

Object Detection

Lecture 9

Object Detection

Image Classification
(what?)



Object Detection
(what + where?)

Detection with ConvNets

.....

- So far, all about classification
- What about localizing objects within the scene?

Groundtruth:

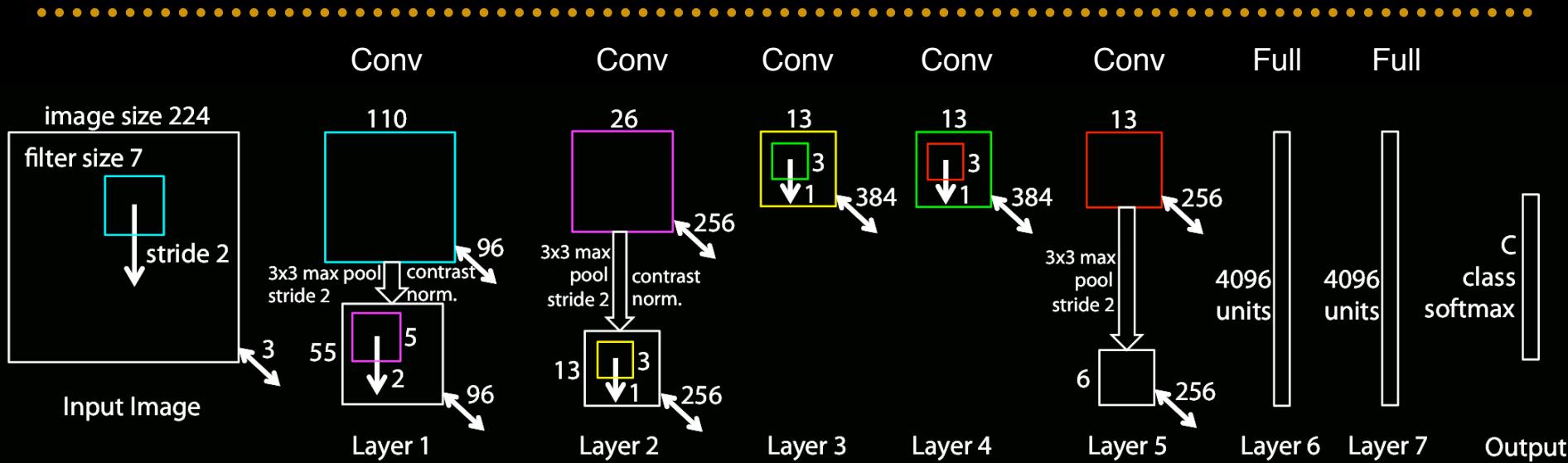
tv or monitor
tv or monitor (2)
tv or monitor (3)
person
remote control
remote control (2)

Two General Approaches

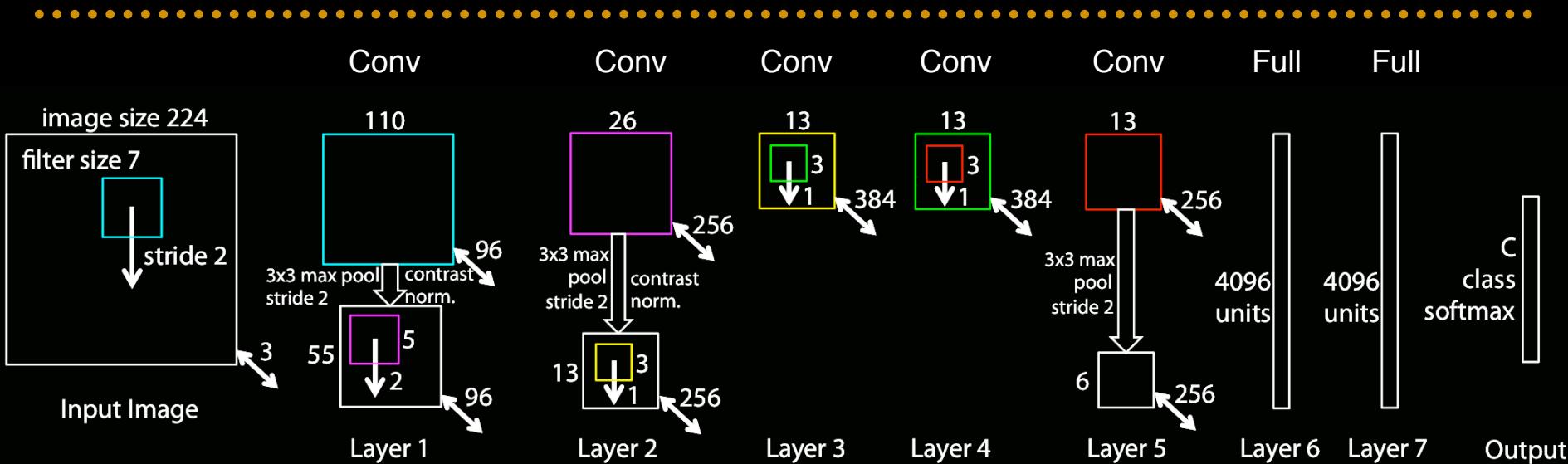
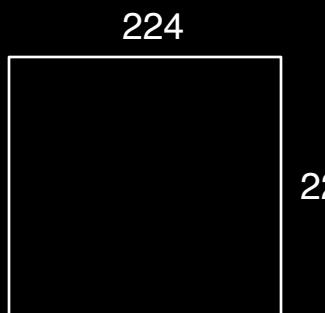
.....

