

with binary-valued input data

* Representation
— Undirected bipartite graphical model
—v € {0,1}P: observed (visible) binary variables
—h € {0,1}¥: hidden binary variables. hidden (H)

P(v,h) = % exp(—F(v,h)) Q @ O
E(v,h) = =3 o Wih; = bihyj =Y civi 4,
j O O

ij i

= —vIWh—-b'h-c'v visible (V)

Z= Y >  exp(—E(v,h))

ve{0,1}P he{0,1} ¥
12



Conditional Probabilities
(RBM with binary-valued input data)

* Givenyv, all the h; are conditionally
independent

P(h —1 V) _ exp(Zi Wl-jvj+bj) hldden (H)

exp(X; Wijvj+bj)+1
=sigmoid(}; W;; vj + b;) Q @ O

-51gm01d(w] Y + b;)

— P(h|v) can be used as “features” ‘ A‘

VISIb|e (V)

* Given h, all the v; are conditionally
independent

P(v;|h) = sigmoid(X; W;; hj + ¢;)

13



Restricted Boltzmann Machines

with real-valued input data
* Representation
— Undirected bipartite graphical model
— V: observed (visible) real variables
— H: hidden binary variables. hidden (H)

1 Q9O

P(v,h) = Eexp( E(v,h))

h):TiQZ(w— ——szWmh th b b

visible (V)

14



Conditional Probabilities
(RBM with real-valued input data)

* Givenyv, all the h; are conditionally
independent

P(h _ 1|v) _ exp(%zi Wijvj+bj) hldden (H)

exp(—Z Wijvj+bj)+1
—51gm01d(—2 ij Vi + bj) Q @ O

—51gm01d(— Tv + b, i)

— P(h|v) can be used as “features” ‘ “

* Given h, all the v; are conditionally V|S|ble (V)
independent

P(Ullh) — N(O’Z] Wl] h] + Ci,O'Z) or
P(vlh) = N (eWh + ¢, ?]).

15



Inference

e Conditional Distribution: P(v|h) or P(h|v)
— Easy to compute (see previous slides).

— Due to conditional independence, we can sample all hidden
units given all visible units in parallel (and vice versa)

* Joint Distribution: P(v,h)

— Requires Gibbs Sampling (approximate; lots of iterations to
converge).

Initialize with v°
Sample h° from P(h|v?)

Repeat until convergence (t=1,...) {
Sample vt from P(vt|ht™1)
Sample ht from P(h|v?)

16



Training RBMs

. Model: Pg(v,h):%exp(—E(v,h;Q))

* How can we find parameters 8 that maximize Pg(Vv)?

9 0 0
% log P(V) — Ethg(iV) [_%E(h’ V)] - Ev’,l?e(vah) [_%E(h” V)]
Data Distribution Model Distribution

(posterior of h given v)

* We need to compute P(h|v) and P(v,h), and
derivative of E wrt parameters {W,b,c}
— P(h|v): tractable
— P(v,h): intractable

* Can approximate with Gibbs sampling, but requires lots of iterations
17
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Contrastive Divergence

* An approximation of the log-likelihood gradient for

RBMs
1. Replace the average over all possible inputs by samples

O 0 0 /
59 log P(v) = Enrpy(n|v) [_%E(hav)] ‘@(V:h) [_39@

2. Run the MCMC chain (Gibbs sampling) for only k steps
starting from the observed example

Initialize with v = v
Sample h' from P(h|v?)

Fort=1,..., K {
Sample vt from P(vt|hi™1)
Sample ht from P(h|v?)

18




A picture of the maximum likelihood learning
algorithm for an RBM

t=0 t=1 t=2 t = infinity

I

Equilibrium
distribution

Slide Credit: Geoff Hinton 19



A quick way to learn an RBM

Start with a training vector on the
visible units.

Update all the hidden units in
parallel

Update the all the visible units in
parallel to get a “reconstruction”.

Update the hidden units again.

Slide Credit: Geoff Hinton 20



Update Rule: Putting together

* Training via stochastic gradient.

