
Corners, Blobs & Descriptors

With slides from S. Lazebnik & S. Seitz, D. Lowe, A. Efros



Motivation: Build a Panorama

M. Brown and D. G. Lowe. Recognising Panoramas. ICCV 2003



How do we build panorama?

• We need to match (align) images



Matching with Features

•Detect feature points in both images



Matching with Features

•Detect feature points in both images

•Find corresponding pairs



Matching with Features

•Detect feature points in both images

•Find corresponding pairs

•Use these pairs to align images



Matching with Features

• Problem 1:

– Detect the same point independently in both 
images

no chance to match!

We need a repeatable detector



Matching with Features

• Problem 2:

– For each point correctly recognize the 
corresponding one

?

We need a reliable and distinctive descriptor



Matching with Features

• Problem 3:

– Need to estimate transformation between images, 
despite erroneous correspondences.



Characteristics of good features

• Repeatability
• The same feature can be found in several images despite geometric 

and photometric transformations 

• Saliency
• Each feature has a distinctive description

• Compactness and efficiency
• Many fewer features than image pixels

• Locality
• A feature occupies a relatively small area of the image; robust to 

clutter and occlusion



Applications  

Feature points are used for:
• Motion tracking

• Image alignment 

• 3D reconstruction

• Object recognition

• Indexing and database retrieval

• Robot navigation
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• Corners (Harris Detector)
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Finding Corners

• Key property: in the region around a corner, 

image gradient has two or more dominant 

directions

• Corners are repeatable and distinctive

C.Harris and M.Stephens. "A Combined Corner and Edge Detector.―
Proceedings of the 4th Alvey Vision Conference: pages 147--151.

http://www.csse.uwa.edu.au/~pk/research/matlabfns/Spatial/Docs/Harris/A_Combined_Corner_and_Edge_Detector.pdf


Corner Detection: Basic Idea

• We should easily recognize the point by 
looking through a small window

• Shifting a window in any direction should 
give a large change in intensity

“edge”:

no change 

along the edge 

direction

“corner”:

significant 

change in all 

directions

“flat” region:

no change in 

all directions

Source: A. Efros



Consider shifting the window W by (u,v)
• how do the pixels in W change?

• compare each pixel before and after by

summing up the squared differences (SSD)

• this defines an SSD ―error‖ of E(u,v):

Feature detection:  the math

W

Source: S. Seitz



Taylor Series expansion of I:

If the motion (u,v) is small, then first order approx is good

Plugging this into the formula on the previous slide…

Small motion assumption

Source: S. Seitz



Consider shifting the window W by (u,v)
• how do the pixels in W change?

• compare each pixel before and after by

summing up the squared differences

• this defines an ―error‖ of E(u,v):

Feature detection:  the math

W

Source: S. Seitz



Feature detection:  the math

This can be rewritten:

For the example above
• You can move the center of the green window to anywhere on the 

blue unit circle

• Which directions will result in the largest and smallest E values?

• We can find these directions by looking at the eigenvectors of H

Source: S. Seitz



Quick eigenvalue/eigenvector review

The eigenvectors of a matrix A are the vectors x that satisfy:

The scalar  is the eigenvalue corresponding to x

• The eigenvalues are found by solving:

• In our case, A = H is a 2x2 matrix, so we have

• The solution:

Once you know , you find x by solving

Source: S. Seitz



Feature detection:  the math

This can be rewritten:

Eigenvalues and eigenvectors of H
• Define shifts with the smallest and largest change (E value)

• x+ = direction of largest increase in E. 

• + = amount of increase in direction x+

• x- = direction of smallest increase in E. 

• - = amount of increase in direction x+

x-

x+

Source: S. Seitz



Feature detection:  the math

How are +, x+, -, and x+ relevant for feature detection?
• What’s our feature scoring function?

Source: S. Seitz



Feature detection:  the math

How are +, x+, -, and x+ relevant for feature detection?
• What’s our feature scoring function?

Want E(u,v) to be large for small shifts in all directions
• the minimum of E(u,v) should be large, over all unit vectors [u v]

• this minimum is given by the smaller eigenvalue (-) of H

Source: S. Seitz



Feature detection summary

Here’s what you do
• Compute the gradient at each point in the image

• Create the H matrix from the entries in the gradient

• Compute the eigenvalues. 