1. Examine every position / scale
 - E.g. Overfeat: Integrated recognition, localization and detection using convolutional networks, Sermanet et al., ICLR 2014
2. Use some kind of proposal mechanism to attend to a set of possible regions
 - E.g. Region-CNN [Rich feature hierarchies for accurate object detection and semantic segmentation, Girshick et al., CVPR 2014]

Sliding Window with ConvNet

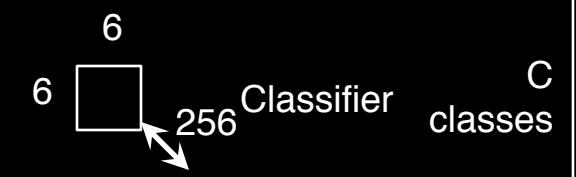


Sliding Window with ConvNet



Input Window

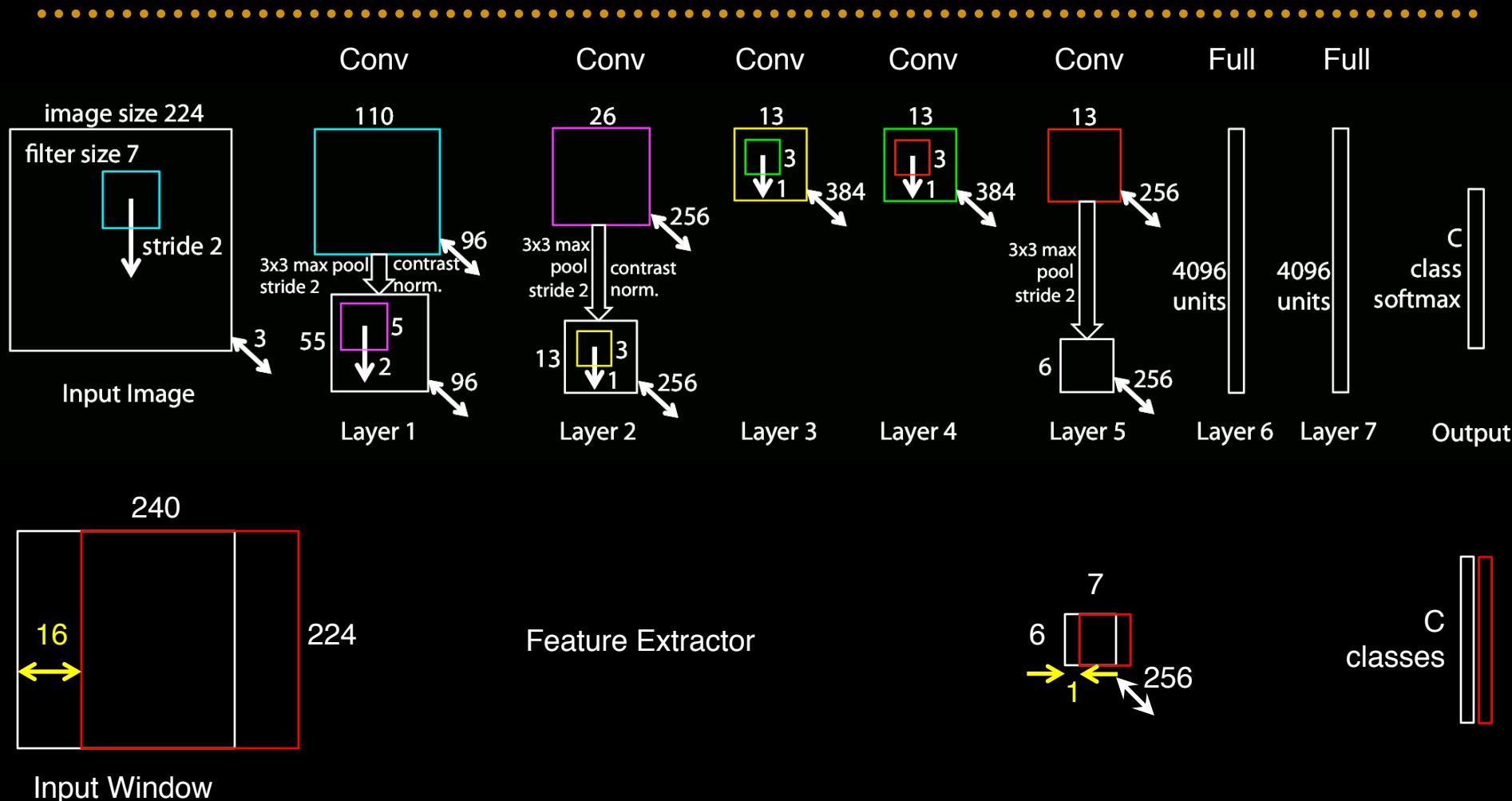
Feature Extractor



6 Classifier

C classes

Sliding Window with ConvNet

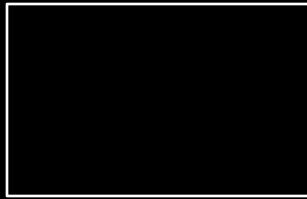


No need to compute two separate windows --- Just one big input window

Multi-Scale Sliding Window ConvNet

Feature
Extractor

Feature
Maps



256

Class
Maps

$C=1000$

Classifier

256

$C=1000$

256

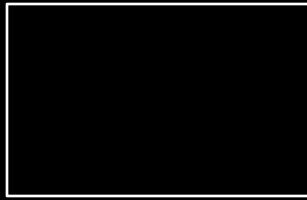
$C=1000$

$C=1000$

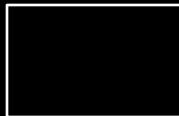
Multi-Scale Sliding Window ConvNet

Feature
Extractor

Feature
Maps



256



256

256

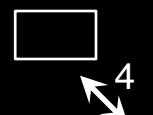
256

Regression
Network

Bounding Box
Maps

4

4

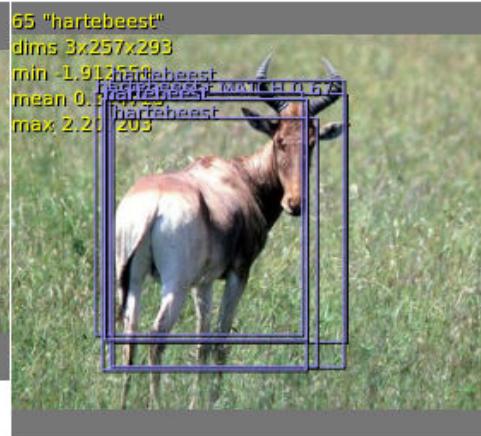
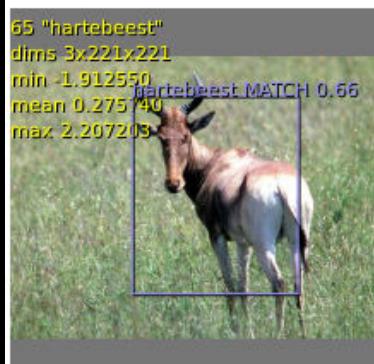


4

4

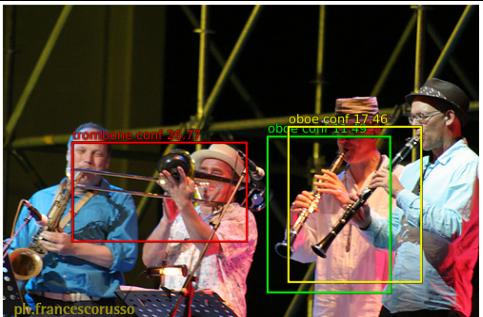
OverFeat – Output before NMS

.....