OE
* Note, — hivj.
aWij

 Therefore,

~1log P(v) = Enwpy(nv) [Vils] = Evi hepy(von) [0ih]

— Can derive similar update rule for biases b and ¢
— Implemented in ~10 lines of matlab code

21



Other ways of training RBMs

e Persistent CD [Tieleman, IcML 2008; Tieleman & Hinton, ICML 2009]

— Keep a background MCMC chain to obtain the
negative phase samples.

— Related to Stochastic Approximation
* Robbins and Monro, Ann. Math. Stats, 1957
* L. Younes, Probability Theory 1989

e Score I\/Iatching [Swersky et al., ICML 2011; Hyvarinen, JMLR 2005]
— Use score function to eliminate Z
— Match model’s & empirical score function

O0log p(x Olog q(x
p(z) =q(x)/Z  ¢= gf( ) _ gg( )

22



Estimating Log-Likelihood of RBMSs

e How do we measure the likelihood of the learned
models?

 RBM: requires estimating partition function

* Reconstruction error provides a cheap proxy
* Log Z tractable analytically for < 25 binary inputs or hidden

e Can be approximated with Annealed Importance Sampling (AIS)
e Salakhutdinov & Murray, ICML 2008

* Open question: efficient ways to monitor progress

23



Variants of RBMs

25



Sparse RBM / DBN

* Main idea [Lee et al., NIPS 2008]

— Constrain the hidden layer nodes to have “sparse”
average values (activation). [cf. sparse coding]

* Optimization
— Tradeoff between “likelihood” and “sparsity penalty”
Log-likelihood Sparsity penalty
Al A
' \ ' \

minimize gy, oy — Y log P(v(k)) + (W, b, ¢)
k=1

we can use other
where ¢ 2 AN (Egumprelhi[v] — p)? penalty functions

J (e.g.,
/ \ KLdivergence)

Average activation  Target sparsity

26



Modeling handwritten digits

* Sparse dictionary learning via sparse RBMs

olelelelele A
Tw » e First layer bases
7| ; & 7 _ t k ”
Q00000 Z _g;* : (“pen-strokes”)
~ | S

Input nodes (data)

Learned sparse representations
can be used as features.

Training examples [Lee et al., NIPS 2008; Ranzato et al,

NIPS 2007] -



3-way factorized RBM

[Ranzato et al., AISTATS 2010; Ranzato and Hinton, CVPR 2010]

 Models the covariance structure of images using
hidden variables

— 3-way factorized RBM / mean-covariance RBM

Gaussian MRF 3-way (covariance) RBM
1
E(x,h) = sx'3¥71x E(x,h) = §XTC[diag(Ph)]CTX

[Slide Credit: Marc’Aurelio Ranzato] »g



Generating natural image patches

mcRBM

Natu ral images Ranzato and Hinton CVPR 2010

- GRBM

from Osindero and Hinton NIPS 2008

S-RBM + DBN

from Osindero and Hinton NIPS 2008

Slide Credit: Marc’Aurelio Ranzato 29
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Deep Belief Networks (DBNs)

Hinton et al., 2006

* Probabilistic generative model
* Deep architecture — multiple layers

* Unsupervised pre-learning provides a good
initialization of the network

— maximizing the lower-bound of the log-likelihood
of the data

e Supervised fine-tuning
— Generative: Up-down algorithm
— Discriminative: backpropagation

32



DBN structure

Hidden /

layers T

X Directed
h belief nets

P(v,ht,h2,....h") = P(v|hY)P(h! |h?)...P(h'? |h")P(h' 2, h')

33



DBN structure

Hinton et al., 2006

Generative

We I p(hZ’ h3) process

(approximate) inference
Q(h’[h*) =P(h’| hZ)T

h2
A
Q(h?|h*) | , | P(h*|h?)
| i
A
Q(h'|v) | Y| P(v[hY)
1 VV

P(v,ht,h?,....h') = P(v [hY)P(h! | h?)...P(h'? |h)P(h', h')
Q(h' [h™) = Tsigm(b* +Wjh™)  P(h"™ |n') =TT sigm(b + W} 'h')

34



DBN Greedy training

* First step:

— Construct an RBM with
an input layer v and a
hidden layer h

— Train the RBM

Hinton et al., 2006

35



DBN Greedy training

Hinton et al., 2006

* Second step:

— Stack another hidden
layer on top of the RBM
to form a new RBM

— Fix W', sample h’ from
Q(h'|v) as input. Train
W? as RBM.