• Find points with large response (- > threshold)

• Choose those points where - is a local maximum as features

Source: S. Seitz



Visualization of second moment matrices



Visualization of second moment matrices



Interpreting the eigenvalues

1

2

“Corner”

1 and 2 are large,

1 ~ 2;

E increases in all 

directions

1 and 2 are small;

E is almost constant 

in all directions

“Edge” 

1 >> 2

“Edge” 

2 >> 1

“Flat” 

region

Classification of image points using eigenvalues

of H:



Corner response function

“Corner”

R > 0

“Edge” 

R < 0

“Edge” 

R < 0

“Flat” 

region

|R| small

2

2121

2 )()(trace)det(   HHR

α: constant (0.04 to 0.06)



Harris detector: Steps

1. Compute Gaussian derivatives at each pixel

2. Compute second moment matrix H in a 

Gaussian window around each pixel 

3. Compute corner response function R

4. Threshold R

5. Find local maxima of response function 

(nonmaximum suppression)

C.Harris and M.Stephens. "A Combined Corner and Edge Detector.―
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.

http://www.csse.uwa.edu.au/~pk/research/matlabfns/Spatial/Docs/Harris/A_Combined_Corner_and_Edge_Detector.pdf


Harris Detector: Steps



Harris Detector: Steps

Compute corner response R



Harris Detector: Steps

Find points with large corner response: R>threshold



Harris Detector: Steps

Take only the points of local maxima of R



Harris Detector: Steps



Invariance and covariance

• We want features to be invariant to photometric 

transformations and covariant to geometric transformations

• Invariance: image is transformed and features do not change

• Covariance: if we have two transformed versions of the same 

image, features should be detected in corresponding locations



Transformations

T. Kadir, A. Zisserman and M. Brady, An Affine 
invariant salient region detector, ECCV 2004

• Geometric

– Rotation

Scale

– Affine
valid for: 
orthographic camera, 
locally planar object

• Photometric

– Affine intensity change (I  a I + b)

Slide credit: S. Lazebnik



Image rotation

Ellipse rotates but its shape (i.e. eigenvalues) 
remains the same

Corner response R is invariant w.r.t. rotation and corner 
location is covariant



Scaling

All points will be 
classified as edges

Corner

Not invariant to scaling



Affine intensity change
 Only derivatives are used => invariance 
to intensity shift I  I + b

 Intensity scale: I  a I

R

x (image coordinate)

threshold

R

x (image coordinate)

Partially invariant to affine intensity change



What about internal structure? 

• Edges & Corners convey 
boundary information

• What about interior 
texture of the object?



Overview

• Corners (Harris Detector)

• Blobs

• Descriptors



Blob detection with scale selection



Achieving scale covariance

• Goal: independently detect corresponding 

regions in scaled versions of the same image

• Need scale selection mechanism for finding 

characteristic region size that is covariant with 

the image transformation



Slide from Tinne Tuytelaars

Lindeberg et al, 1996

Slide from Tinne Tuytelaars

Lindeberg et al., 1996















Recall: Edge detection

g
dx

d
f 

f

g
dx

d

Source: S. Seitz

Edge

Derivative

of Gaussian

Edge = maximum

of derivative



Edge detection, Take 2

g
dx

d
f

2

2



f

g
dx

d
2

2

Edge

Second derivative

of Gaussian 

(Laplacian)

Edge = zero crossing

of second derivative

Source: S. Seitz



From edges to blobs

• Edge = ripple

• Blob = superposition of two ripples

Spatial selection: the magnitude of the Laplacian

response will achieve a maximum at the center of

the blob, provided the scale of the Laplacian is

―matched‖ to the scale of the blob

maximum



Scale selection

• We want to find the characteristic scale of the 

blob by convolving it with Laplacians at several 

scales and looking for the maximum response

• However, Laplacian response decays as scale 

increases:

Why does this happen?

increasing σoriginal signal

(radius=8)



Scale normalization

• The response of a derivative of Gaussian 

filter to a perfect step edge decreases as σ

increases

 2

1



Scale normalization

• The response of a derivative of Gaussian 

filter to a perfect step edge decreases as σ

increases

• To keep response the same (scale-invariant), 

must multiply Gaussian derivative by σ

• Laplacian is the second Gaussian derivative, 

so it must be multiplied by σ2



Effect of scale normalization

Scale-normalized Laplacian response

Unnormalized Laplacian responseOriginal signal

maximum



Blob detection in 2D

Laplacian of Gaussian: Circularly symmetric 

operator for blob detection in 2D
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Blob detection in 2D

Laplacian of Gaussian: Circularly symmetric 

operator for blob detection in 2D
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Scale selection

• At what scale does the Laplacian achieve a maximum 

response to a binary circle of radius r?

r

image Laplacian



Scale selection

• At what scale does the Laplacian achieve a maximum 

response to a binary circle of radius r?

