Bag-of-Words models
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Bag-of-features models




Overview: Bag-of-features models

Origins and motivation
Image representation

Discriminative methods
— Nearest-neighbor classification
— Support vector machines

Generative methods

— Naive Bayes

— Probabilistic Latent Semantic Analysis
Extensions: incorporating spatial information



Origin 1: Texture recognition

e Texture is characterized by the repetition of basic
elements or textons

* For stochastic textures, it is the identity of the textons,
not their spatial arrangement, that matters
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Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001; Schmid
2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003
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Origin 2: Bag-of-words models

* Orderless document representation: frequencies
of words from a dictionary satonamesiiss3)



Origin 2: Bag-of-words models

Orderless document representation: frequencies
of words from a dictionary satonamesiiss3)

2007-01-23: State of the Union Address

George W. Bush (2001-)

ahandon accountable affordable afghanistan africa ally anbar armed army baghdad b hallenges chamber chaos
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palestinian payroll anda radical regimes resolve retreat rieman sacrifices science sectarian senate

th students succeed sunni £aX te rro r] Sts threats uphold victory

violence viclent Wal washington weapons wesley




Origin 2: Bag-of-words models

Orderless document representation: frequencies
of words from a dictionary satonamesiiss3)

2007-01-23: State of the Union Address
George W. Bush (2001-)

abandon . . .
hoices ¢ 1962-10-22: Soviet Missiles in Cuba

chotces © John F. Kennedy (1961-63)
deficit ¢

expand  abandon achieving adversaries aggression agricultural appropriate armaments el 115 assessments atlantic ballistic berlin

buildup burdens college commitment communist constitution consumers cooperation crisis Ccu b d da ngers

insurgen .
palestini deficit depended disarmament divisions domination doubled econom'lC education
elimination emergence endangered equals eUrope expand exports fact false family forum frEEdUm fulfill gromyko

halt hazards hemlsphere hospitals ideals industries inflation labor latin limiting IM1ssi lES

violenc o demization neglect nuclear oss obligation observer OffENSive peril pledged predicted purchasing quarantine quote

recession retaliatory safeguard sites solution SOV.I et space spur stability standby St reﬂﬂth
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Origin 2: Bag-of-words models

Orderless document representation: frequencies
of words from a dictionary satonamesiiss3)

2007-01-23: State of the Union Address

abandon
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deficit ¢
expand
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palestini;
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George W. Bush (2001-)

1962-10-22: Soviet Missiles in Cuba
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John F. Kennedy (1961-63)

1941-12-08: Request for a Declaration of War
Franklin D. Roosevelt (1933-45)

abandoning aggression aggressors airplanes armaments armed army assault assembly authorizations bombing
britain british cheerfully claiming constitution curtail december defeats defending delays democratic dictators disdose

economic empire endanger faCtS false forgotten fortunes france frEEdom fulfilled fullness fundamental gangsters
german germany god guam harbor hawaii hemisphere hint hitler hostilities immune improving indies innumerable

~islands isolate ] a pa n ese labor metals midst midway Navy nazis obligation offensive

y pac1f1c partisanship patriotism pear peril 3l philippine pres on privilege reject
epaired résisting retain revealing rumars seas soldiers speaks '_-‘-|::';'_|:|';,-' stamina strength sunday sunk supremacy tanks taxes

treachery true tyranny undertaken victory W a r wartime washington



Bags of features for image
classification

1. Extract features
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Bags of features for image
classification

1. Extract features

2. Learn “visual vocabulary”




Bags of features for image
classification

1. Extract features
2. Learn “visual vocabulary”

3. Quantize features using visual vocabulary
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Bags of features for image
classification

Extract features
Learn “visual vocabulary”
Quantize features using visual vocabulary

Represent images by frequencies of
“visual words”
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1. Feature extraction

* Regular grid

— Vogel & Schiele, 2003
— Fei-Fei & Perona, 2005
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1. Feature extraction

* Regular grid
— Vogel & Schiele, 2003
— Fei-Fei & Perona, 2005

* |nterest point detector
— Csurka et al. 2004
— Fei-Fei & Perona, 2005
— Sivic et al. 2005