36



DBN Greedy training

* Third step:

Hinton et al., 2006

— Continue to stack layers
on top of the network,
train it as previous step|
with sample sampled l

from Q(h?|h")
e And so on...

37



Why greedy training works?

Hinton et al., 2006

 RBM specifies P(v,h) from
P(v|h)and P(h]|v) h?
— Implicitly defines P(v) and
P(h) wi'
* Key idea of stacking
— Keep P(v|h) from 1st RBM

— Replace P(h) by the
distribution generated by
2nd level RBM

38



Why greedy training works?
Hinton et al., 2006
* Greey Training:

— Variational lower-bound justifies
greedy layerwise training of
RBMs

log P(x) > Houp + Y Q(h[x) (log P(h) + log P(x|h))
h Trained by the second layer RBM
39




Why greedy training works?

Hinton et al., 2006
* Greey Training:

— Variational lower-bound justifies L2
greedy layerwise training of
RBMs

— Note: RBM and 2-layer DBN are
equivalent when W? = (WHT. o(h IV?
Therefore, the lower bound is
tight and the log-likelihood
improves by greedy training.

log P(x) > Houp + Y Q(h[x) (log P(h) + log P(x|h))
h Trained by the second layer RBM
40




DBN and supervised fine-tuning

* Discriminative fine-tuning
— Initializing with neural nets + backpropagation
— Maximizes logP(Y | X) (x:data Y: label)

* Generative fine-tuning
— Up-down algorithm
— Maximizes log P(Y, X) (joint likelihood of data and labels)

41



A model for digit recognition

The top two layers form an

associative memory whose 2000 top-level neurons
energy landscape models the low
dimensional manifolds of the I I
digits.
10 label
The energy valleys have names = 500 neurons
neurons I
The model learns to generate
combinations of labels and images. 500 neurons
To perform recognition we start with a I 1
neutral state of the label units and do 28 x 28
an up-pass from the image followed pixel
by a few iterations of the top-level image

associative memory.
http://www.cs.toronto.edu/~hinton/nipstutorial/nipstut3.ppt ~ Slide Credit: Geoff Hinton 43



http://www.cs.toronto.edu/~hinton/nipstutorial/nipstut3.ppt

Fine-tuning with a contrastive version
of the “wake-sleep” algorithm

After learning many layers of features, we can fine-tune the
features to improve generation.

1. Do a stochastic bottom-up pass

— Adjust the top-down weights to be good at reconstructing
the feature activities in the layer below.

2. Do afew iterations of sampling in the top level RBM
-- Adjust the weights in the top-level RBM.
3. Do a stochastic top-down pass

— Adjust the bottom-up weights to be good at reconstructing
the feature activities in the layer above.

http://www.cs.toronto.edu/~hinton/nipstutorial/nipstut3.ppt  Slide Credit: Geoff Hinton

44


http://www.cs.toronto.edu/~hinton/nipstutorial/nipstut3.ppt

Generating sample from a DBN

 Want to sample from
P(v,h!,h?,....h") = P(v|h)P(h |h?)..P(h'"2 |h'")P(h' h')
— Sample h'* using Gibbs sampling in the RBM

— Sample the lower layer h'™* from P(h'*|h")
Gibbs chain

45



Generating samples from DBN

-,

v, C
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~
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Figure 9: Each row shows 10 samples from the generative model with a par-
ticular label clamped on. The top-level associative memory is initialized by an
up-pass from a random binary image in which each pixel is on with a probability
of 0.5. The first column shows the results of a down-pass from this initial high-
level state. Subsequent columns are produced by 20 iterations of alternating
Gibbs sampling in the associative memory.

e,

Hinton et al, A Fast Learning Algorithm for Deep Belief Nets, 2006
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Result for supervised fine-tuning on MNIST

e Very carefully trained backprop net with  1.6%
one or two hidden layers (Platt; Hinton)