• To get maximum response, the zeros of the Laplacian

have to be aligned with the circle

• Zeros of Laplacian is given by (up to scale):

• Therefore, the maximum response occurs at 

r

image

.2/r

circle

Laplacian

0
2
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2

22
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Characteristic scale

• We define the characteristic scale of a blob 

as the scale that produces peak of Laplacian 

response in the blob center

characteristic scale

T. Lindeberg (1998). "Feature detection with automatic scale selection."

International Journal of Computer Vision 30 (2): pp 77--116. 

http://www.nada.kth.se/cvap/abstracts/cvap198.html


Scale-space blob detector

1. Convolve image with scale-normalized 

Laplacian at several scales

2. Find maxima of squared Laplacian response 

in scale-space



Scale-space blob detector: Example



Scale-space blob detector: Example



Scale-space blob detector: Example



Approximating the Laplacian with a difference of 

Gaussians:

 2 ( , , ) ( , , )xx yyL G x y G x y   

( , , ) ( , , )DoG G x y k G x y  

(Laplacian)

(Difference of Gaussians)

Efficient implementation



Efficient implementation

David G. Lowe. "Distinctive image features from scale-invariant 

keypoints.” IJCV 60 (2), pp. 91-110, 2004. 

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf


Scale Invariant Detectors

Harris-Laplacian1

Find local maximum of:

• Harris corner detector 
in space (image 
coordinates)

• Laplacian in scale

1 K.Mikolajczyk, C.Schmid. “Indexing Based on Scale Invariant Interest Points”. ICCV 2001
2 D.Lowe. “Distinctive Image Features from Scale-Invariant Keypoints”. Accepted to IJCV 2004

scale
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y

 Harris 
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• Difference of 
Gaussians

• a.k.a. SIFT (Lowe)2

Find local maximum of:

– Difference of Gaussians in space 
and scale

scale

x

y

 DoG 


D

o
G

 



Scale Invariant Detectors

K.Mikolajczyk, C.Schmid. “Indexing Based on Scale Invariant Interest Points”. ICCV 2001

Experimental evaluation of detectors 

w.r.t. scale change

Repeatability rate:

# correspondences
# possible correspondences



Invariance and covariance properties

• Laplacian (blob) response is invariant w.r.t. 

rotation and scaling

• Blob location is covariant w.r.t. rotation and 

scaling

• What about intensity change?



Achieving affine covariance
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Recall:

This ellipse visualizes the ―characteristic shape‖ of the 

window



Affine adaptation example

Scale-invariant regions (blobs)



Affine adaptation example

Affine-adapted blobs



Affine adaptation

• Problem: the second moment ―window‖ 

determined by weights w(x,y) must match the 

characteristic shape of the region

• Solution: iterative approach
• Use a circular window to compute second moment matrix

• Perform affine adaptation to find an ellipse-shaped window

• Recompute second moment matrix using new window and 

iterate



Iterative affine adaptation

K. Mikolajczyk and C. Schmid, Scale and Affine invariant interest 

point detectors, IJCV 60(1):63-86, 2004. 

http://www.robots.ox.ac.uk/~vgg/research/affine/

http://www.robots.ox.ac.uk/~vgg/research/affine/det_eval_files/mikolajczyk_ijcv2004.pdf
http://www.robots.ox.ac.uk/~vgg/research/affine/det_eval_files/mikolajczyk_ijcv2004.pdf
http://www.robots.ox.ac.uk/~vgg/research/affine/


Affine covariance

• Affinely transformed versions of the same 

neighborhood will give rise to ellipses that are related 

by the same transformation

• What to do if we want to compare these image 

regions?

• Affine normalization: transform these regions into 

same-size circles



Affine normalization

• Problem: There is no unique transformation from an 

ellipse to a unit circle

• We can rotate or flip a unit circle, and it still stays a unit circle



Maximally Stable Extremal Regions

Maximally Stable Extremal Regions

• Threshold image intensities: I > thresh

for several increasing values of thresh

• Extract connected components

(―Extremal Regions‖)

• Find a threshold when region is 

―Maximally Stable‖, i.e. local minimum

of the relative growth

• Approximate each region with 

an ellipse

J.Matas et.al. ―Distinguished Regions for Wide-baseline Stereo‖. BMVC 2002.

Slide: S. Seitz



Overview

• Corners (Harris Detector)

• Blobs 

• Descriptors



Matching with Features

• Problem 2:

– For each point correctly recognize the 
corresponding one

?