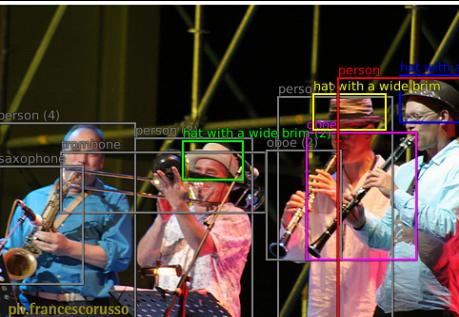
Overfeat Detection Results

[Sermanet et al. ICLR 2014]



Top predictions:
trombone (confidence 26.8)
oboe (confidence 17.5)
oboe (confidence 11.5)

ILSVRC2012_val_00000614.jpeg

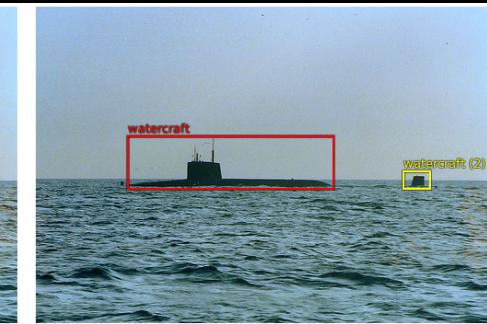


Groundtruth:
person
hat with a wide brim
hat with a wide brim (2)
hat with a wide brim (3)
oboe
oboe (2)
saxophone
trombone
person (2)
person (3)
person (4)

ILSVRC2012_val_00000623.jpeg

Top predictions:
watercraft (confidence 72.2)
watercraft (confidence 2.1)

ILSVRC2012_val_00000623.jpeg

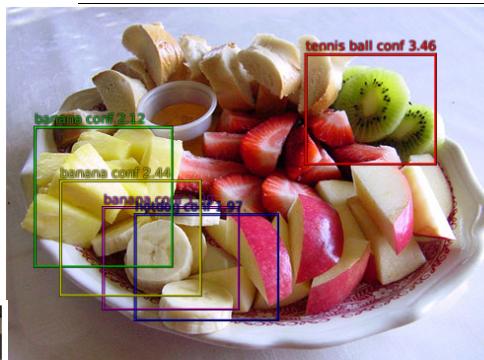


Groundtruth:
watercraft
watercraft (2)

Top predictions:
microwave (confidence 5.6)
refrigerator (confidence 2.5)

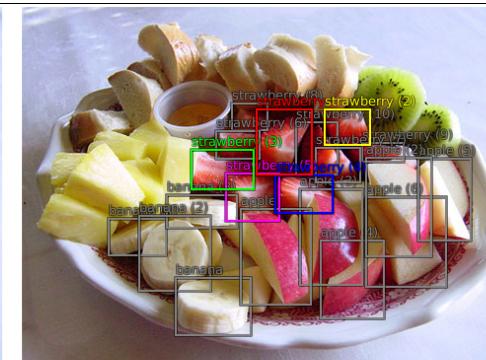
ILSVRC2012_val_00000519.jpeg

Groundtruth:
bowl
microwave



Top predictions:
tennis ball (confidence 3.5)
banana (confidence 2.4)
banana (confidence 2.1)
hotdog (confidence 2.0)
banana (confidence 1.9)

ILSVRC2012_val_00000320.jpeg



Groundtruth:
strawberry
strawberry (2)
strawberry (3)
strawberry (4)
strawberry (5)
strawberry (6)
strawberry (7)
strawberry (8)
strawberry (9)
strawberry (10)
apple
apple (2)
apple (3)

Two General Approaches

.....

1. Examine every position / scale
 - E.g. Overfeat: Integrated recognition, localization and detection using convolutional networks, Sermanet et al., ICLR 2014
2. Use some kind of proposal mechanism to attend to a set of possible regions
 - E.g. Region-CNN [Rich feature hierarchies for accurate object detection and semantic segmentation, Girshick et al., CVPR 2014]

Reproducible research – get the code!