* SVM (Decoste & Schoelkopf, 2002) 1.4%

* Generative model of joint density of 1.25%
images and labels (+ generative fine-tuning)

* Generative model of unlabelled digits 1.15%

followed by gentle backpropagation
(Hinton & Salakhutdinov, Science 2006)

http://www.cs.toronto.edu/~hinton/nipstutorial/nipstut3.ppt  ¢jige credit: Geoff Hinton
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http://www.cs.toronto.edu/~hinton/nipstutorial/nipstut3.ppt

* More details on up-down algorithm:

— Hinton, G. E., Osindero, S. and Teh, Y. (2006) “A fast learning algorithm
for deep belief nets”, Neural Computation, 18, pp 1527-1554.

http://www.cs.toronto.edu/~hinton/absps/ncfast.pdf

* Handwritten digit demo:
— http://www.cs.toronto.edu/~hinton/digits.html

48
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http://www.cs.toronto.edu/~hinton/digits.html
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Denoising Autoencoder

* Denoising Autoencoder
— Perturbs the input x to a corrupted version: x ~ ¢(x|x)

* E.g., randomly sets some of the coordinates of input to zeros.
— Recover x from encoded h of perturbed data.
— Minimize loss between X and X

h = f(%)
QOO0 HX.X)

7N
_ - N\

[Vincent et al., ICML 2008] g4




Denoising Autoencoder

* Learns a vector field towards [Vincent et al., ICML 2008]

higher probability regions
* Minimizes variational lower

bound on a generative model

. Corrupted input \
* Corresponds to regularized ’

score matching on an RBM

Slide Credit: Yoshua Bengio g5



Stacked Denoising Autoencoders

* Greedy Layer wise learning
— Start with the lowest level and stack upwards

— Train each layer of autoencoder on the intermediate code
(features) from the layer below

— Top layer can have a different output (e.g., softmax non-
linearity) to provide an output for classification

h(OOOO000)
W Wy’
x OOCO0OO000

Slide Credit: Yoshua Bengio g3



Stacked Denoising Autoencoders

* No partition function,
can measure training Budget of 10 million iterations

i
10 T e T EEEEETTTET EETErrerersrm  eTsvTFTTT yTeTeTTTTTT T YT T TFIe Fvrsversreereeee=|
L4 L4 B P D J
C r I te rl O n .................. N S R ===="*1layer wlo pre-training ]
: : = 3 layers wlo pre-training
===="1layer with RBM pretraining

= 3 layers with RBM pre-training

1 f ] . - |
° Encoder‘ & dECOder 10 Rp . ;I':;’::Swirhdjz:;ﬁgfg":::::rf;"lr"""?

any parametrization _Zjﬁ_ﬁﬁ;ﬁ;;ﬁ‘ﬁ;ﬁjﬁﬁﬁﬁﬁ_';ﬁ;ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ:ﬁﬁﬁﬁﬁﬁﬁﬁﬁjﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ;ﬁﬁﬁﬁﬁﬁﬁﬁj

® Performs aSs We” or % ;::::::::;:::::::::E:::::i:‘:ﬁ:‘:—::::_. :"""""::::::"“::::::::;::::::::;
better than stacking R AN Vi

S [ e TV

10 Fooninninnnin panmnnni ......... Cnnnnnnionnnni ......... RIS TR ...... =

RBMs for usupervised
pre-training Effffffffffffffffffffffffffff;fffffffff‘ffffffffffffffffffffifffffffffffffffffffffffffff;:fffffﬁf;

10 L ‘
0 1 4 3 4 5 6 7 8 9 10
Number of examples seen <10

Infinite MNIST

Slide Credit: Yoshua Bengio gy



Denoising Autoencoders: Benchmarks

Larochelle et al., 2009

basic: subset of MNIST digits. (10 000 training samples) |

rot: applied random rotation (angle
between 0 and 27 radians)

bg-rand: background made of ran-
dom pixels (value in 0. .. 255)

bg-img: background is random patch
from one of 20 images

rol-bg-img: combination of rotation
and background image

rect: discriminate between tall and
wide rectangles.

rect-img: same but rectangles are
random image patches

convex: discriminate between convex [ |n.!n.|]
and non-convex shapes.