1. Feature extraction

* Regular grid
— Vogel & Schiele, 2003
— Fei-Fei & Perona, 2005

* Interest point detector

— Csurka et al. 2004
— Fei-Fei & Perona, 2005
— Sivic et al. 2005

e Other methods

— Random sampling (Vidal-Naquet & Ullman, 2002)
— Segmentation-based patches (Barnard et al. 2003)



1. Feature extraction

= <+

Compute SIFT
descriptor Normalize patch

[Lowe’99]

Detect patches

[Mikojaczyk and Schmid ’02]
[Mata, Chum, Urban & Pajdla, '02]

[Sivic & Zisserman, 03]

Slide credit: Josef Sivic



1. Feature extraction




2. Learning the visual vocabulary
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2. Learning the visual vocabulary
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2. Learning the visual vocabulary
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Clustering

Slide credit: Josef Sivic



K-means clustering

Want to minimize sum of squared
Euclidean distances between points x; and
their nearest cluster centers m,

D(X,M)= "3 > (x-m)’

clusterk pointiin
clusterk

Algorithm:
Randomly initialize K cluster centers

Iterate until convergence:

— Assign each data point to the nearest center

— Recompute each cluster center as the mean of
all points assigned to it



From clustering to vector quantization

e Clustering is a common method for learning a visual
vocabulary or codebook

— Unsupervised learning process

— Each cluster center produced by k-means becomes a
codevector

— Codebook can be learned on separate training set

— Provided the training set is sufficiently representative,
the codebook will be “universal”

e The codebook is used for quantizing features

— A vector quantizer takes a feature vector and maps it to
the index of the nearest codevector in a codebook

— Codebook = visual vocabulary
— Codevector = visual word



Example visual vocabulary
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Image patch examples of visual words

Sivic et al. 2005



Visual vocabularies: Issues

e How to choose vocabulary size?

— Too small: visual words not representatwe of all

— Too large: quantization artiﬁ . "
e Generative or discriminati
e Computational efficiency

— Vocabulary trees
(Nister & Stewenius, 2006)




3. Image representation

frequency
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codewords



Image classification

e Given the bag-of-features representations of

images from different classes, how do we

learn a model for distinguishing them?
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Discriminative and generative methods for
bags of features

— \Q/Zebra
. Non-zebra




Image classification

e Given the bag-of-features representations of

images from different classes, how do we

learn a model for distinguishing them?
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Discriminative methods

* Learn a decision rule (classifier) assigning bag-
of-features representations of images to
different classes

Decision
boundary




Classification

* Assign input vector to one of two or more
classes

* Any decision rule divides input space into
decision regions separated by decision

boundaries
x2




Nearest Neighbor Classifier

* Assign label of nearest training data point
to each test data point

Voronoi partitioning of feature space
for two-category 2D and 3D data Source: D. Lowe



K-Nearest Neighbors

I(:jor a new point, find the k closest points from training
ata

Labels of the k points “vote” to classify

Works well provided there is lots of data and the distance
function is good
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Functions for comparing histograms

e |1 distance

D(hv hz) = Z_:l h1(|) - hz(i) |

e v2 distance D(hl’ hZ) - ZN: (]ﬁ((ll))_-l—hl’? ((Il))z

e Quadratic distance (cross-bin)
D(hv hz) = Z Aij (h1(|) - hz(j))2

Jan Puzicha, Yossi Rubner, Carlo Tomasi, Joachim M. Buhmann: Empirical Evaluation of
Dissimilarity Measures for Color and Texture. ICCV 1999



http://www.cs.duke.edu/~tomasi/papers/rubner/rubnerCviu01.pdf
http://www.cs.duke.edu/~tomasi/papers/rubner/rubnerCviu01.pdf

Earth Mover’s Distance

e Each image is represented by a signature S consisting of a
set of centers {m.} and weights {w;, }

e Centers can be codewords from universal vocabulary,
clusters of features in the image, or individual features (in
which case quantization is not required)

e Earth Mover’s Distance has the form

f;d(my, my;)
f.