<http://git.io/vBqm5>

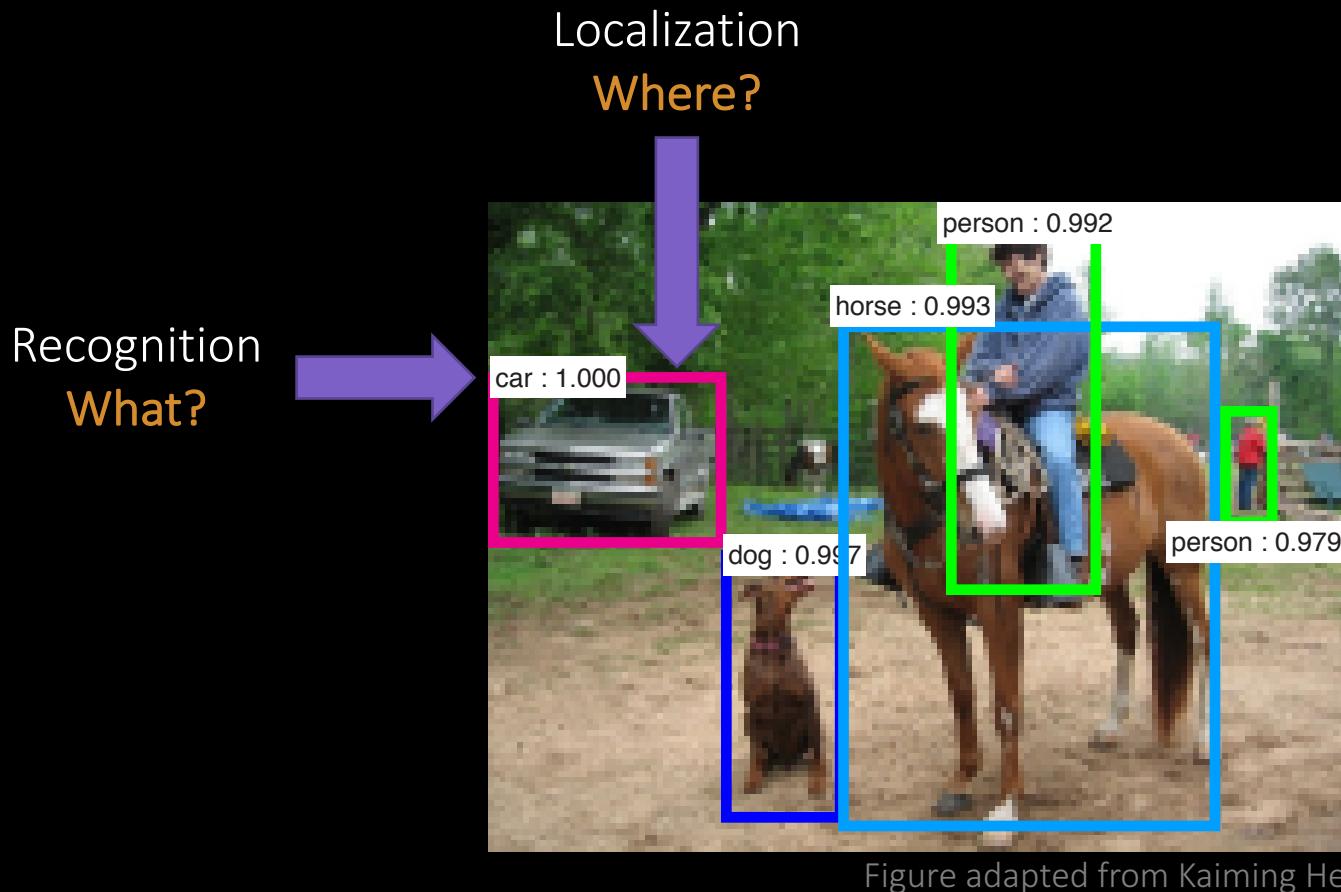
Fast R-CNN

Ross Girshick

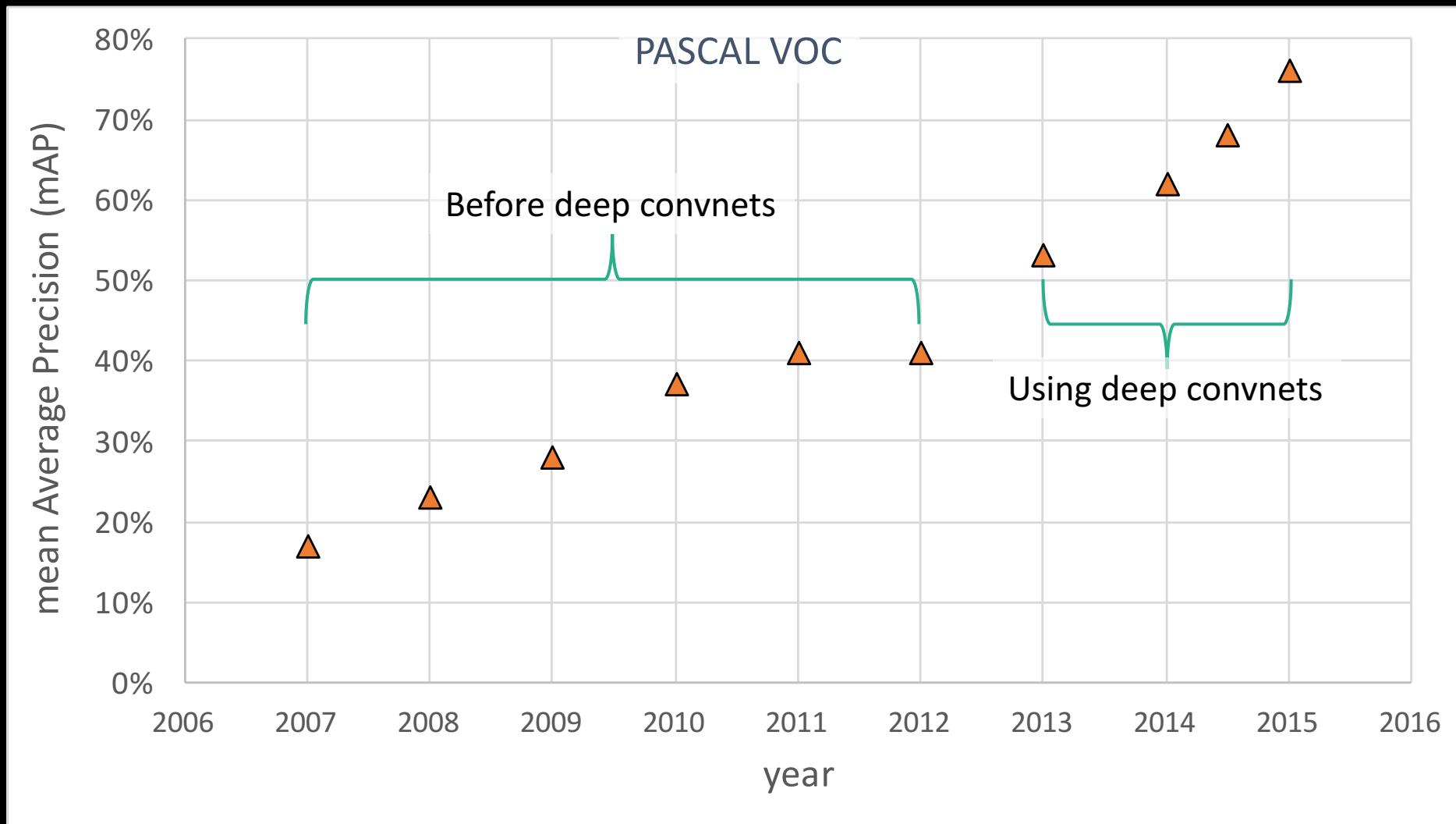
Facebook AI Research (FAIR)