Slide Credit: Yoshua Bengio g




Denoising Autoencoders: Results

 Test errors on the benchmarks Larochelle et al., 2009
Problem SVNM,;; DBN-1| DBN-3 SAA-3 SdA-3 (v) | SVM,¢(v)
basic 3.032015 3.941017| 3. 11015 3.46+016 2.80x014 (10%) | 3.07 (10%)
rot 11.11+028 14.69+031 | 10.30+027 10.30+027 10.29+027 (10%) | 11.62 (10%)

bg-rand 14.58+031  9.80+026 | 6.73:022 11.28+028 10.38+027 (40%) | 15.63 (25%)
bg-img 22.61+03 16.152032|16.31x032 23.001037 16.68x033 (25%)|23.15 (25%)
rot-bg-img 55.18+044 52.21+044 |47.39+044 51.931044 44.49:044 (25%)|54.16 (10%)
rect 2152013 4711000 2.60014 2.41+013 1.99:012 (10%) | 2.45 (25%)
rect-img  24.04+03 23.69+037 |22.50+037 24.05z037 21.59+036 (25%) |23.00 (10%)

convex 19.131034 19.921035 | 18.63+034 18.41+03s 19.06+034 (10%)|24.20 (10%)

Slide Credit: Yoshua Bengio gg



Why Greedy Layer Wise Training Works

(Bengio 2009, Erhan et al. 2009)
e Regularization Hypothesis

— Pre-training is “constraining” parametersin a
region relevant to unsupervised dataset

— Better generalization

(Representations that better describe unlabeled data are more
discriminative for labeled data)

e Optimization Hypothesis

— Unsupervised training initializes lower level
parameters near localities of better minima than
random initialization can

Slide Credit: Yoshua Bengio gg
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Convolutional Neural Networks

(LeCun et al., 1989)

Poohngf/////

Sub-sampling
layer

Weight
sharing

Local Receptive
Fields

I JI

Input image Convolutional layer

67



Deep Convolutional Architectures

State-of-the-art on MINIST digits, Caltech-101 objects, etc.

i X ! J._ .' i.’_
! g by __ﬁ

Iy a.: @.;e.w,‘_7$

i é .\
g" N, .ﬁ.ﬂ i u___.é_w

OOZ/\OFC.:OZ..W wawv

ANOIRNRN
i

:
R

CONVOLUTIONS (9%x9)

W\

Y (luminance)

Wy .g ,_ 8 .__., _Wa_ \

\

64@25125 64@5%5

32@33x33

32@132x132

INPUT 3@140x140

Slide Credit: Yann LeCun 70



Learning object representations

* Learning objects and parts in images

* Large image patches contain interesting higher-
level structures.

— E.g., object parts and full objects

71



lllustration: Learning an “eye” detector

= g & @ Advantage of shrinking
‘Eyedetector’” MBI B 1. Filter size is kept sma

N\ 2. Invariance

“Shrink’ =
(max over 2x2) Sl

filterl

“Filtering”
output



Convolutional RBM (CRBM) [Lee et al, ICML 2009]
[Related work: Norouzi et al., CVPR 2009; Desjardins and Bengio, 2008]
For “filter” k, “max-pooling” node (binary)

Max-pooling layer P
/ é Detection layer H

Hldden nodes (binary)
Constraint: At most

Wk

one hidden nOde s 1 “Filter” weights (shared)
(active).