We need a reliable and distinctive descriptor



Cross-Correlation

• a 

• Output in range
+1   -1

• Not invariant 
to changes in a,b

Affine photometric 
transformation:
I  a I + b



• Make each patch
zero mean:

• Then make unit
variance:

Affine photometric 
transformation:
I  a I + b

Normalized Cross-Correlation



Descriptors Invariant to Rotation

• Harris corner response measure:
depends only on the eigenvalues of the 
matrix M

2

2
,

( , )
x x y

x y x y y

I I I
M w x y

I I I

 
  

  


C.Harris, M.Stephens. “A Combined Corner and Edge Detector”. 1988



Descriptors Invariant to Rotation

• Image moments in polar coordinates

( , )k i l

klm r e I r drd   

J.Matas et.al. “Rotational Invariants for Wide-baseline Stereo”. Research Report of CMP, 2003

Rotation in polar coordinates is translation of the angle:
  +  0

This transformation changes only the phase of the moments, but 
not its magnitude

klm
Rotation invariant descriptor consists of 
magnitudes of moments:

Matching is done by comparing vectors [|mkl|]k,l



Basic idea:

• Take 16x16 square window around detected feature

• Compute edge orientation (angle of the gradient - 90) for each pixel

• Throw out weak edges (threshold gradient magnitude)

• Create histogram of surviving edge orientations

Scale Invariant Feature Transform

Adapted from slide by David Lowe

0 2
angle histogram

Former NYU faculty & 

Prof. Ken Perlin’s advisor

David Lowe IJCV 2004



Orientation Histogram

• 4x4 spatial bins (16 bins total)

• Gaussian center-weighting

• 8-bin orientation histogram per bin

• 8 x 16 = 128 dimensions total

• Normalized to unit norm



Feature stability to affine change

• Match features after random change in image scale & 
orientation, with 2% image noise, and affine distortion

• Find nearest neighbor in database of 30,000 features



Distinctiveness of features

• Vary size of database of features, with 30 degree affine 
change, 2% image noise

• Measure % correct for single nearest neighbor match



SIFT – Scale Invariant Feature Transform
1

• Empirically found2 to show very good performance, 
invariant to image rotation, scale, intensity change, and 
to moderate affine transformations

1 D.Lowe. “Distinctive Image Features from Scale-Invariant Keypoints”. Accepted to IJCV 2004
2 K.Mikolajczyk, C.Schmid. “A Performance Evaluation of Local Descriptors”. CVPR 2003

Scale = 2.5
Rotation = 450



SIFT invariances

• Spatial binning gives tolerance to small
shifts in location and scale

• Explicit orientation normalization

• Photometric normalization by making all 
vectors unit norm

• Orientation histogram gives robustness to 
small local deformations



Summary of SIFT

Extraordinarily robust matching technique

• Can handle changes in viewpoint

– Up to about 60 degree out of plane rotation

• Can handle significant changes in illumination

– Sometimes even day vs. night (below)

• Fast and efficient—can run in real time

• Lots of code available
– http://people.csail.mit.edu/albert/ladypack/wiki/index.php/Known_implementations_of_SIFT

http://people.csail.mit.edu/albert/ladypack/wiki/index.php/Known_implementations_of_SIFT






Feature matching

Given a feature in I1, how to find the best match in I2?

1. Define distance function that compares two descriptors

2. Test all the features in I2, find the one with min distance



Feature distance

How to define the difference between two features f1, f2?

• Simple approach is SSD(f1, f2) 

– sum of square differences between entries of the two descriptors

– can give good scores to very ambiguous (bad) matches 

I1 I2

f1 f2

Slide: S. Seitz



Feature distance

How to define the difference between two features f1, f2?

• Better approach:  ratio distance = SSD(f1, f2) / SSD(f1, f2’)

– f2 is best SSD match to f1 in I2

– f2’  is  2nd best SSD match to f1 in I2

– gives small values for ambiguous matches

I1 I2

f1 f2f2
'

Slide: S. Seitz



Evaluating the results

How can we measure the performance of a feature matcher?

50

75

200

feature distance

Slide: S. Seitz



True/false positives

The distance threshold affects performance

• True positives = # of detected matches that are correct

– Suppose we want to maximize these—how to choose threshold?

• False positives = # of detected matches that are incorrect

– Suppose we want to minimize these—how to choose threshold?

50

75

200

feature distance

false match

true match

Slide: S. Seitz



0.7

Evaluating the results

How can we measure the performance of a feature matcher?

0 1

1

false positive rate

true

positive

rate

# true positives

# matching features (positives)

0.1

# false positives

# unmatched features (negatives)

Slide: S. Seitz
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Evaluating the results

How can we measure the performance of a feature matcher?

0 1

1

false positive rate

true

positive

rate

# true positives

# matching features (positives)

0.1

# false positives

# unmatched features (negatives)

ROC curve  (“Receiver Operator Characteristic”)

ROC Curves

• Generated by counting # current/incorrect matches, for different threholds

• Want to maximize area under the curve (AUC)

• Useful for comparing different feature matching methods

• For more info:  http://en.wikipedia.org/wiki/Receiver_operating_characteristic Slide: S. Seitz

http://en.wikipedia.org/wiki/Receiver_operating_characteristic




• Want same 3D 
world point to 
map to same 
descriptor

• Build big 
dataset of 
patches using 
ground-truth 
3D information



Next Lecture

• 7pm Tuesday 

– Prof. Chris Bregler

• Then back to normal…..