J

EMD(S,,S,) = Z

where the flows f; are given by the solution of a
transportation prob/em

Y. Rubner, C. Tomasi, and L. Guibas: A Metric for Distributions with Applications to Image
Databases. ICCV 1998



Linear classifiers

e Find linear function (hyperplane) to separate
positive and negative examples

° X; positive:  X,-w+b=>0
O N
o X. hegative:  X.-w+b <0
O
O
© o e o
O © N\
O ® ®
O
Which hyperplane
@) is best?
O

Slide: S. Lazebnik



Support vector machines

e Find hyperplane that maximizes the margin
between the positive and negative examples

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and
Knowledge Discovery, 1998



http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

Support vector machines

e Find hyperplane that maximizes the margin
between the positive and negative examples
\ ® X. positive (y; =1): X.-W+b>1
X. negative (y, =-1): X.-w+b<-1

® For support vectors, X W+ b=+1
O
O
e Distance between point | X; -W+Db|
and hyperplane: | w |

Therefore, the marginis 2/ ||w||

Support vectors Margin

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and
Knowledge Discovery, 1998



http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

Finding the maximum margin
hyperplane

1. Maximize margin 2/||w||
2. Correctly classify all training data:

X; positive (y;, =1): X -W+b>1
X. negative (y. =-1): Xx.-w+b<-1

* Quadratic optimization problem:

. Minimize %WTW
Subject to y;(W-X+b) > 1

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and
Knowledge Discovery, 1998



http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

Finding the maximum margin
hyperplane

e Solution: W= Zi &; YiX;

"/

learned Support
weight vector

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and
Knowledge Discovery, 1998



http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

Finding the maximum margin hyperplane

e Solution: W= Zi oYX

b =y,—w-X; forany support vector

e Classification function (decision boundary):

w-x+b:Zi oYX -X +D

e Notice that it relies on an inner product between
the test point x and the support vectors x;

e Solving the optimization problem also involves
computing the inner products x; - x; between all
pairs of training points

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and
Knowledge Discovery, 1998



http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

Nonlinear SVMs

e Datasets that are Iinearly separable work out great:

@ @ |®—. :X

e But what if the dataset is just too hard?

*—& *—0— o-0—0 o—o O=>

0 X

e \We can map it to a higher-dimensional space:

Slide credit: Andrew Moore



Nonlinear SVMs

e General idea: the original input space can
always be mapped to some higher-
dimensional feature space where the training
set is separable:
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Slide credit: Andrew Moore



Nonlinear SVMs

e The kernel trick: instead of explicitly
computing the lifting transformation ¢(X),
define a kernel function K such that

K(Xi, X)) = o(Xi) - o(Xj)
* (to be valid, the kernel function must satisfy

Mercer’s condition)

e This gives a nonlinear decision boundary in
the original feature space:

ZaiyiK(xi,x) +b

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and
Knowledge Discovery, 1998



http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

Kernels for bags of features

e Histogram intersection kernel:

() = > min(h, i), b ()

e Generalized Gaussian kernel:

1

K (h,h,) =exp[—x D(hl,hzfj

e D can be Euclidean distance, y° distance, Earth
Mover’s Distance, etc.

J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid, Local Features and Kernels for Classifcation
of Texture and Object Categories: A Comprehensive Study, IJCV 2007



http://lear.inrialpes.fr/pubs/2007/ZMLS07/ZhangMarszalekLazebnikSchmid-IJCV07-ClassificationStudy.pdf
http://lear.inrialpes.fr/pubs/2007/ZMLS07/ZhangMarszalekLazebnikSchmid-IJCV07-ClassificationStudy.pdf

Summary: SVMs for image classification

. Pick an image representation (in our case, bag
of features)

. Pick a kernel function for that representation

. Compute the matrix of kernel values between
every pair of training examples

. Feed the kernel matrix into your favorite SVM
solver to obtain support vectors and weights

. At test time: compute kernel values for your
test example and each support vector, and
combine them with the learned weights to get
the value of the decision function



What about multi-class SVMs?