/ Input data V

. Key Properties
P(v,h) o exp %:kh iV *2)i | a Convolutional structure
subj. to SS hF <1,vky " Probabilistic max-pooling
(i,5) € “cell(y)” (“mutual exclusion”)

73



Convolutional deep belief networks illustration

@)

Layer 3 activation (coefficients)

O BC RS

Layer 2 activation (coefficients)

Filter
visualization

/Input Image

' Example image
74




Unsupervised learning from natural images

Second layer bases

contours, corners, arcs,
surface boundaries

First layer bases
localized, oriented edges

75



Unsupervised learning of object-parts

Elephants Chairs

76



Image classification with Spatial Pyramids

[Lazebnik et al., CVPR 2005; Yang et al., CVPR 2009]

Featurevector[ @ @ O O ]
* Descriptor Layer: detect and locate

Concatenating

features, extract corresponding /e
descriptors (e.g. SIFT) /@ o;
. Pooling ‘
o oe e
* Code Layer: code the descriptors e / © oo @ /
— Vector Quantization (VQ): each code has / onilens Mg °/
®© o/ ©

only one non-zero element

Coding .
— Soft-VQ: small group of elements can be vescivir/ @ HH @ @/
non-zero ® o ®/
® o @ ®/
®© o/ ® if
* SPM layer: pool codes across ey
subregions and average/normalize into mage AR
a histogram e
Slide Credit: Kai Yu 78



Improving the coding step

* C(lassifiers using these features need

nonlinear kernels RN .00 !
— Lazebnik et al., CVPR 2005; Grauman and Contiiilling
Darrell, JMLR 2007 sm /O @ /
— High computational complexity . °‘
* |dea: modify the coding step to /O - © ./

produce feature representations that e '@ O/ @ @

: e : © O/ @
linear classifiers can use effectively /o o /o O/

— Sparse coding [Olshausen & Field, Nature

Coding )
1996; Lee et al., NIPS 2007; Yang et al., Descripter/ @ — @ @ /
CVPR 2009; Boureau et al., CVPR 2010] ®© o/ ®/
® © © ©/

— Local Coordinate coding [Yu et al., NIPS
2009; Wang et al., CVPR 2010]

— RBMis [Sohn, Jung, Lee, Hero llI, ICCV s
2011] Image ‘_‘.:. ,

B AN

Slide Credit: Kai Yu 79

— Other feature learning algorithms



Object Recognition Results

* Classification accuracy on Caltech 101/256

< Caltech 101 >

# of training images m

Zhang et al., CVPR 2005 59.1 66.2

Griffin et al., 2008 59.0 67.6

ScSPM [Yang et al., CVPR 2009] 67.0 73.2

LLC [Wang et al., CVPR 2010] 65.4 73.4
Macrofeatures [Boureau et al., CVPR 2010] - 75.7
Boureau et al., ICCV 2011 - 771

Sparse RBM [Sohn et al., ICCV 2011] 68.6 74.9
Sparse CRBM [Sohn et al., ICCV 2011] 71.3 77.8

Competitive performance to other state-of-the-art methods
using a single type of features



Object Recognition Results

» Classification accuracy on Caltech 101/256

< Caltech 256 >

_____ #oftrainingimages | 30 | 60 _

Griffin et al. [2] 34.10 -

vanGemert et al., PAMI 2010 27.17 -
ScSPM [Yang et al., CVPR 2009] 34.02 40.14
LLC [Wang et al., CVPR 2010] 41.19 47.68

Sparse CRBM [Sohn et al., ICCV 2011] 42.05 47.94

Competitive performance to other state-of-the-art methods
using a single type of features



Local Convolutional RBM

Modeling convolutional structures in local
regions jointly

— More statistically effective in learning for non-
stationary (roughly aligned) images

[Huang, Lee, Learned-Miller, CVPR 2012] gg



Face Verification

Feature Learning

Convolutional Deep Belief Network
1 to 2 layers of CRBM/local CRBM

Face Verification

I

Representation
whitened pixel intensity/LBP

LFW pairs

®

o
}

Representation
top-most pooling layer

Faces

Kyoto
(self-taught
learning)

}

Verification Algorithm

Metric Learning + SVM
Prediction
matched mismatched

[Huang, Lee, Learned-Miller, CVPR 2012]
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Face Verification

[Huang, Lee, Learned-Miller, CVPR 2012]

Method ______________ Accuracy+SE__

V1-like with MKL (Pinto et al., CVPR 2009) 0.7935 + 0.0055
Linear rectified units (Nair and Hinton, ICML 2010) 0.8073 + 0.0134
CSML (Nguyen & Bai, ACCV 2010) 0.8418 + 0.0048