Work done at Microsoft Research

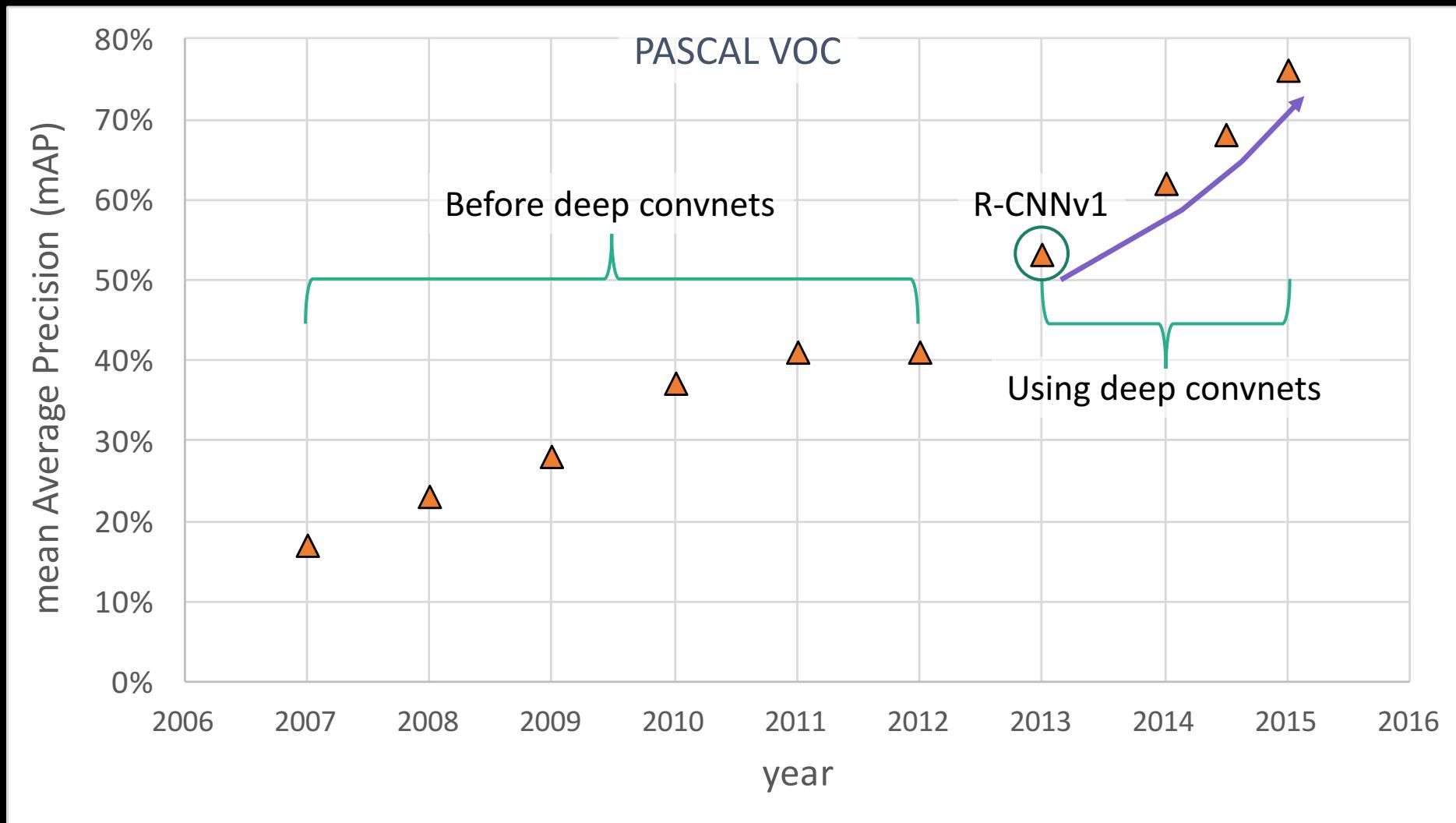
Fast Region-based ConvNets (R-CNNs) for Object Detection



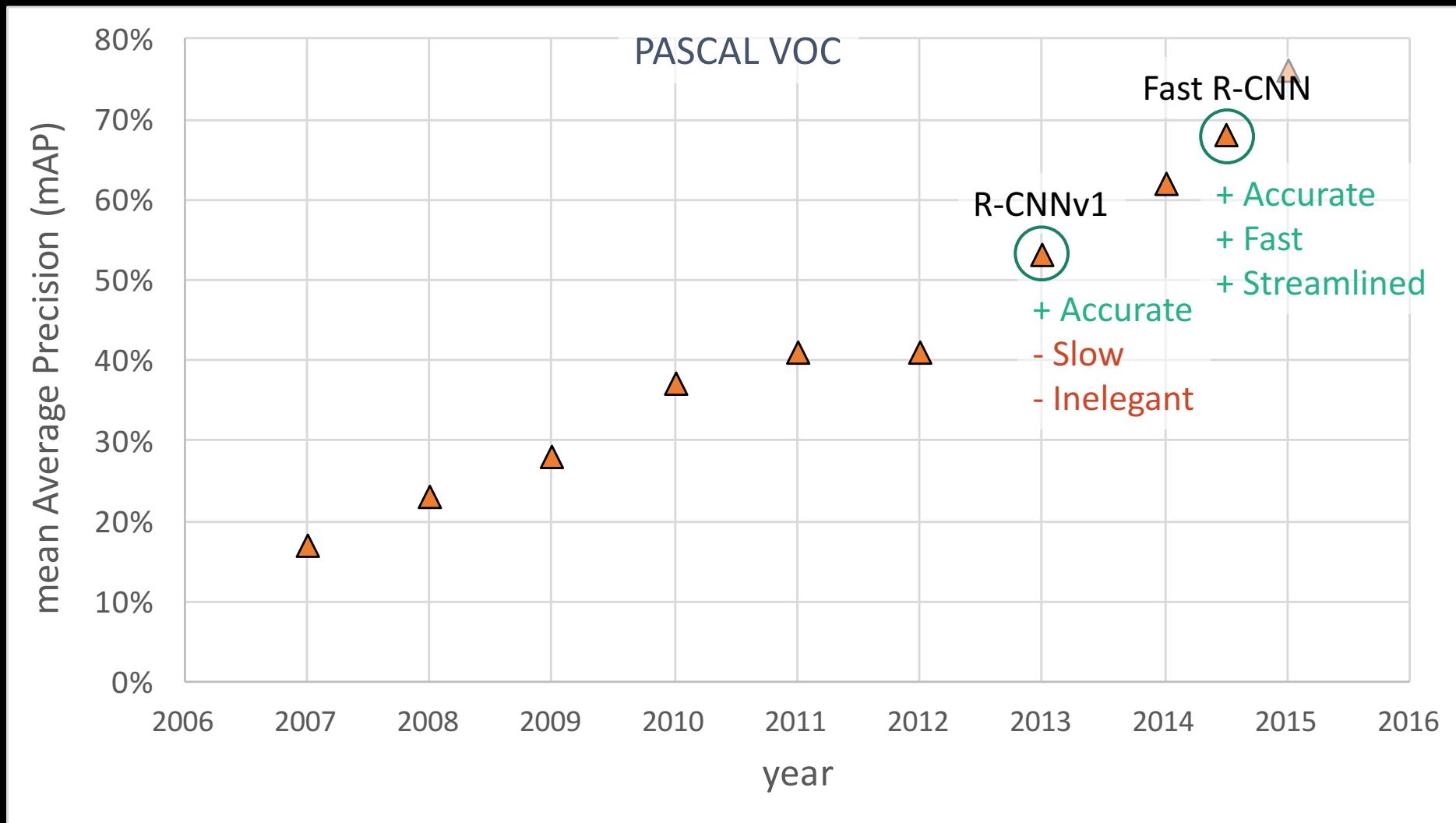
Object detection renaissance (2013-present)