Unfortunately, there is no “definitive” multi-class SVM
formulation

In practice, we have to obtain a multi-class SVM by
combining multiple two-class SVMs

One vs. others

— Traning: learn an SVM for each class vs. the others

— Testing: apply each SVM to test example and assign to it the
class of the SVM that returns the highest decision value

One vs. one
— Training: learn an SVM for each pair of classes

— Testing: each learned SVM “votes” for a class to assign to the
test example

Slide: S. Lazebnik



SVMs: Pros and cons

e Pros

— Many publicly available SVM packages:
http://www.kernel-machines.org/software

— Kernel-based framework is very powerful, flexible

— SVMs work very well in practice, even with very
small training sample sizes

e Cons

— No “direct” multi-class SVM, must combine two-
class SVMs

— Computation, memory

* During training time, must compute matrix of kernel
values for every pair of examples

* Learning can take a very long time for large-scale
problems

Slide: S. Lazebnik


http://www.kernel-machines.org/software
http://www.kernel-machines.org/software
http://www.kernel-machines.org/software

Summary: Discriminative methods

e Nearest-neighbor and k-nearest-neighbor classifiers

— L1 distance, y? distance, quadratic distance,
Earth Mover’s Distance

e Support vector machines
— Linear classifiers
— Margin maximization
— The kernel trick

— Kernel functions: histogram intersection, generalized
Gaussian, pyramid match

— Multi-class
e Of course, there are many other classifiers out there
— Neural networks, boosting, decision trees, ...



Generative learning methods for bags of features

* Model the probability of a bag of features
given a class
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Generative methods

e We will cover two models, both inspired by
text document analysis:

— Nalve Bayes
— Probabilistic Latent Semantic Analysis



The Naive Bayes model &

e Assume that each feature is conditionally e

independent given the class

p(fy,..., Ty IC)=H|O(fi )

fir ith feature in the image
N: number of features in the image

Csurka et al. 2004



The Naive Bayes model &

e Assume that each feature is conditionally e

independent given the class

p(f,,..., Ty ‘C):]_:[p(fi ‘C):Hp(Wj ¢)" )

fir ith feature in the image
N: number of features in the image

w;: jth visual word in the vocabulary
M: size of visual vocabulary
n(w;): number of features of type w; in the image

Csurka et al. 2004



p(Wj | ) =

The Naive Bayes model &

Assume that each feature is conditionally e

independent given the class

p(f,,..., Ty ‘C):]_:[p(fi ‘C):Hp(Wj ¢)" )

No. of features of type w; in training images of class c

Total no. of features in training images of class ¢

Csurka et al. 2004



The Naive Bayes model &

e Assume that each feature is conditionally e

independent given the class

p(f,,..., Ty ‘C):]_:[p(fi ‘C):Hp(Wj ¢)" )

No. of features of type w; in training images of class ¢ + 1
plw; | c) =

Total no. of features in training images of class c + M

(Laplace smoothing to avoid zero counts)

Csurka et al. 2004



The Naive Bayes model -

Maximum A Posteriori decision: e

M
c*=argmax, p(0)] | p(w; [¢)™"’
j=1

M
=arg max, log p(c)+ > n(w;)log p(w; | c)
=1

(you should compute the log of the likelihood
instead of the likelihood itself in order to avoid
underflow)

Csurka et al. 2004



The Naive Bayes model &

e “Graphical model”:

Csurka et al. 2004



Probabilistic Latent Semantic Analysis
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Image zebra grass tree

“visual topics”

T. Hofmann, Probabilistic Latent Semantic Analysis, UAI 1999



http://www.cs.brown.edu/~th/papers/Hofmann-UAI99.pdf

Probabilistic Latent Semantic Analysis

e Unsupervised technique

e Two-level generative model: a document is a
mixture of topics, and each topic has its own
characteristic word distribution

oo
\

document topic word

P(zld)  P(wl2)

T. Hofmann, Probabilistic Latent Semantic Analysis, UAI 1999



http://www.cs.brown.edu/~th/papers/Hofmann-UAI99.pdf

Probabilistic Latent Semantic Analysis

e Unsupervised technique

e Two-level generative model: a document is a
mixture of topics, and each topic has its own
characteristic word distribution

oSIG¥0

p(w; | d;) =Z p(w; [ 2,) p(z, |d;)

T. Hofmann, Probabilistic Latent Semantic Analysis, UAI 1999



http://www.cs.brown.edu/~th/papers/Hofmann-UAI99.pdf

The pLSA model

p(Wi ‘dj) :Z: p(Wi ‘Zk)p(zk ‘dj)

N J N J\ J
Y Y Y
Probability of word i Probability of Probability of
in document j word i given topic k given
(known) topic k document j