Learning-based descriptor (Cao et al., CVPR 2010) 0.8445 + 0.0046

0SS, TSS, full (Wolf et al., ACCV 2009) 0.8683 + 0.0034
0SS only (Wolf et al., ACCV 2009) 0.8207 + 0.0041
Combined (LBP + deep learning features) 0.8777 £ 0.0062
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Tiled Convolutional models
IDEA: have one subset of filters applied to these locations,

91
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Tiled Convolutional models

IDEA: have one subset of filters applied to these locations,
another subset to these locations

92
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Tiled Convolutional models

IDEA: have one subset of filters applied to these locations,
another subset to these locations, etc.

Train jointly all parameters.

:

No block artifacts

Gregor LeCun arXiv 2010 Reduced r'edundancy
Ranzato, Mnih, Hinton NIPS 2010 93

03



Tiled Convolutional models

Treat these units as data
to train a similar model on the top

SECOND STAGE

Field of binary RBM's.
Each hidden unit has a
receptive field of 30x30
pixels in input space.

94
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Facial Expression Recognition

Toronto Face Dataset (J. Susskind et al. 2010)
~ 100K unlabeled faces from different sources
~ 4K labeled images
Resolution: 48x48 pixels
7 facial expressions

neutral sadness surprise

Ranzato, et al. CVPR 20.79]5



Facial Expression Recognition

Drawing samples from the model (5™ layer with 128 hiddens)

h* 0000 0000

Rth
layer

96



Facial Expression Recognition

Drawing samples from the model (5™ layer with 128 hiddens)

Ranzato, et al. CVPR 20.;).77



Facial Expression Recognition

- 7 synthetic occlusions

- use generative model to fill-in M
(conditional on the known pixels)

Ranzato, et al. CVPR 20]9]8



Facial Expression Recognition

originals

Ranzato, et al. CVPR 20.79]9



Facial Expression Recognition

originals

Ranzato, et al. CVPR 20.5:70
|



Facial Expression Recognition

originals

e

Ranzato, et al. CVPR 20.5:70



Facial Expression Recognition

originals

e

Ranzato, et al. CVPR 20.5:70‘



Facial Expression Recognition

originals

Restored images

>

Ranzato, et al. CVPR 20.5:70J



Facial Expression Recognition

occluded images for both training and test

80

TO|-

60|

50

40

Dailey, et al. J. Cog. Neuros. 2003

-Deep Model
B gabor + PCcA

I:I'Gauss. SWi

- - Sparse Coding

||
=3 ~
E

Wright, et al. PAMI 2008

-Lin. Interp. + SvVM

=

Ranzato, et al. CVPR 2011
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Outline

* Applications to Audio and Multimodal Data

10



Motivation: Multi-modal learning

domains

— Images

— Audio & speech

— Video
— Text

— Robotic sensors
— Time-series data

— Others

* Single learning algorithms that combine multiple input

0000000
i §
00000000000 000000
i 8 i B I
0000 0000 0000
I I I
0O00000| [O00000]| [000000
I I I
O00000] [000000| [000000
Image audio text
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Motivation: Multi-modal learning

* Benefits: more robust performance in
— Multimedia processing

flickr W@ ) & b

WIKIP;E",DIA @ iTunes NBC

— Biomedical data mining

PET scan
— Robot perception

e ‘ NENOE
S o EE 28 A
Visible light Audio  Thermal Infrared Cameraarray 3d range scans

image

11



Sparse dictionary learning on audio

L Pov

£% Spectrogram

» » .

[Lee, Largman, Pham, Ng, NIPS 2009] 11



~
7

frequency

Convolutional DBN for audio

<—— Max pooling node

@
.‘.‘.. <—— Detection nodes

Spectrogram time

[Lee, Largman, Pham, Ng, NIPS 2009]
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Convolutional DBN for audio

11-

[Lee, Largman, Pham, Ng, NIPS 2009]

Spectrogram
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Convolutional DBN for audio

11!