Object detection renaissance (2013-present)



Object detection renaissance (2013-present)



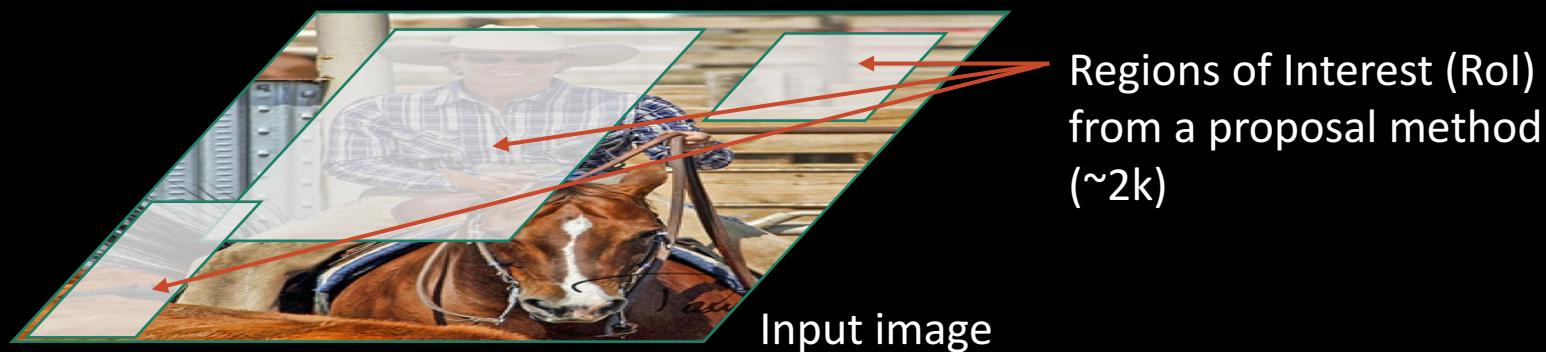
Region-based convnets (R-CNNs)

- R-CNN (aka “slow R-CNN”) [Girshick et al. CVPR14]
- SPP-net [He et al. ECCV14]