(unknown) (unknown)



words

The pLSA model

p(Wi ‘dj) :Z: p(Wi ‘Zk)p(zk ‘dj)

documents - topics . documents .
€ g p(z,/d;)
2 2
p(wild;) = p(wilz,)
Observed codeword Codeword distributions Class distributions
distributions per topic (class) per image
(MxN) (MxK) (KxN)



Learning pLSA parameters

Maximize likelihood of data:

Observed counts of
word j in document j

5 /

M N
L =TT Pl iees
i=1j=1 \

M ... number of codewords K

N ... number of images e

Slide credit: Josef Sivic



Inference

e Finding the most likely topic (class) for an image:

- =argmax p(z|d)



Inference

e Finding the most likely topic (class) for an image:

- =argmax p(z|d)

e Finding the most likely topic (class) for a visual
word in a given image:

' =argmax p(z|w,d) = argmax p(W|2z)p(z]d)

z >, p(w|Z)p(z'|d)



Topic discovery in images

J. Sivic, B. Russell, A. Efros, A. Zisserman, B. Freeman, Discovering Objects and their Location
in Images, ICCV 2005



http://www.ri.cmu.edu/pubs/pub_5237.html
http://www.ri.cmu.edu/pubs/pub_5237.html

Application of pLSA: Action recognition

Space-time interest points

HESNEEEATINEEERE b

walking
CLRRAL ] U oo
ITTEEERET 1 foging
' / r ' "'-—_ hand waving
S = W ‘* - = R 3 hand clapping
S TRkl be B R R T T T T T

Juan Carlos Niebles, Hongcheng Wang and Li Fei-Fei, Unsupervised Learning of Human Action
Categories Using Spatial-Temporal Words, 1JCV 2008.



http://vision.stanford.edu/niebles/humanactions.htm
http://vision.stanford.edu/niebles/humanactions.htm
http://vision.stanford.edu/niebles/humanactions.htm
http://vision.stanford.edu/niebles/humanactions.htm

Application of pLSA: Action recognition

Feature extraction and description

Feature Codebook Video
extraction = -QUeR0OO representation

Input

" 44

f 4
Class 1:>®:> ' ‘ Class 1

"M
Class N Class N

® 7

| New [nput |

’{l

Juan Carlos Niebles, Hongcheng Wang and Li Fei-Fei, Unsupervised Learning of Human Action
Categories Using Spatial-Temporal Words, 1JCV 2008.



http://vision.stanford.edu/niebles/humanactions.htm
http://vision.stanford.edu/niebles/humanactions.htm
http://vision.stanford.edu/niebles/humanactions.htm
http://vision.stanford.edu/niebles/humanactions.htm

PLSA model

p(Wi ‘dj) :Z: p(Wi ‘Zk)p(zk ‘dj)

N J N J\ J
Y Y Y
Probability of word i Probability of Probability of
in video j word i given topic k given
(known) topic k video j
(unknown) (unknown)

— W, = spatial-temporal word
— d; = video
— n(w;, d;) = co-occurrence table
(# of occurrences of word w; in video d;)
— z = topic, corresponding to an action



Action recognition example

walking [

running [}

jogging 1

Fig. 10 Example frames from testing sequences in the KTH dataset.
The spatial-temporal patches in each sequence are automatically col-
ored according to action class that most likely generated its correspond-

ing spatial-temporal word. Although some of the words are assigned to
the wrong topic, most interest points are assigned to the correct action

=1 boxing

hand

- clapping

hand
waving

for each video. Consistently, the predicted action class corresponds to
the actual ground truth. In addition, we usually observe that the second
best ranked action class corresponds to a similar action: in the “jog-
ging” example of the figure, the second best label is “running”. The
figure is best viewed in color and with PDF magnification



Multiple Actions




Multiple Actions




Summary: Generative models

e Nailve Bayes
— Unigram models in document analysis

— Assumes conditional independence of words given
class

— Parameter estimation: frequency counting

e Probabilistic Latent Semantic Analysis
— Unsupervised technique

— Each document is a mixture of topics (image is a
mixture of classes)

— Can be thought of as matrix decomposition
— Parameter estimation: Expectation-Maximization