[Lee, Largman, Pham, Ng, NIPS 2009]
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Convolutional DBN for audio

' —
Max pooling Second CDBN

Detection nodes——> layer

i —
Max pooling One CDBN

Detection nodes——> layer

[Lee, Largman, Pham, Ng, NIPS 2009] 11,



CDBNs for speech

Trained on unlabeled TIMIT corpus

|
| ,
;
| R ’Au-

Learned first-layer bases
[Lee, Largman, Pham, Ng, NIPS 2009] 11
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Comparison of bases to phonemes

PR | e |
B i P e R
[
nvu, AR i ek

Wi v o @. | T
S S A ok ‘. II@

awauoyd sose( Jake| 1Sl



Experimental Results

* Speaker identification

TIMIT Speaker identification

Prior art (Reynolds, 1995) 99.7%
Convolutional DBN 100.0%

* Phone classification

TIMIT Phone classification

Clarkson et al. (1999) 77.6%
Petrov et al. (2007) 78.6%
Sha & Saul (2006) 78.9%
Yu et al. (2009) 79.2%
Convolutional DBN 80.3%

Transformation-invariant RBM (Sohn et al., ICML 2012) 81.5%

[Lee, Pham, Largman, Ng, NIPS 2009] 1o



Phone recognition using mcRBM

* Mean-covariance RBM + DBN
XXX XXX hs
W3
(X XXX XX ] he
LX) XX XX ) h T
P

Mean-covariance RBM

~ E(v.h) =

[Dahl, Ranzato, Mohamed, Hinton, NIPS 2009]

—d'h — (vIR)?Ph.

12



Speech Recognition on TIMIT
Method  [PR_______

Stochastic Segmental Models 36.0%
Conditional Random Field 34.8%
Large-Margin GMM 33.0%
CD-HMM 27.3%
Augmented conditional Random Fields 26.6%
Recurrent Neural Nets 26.1%
Bayesian Triphone HMM 25.6%
Monophone HTMs 24.8%
Heterogeneous Classifiers 24.4%
Deep Belief Networks(DBNs) 23.0%
Triphone HMMs discriminatively trained w/ BMMI 22.7%
Deep Belief Networks with mcRBM feature extraction 20.5%

(Dahl et al., NIPS 2010) 12



Multimodal Feature Learning

* Lip reading via multimodal feature learning
(audio / visual data)

Slide credit: Jiguan Ngiam 12



Multimodal Feature Learning

* Lip reading via multimodal feature learning

(audio / visual data) L

0
0.3

20

—-0.3

—0.8

1:1
Q. Is concatenating the best option?

Slide credit: Jiguan Ngiam 12



Multimodal Feature Learning

* Concatenating and learning features (via a single
layer)doesn’t work

A i
£
= A
=)
V 2
© o '
= -

— > < . >
Video Input Audio Input

Mostly unimodal features are learned

12



Multimodal Feature Learning

e Bimodal autoencoder

— |dea: predict unseen modality from observed modality

Audio Reconstruction  Video Reconstruction Audio Reconstruction ~ Video Reconstruction

(00 .- OO] (0O :--00] [OO--T-OO] [OO'-T-OO]
T 1
(@@ --- 00) (0@ --- 00| (@0 ... 00] (00:--00]
\/ \/;hared
Q0 --- 00 Is{l;;ii‘sientation [OO e OO ]Representation
f
OO0 ++- OO0 | 00 +-- 00| (0@ ... 00|
B 1 T
QO ++» OO | (OO0 +++ OO (0O ++- OO
Video Input Audio Input Video Input
(a) Video-Only Deep Autoencoder (b) Bimodal Deep Autoencoder

Ngiam et al., ICML 2011 12



Multimodal Feature Learning

e Visualization of learned filters

Audio(spectrogram) and Video features learned over 100ms windows

e Results: AVLetters Lip reading dataset

Accuracy

Prior art (Zhao et al., 2009) 58.9%
Multimodal deep autoencoder (Ngiam et al., 2011) 65.8%

13



Summary

* Learning Feature Representations
— Restricted Boltzmann Machines
— Deep Belief Networks
— Stacked Denoising Autoencoders

* Deep learning algorithms and unsupervised
feature learning algorithms show promising
results in many applications

— vision, audio, multimodal data, and others.
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Thank you!
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