Adding spatial information

« Computing bags of features on sub-windows
of the whole image

« Using codebooks to vote for object position
« Generative part-based models



Spatial pyramid representation

« Extension of a bag of features
» Locally orderless representation at several levels of resolution

level O

Lazebnik, Schmid & Ponce (CVPR 2006) Slide: S. Lazebnik



Spatial pyramid representation

« Extension of a bag of features
» Locally orderless representation at several levels of resolution

level O level 1

Lazebnik, Schmid & Ponce (CVPR 2006) Slide: S. Lazebnik



Spatial pyramid representation

« Extension of a bag of features
» Locally orderless representation at several levels of resolution

I ===

level O level 1 level 2

Lazebnik, Schmid & Ponce (CVPR 2006) Slide: S. Lazebnik



Scene category dataset
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Multi-class classification results
(100 training images per class)

Weak features Strong features
| Single-level =~ Pyramid | Single-level = Pyramid
45.3 0.5 72.2 0.6

53.6 £0.3  56.2 +£0.6 | 779 0.6  79.0 £0.5
61.7+06 64.7+0.7 | 794 +0.3 81.1 +0.3
63.3+0.8 668 +0.6 | 77.2+0.4  80.7 £0.3

Slide: S. Lazebnik



Caltech101 dataset

http://www.vision.caltech.edu/Image Datasets/Caltechl0l/Caltechl0l.html

Multi-class classification results (30 training images per class)

Weak features (16)

| Single-level  Pyramid
15.5 £0.9

314 £1.2 328 £1.3
472 +1.1 493414
522 +£0.8 54.0 £1.1

Strong features (200)

Single-level
41.2 +1.2
55.9 +0.9
63.6 0.9
60.3 +0.9

Pyramid

57.0 =0.8
64.6 0.8
64.6 =0.7

Slide: S. Lazebnik



Examples from PASCAL VOC Challenge 2010

Aeroplane Bicycle i Bottle
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Boosting Classification with Exclusive Context, Yan et al. 2010

Post Processing

Kernel
Regression

Confidence
Refinement with
Exclusive prior
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ideas for life



Low Level Features

» Low level features: SIFT and its variants, LBP. HOG.

» Dense sampling and interest point detector;

» Represented as Bags of Words;

___________________________________

i Yocabulary Assignment
5 (Bag-o-Words model)

>

i
1
'
] )
, '
H |

E Dense sampling desoriptor vocabulary :
| |

E Sparse sampling descriptor rccal:ular}r

___________________________________

BNUS
%

nal University

T Shgaiors ideas for life

Boosting Classification with Exclusive Context, Yan et al. 2010




Patch Level Features

SIFT

" Mean Shift ,
GIST X

! Superpixel I I
Perp l_-l! i = >

[Ren03]
Graph-based LBP II
> 1 1 .
II - 0 .0,
Multiple Segmentations
Patch Features Image-level BoWs
- oy
SINUS Panasonic
@ ofSingapore ideas for life

Boosting Classification with Exclusive Context, Yan et al. 2010




The results

aeroplane
bicycle
bird
boat
bottle
bus
car
cat

chair

COW
diningtable
dog
horse
motorbike
person
pottedplant
sheep
sofa
train
tvmonitor
MAP

= IN[I
9%

Mational University
of Singapore

Boosting Classification with Exclusive Context, Yan et al. 2010

SVM
91.9
77.1

69.5
74.7
52.5
84.3
77.3
76.2

63

63.5
62.9
65
79.5
83.2
91.2
45.5
65.4
55
87
77.2

72.095

Exclusive
91.3
77
70
75.6
50.7
83.2
77.1
754

62.5

62.6
62.7
64.6
77.9
81.8
91.1
44.8
64.2
53.2
86.3
77.1
71.455

Fusing
93
79

71.6
77.8
54.3
85.2
78.6
78.8

64.5

64
62.7
69.6

82
84.4
91.6
48.6
64.9
59.6
89.4
764
73.8

Qur Best

93

79
71.6
77.8
543
85.2
78.6
78.8

64.5

62.9
69.6
82
84.4
91.6
48.6
65.4
59.6
89.4
77.2

Other's Best

93.3
77
69.9
77.2
53.7
85.9
80.4
79.4

62.9

66.2
61.1
71.1
76.7
81.7
90.2
53.3
66.3
58
87.5
76.2

.
Panasonic