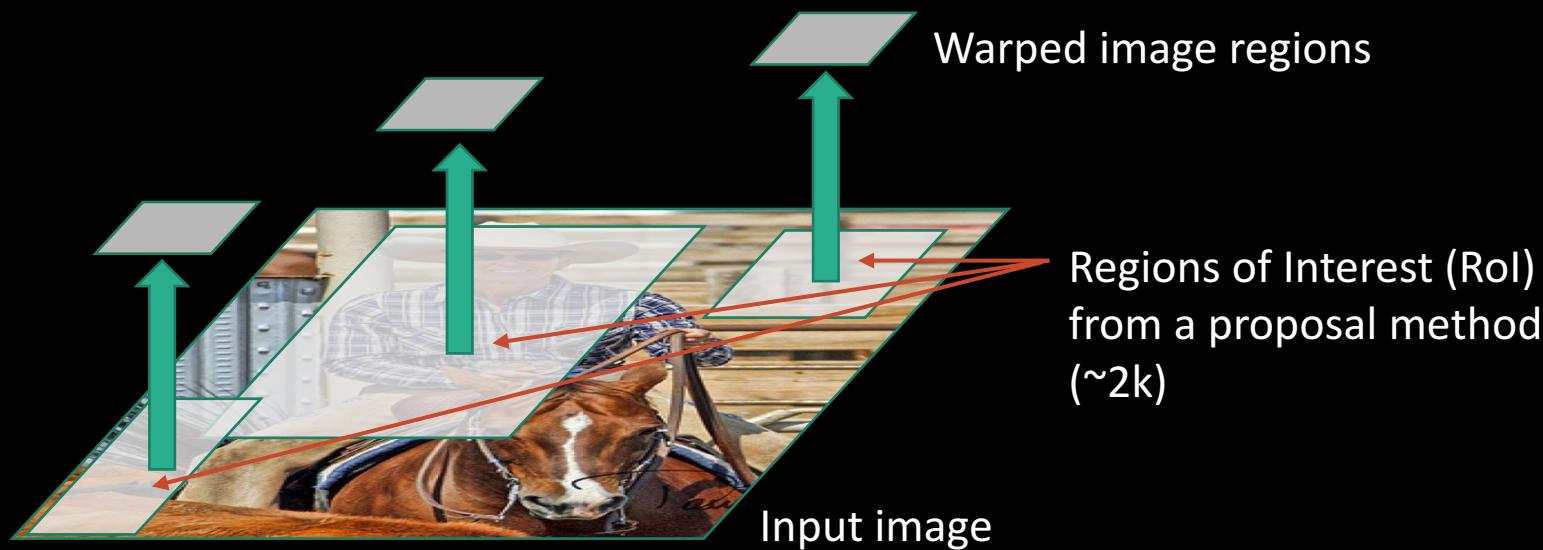
Slow R-CNN

Input image

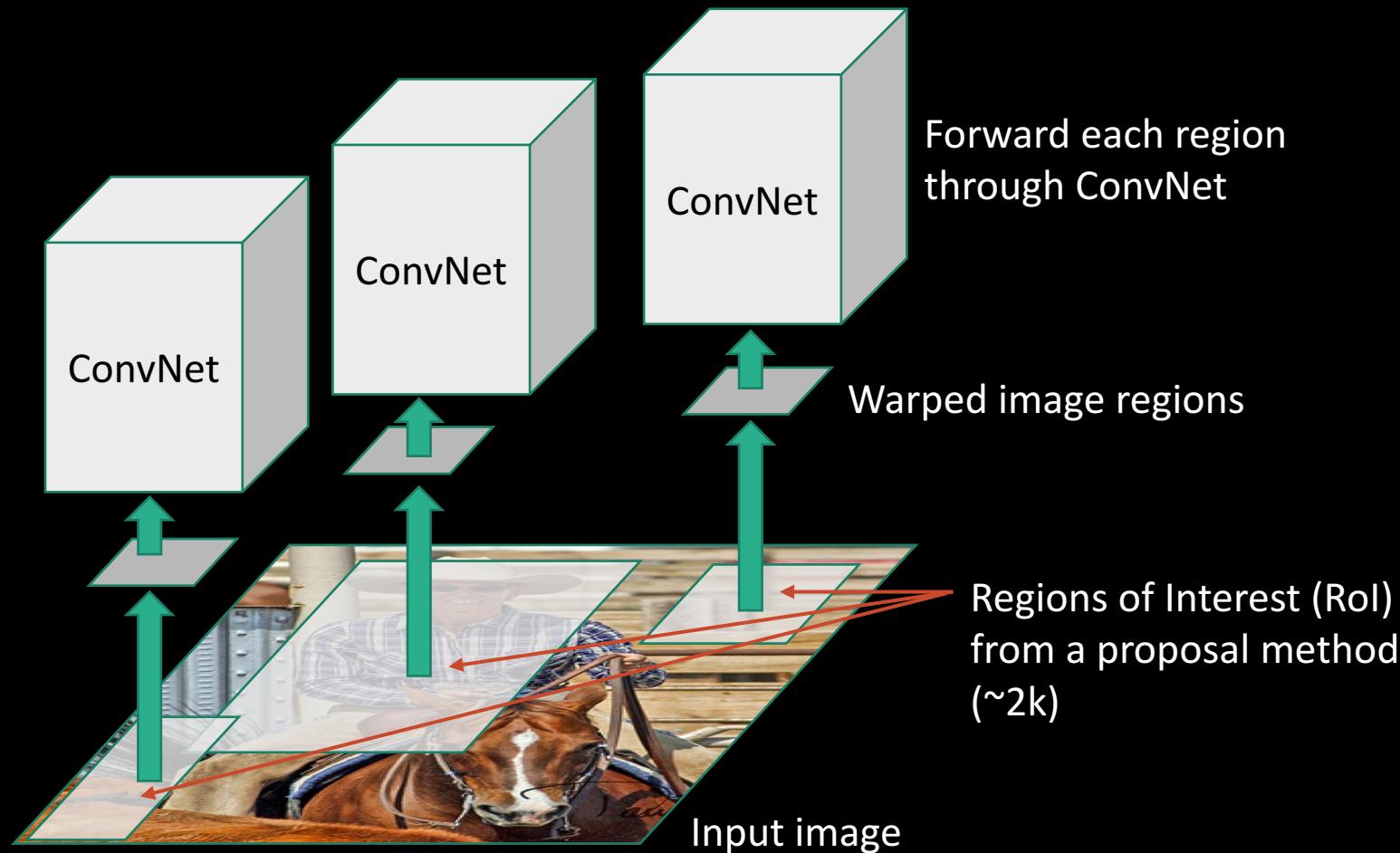
Slow R-CNN



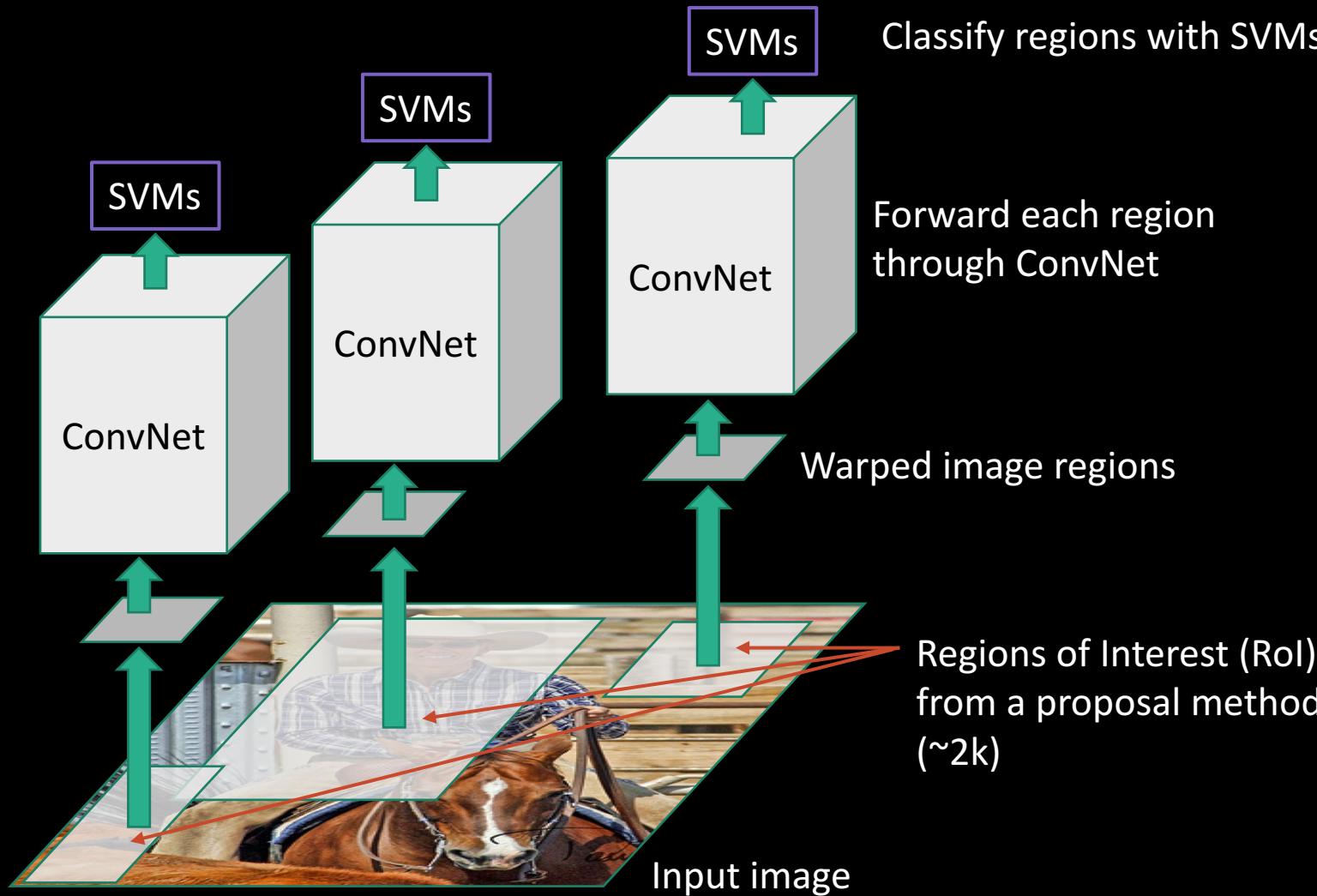
Slow R-CNN



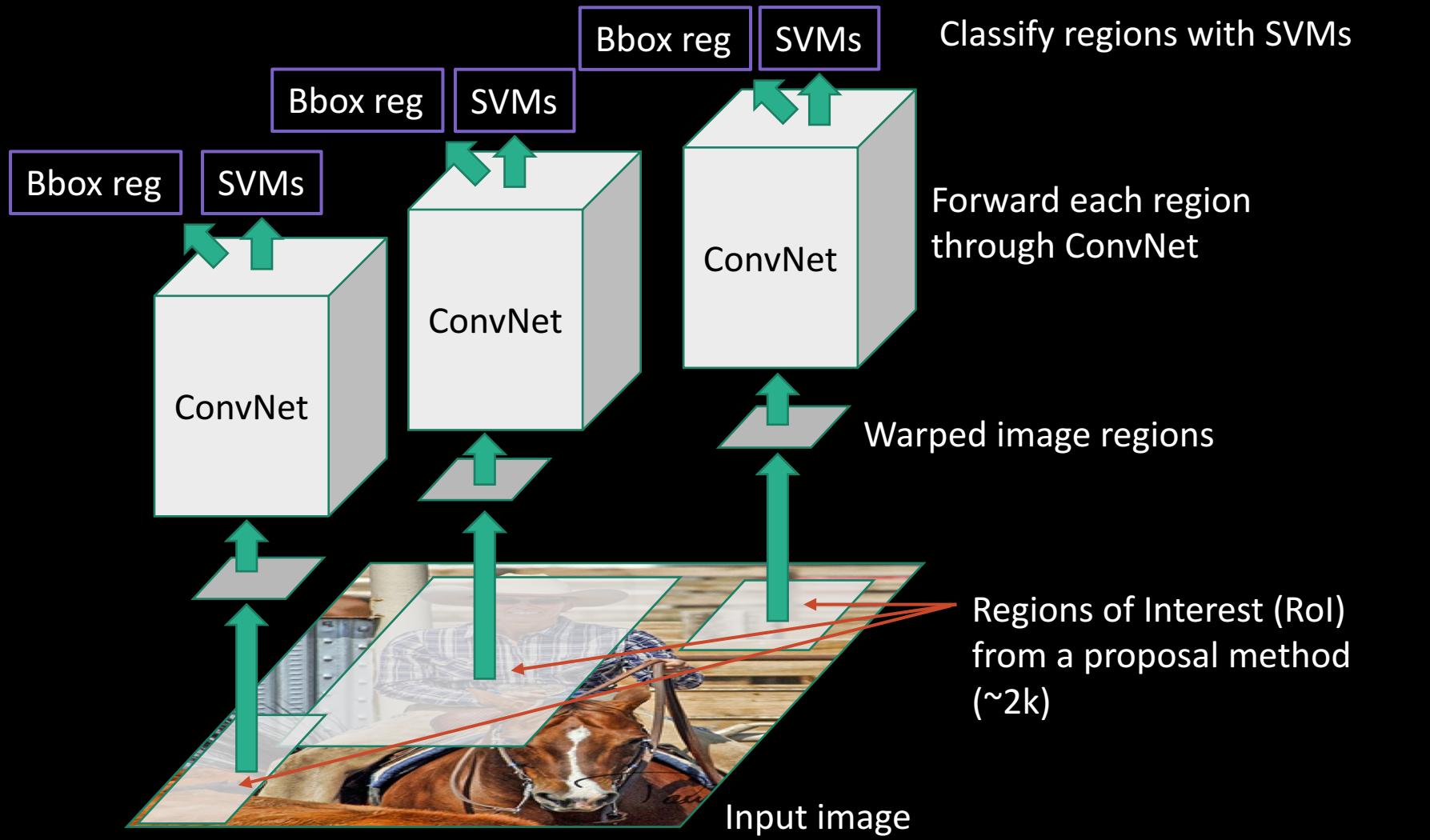
Slow R-CNN



Slow R-CNN



Slow R-CNN



What's wrong with slow R-CNN?

What's wrong with slow R-CNN?

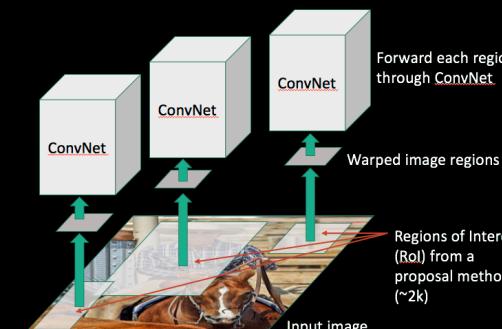
- **Ad hoc training objectives**
 - Fine-tune network with softmax classifier (log loss)
 - Train post-hoc linear SVMs (hinge loss)
 - Train post-hoc bounding-box regressors (squared loss)

What's wrong with slow R-CNN?

- Ad hoc training objectives
 - Fine-tune network with softmax classifier (log loss)
 - Train post-hoc linear SVMs (hinge loss)
 - Train post-hoc bounding-box regressors (squared loss)
- Training is slow (84h), takes a lot of disk space

What's wrong with slow R-CNN?

- Ad hoc training objectives
 - Fine-tune network with softmax classifier (log loss)
 - Train post-hoc linear SVMs (hinge loss)
 - Train post-hoc bounding-box regressions (least squares)
- Training is slow (84h), takes a lot of disk space
- **Inference (detection) is slow**
 - 47s / image with VGG16 [Simonyan & Zisserman. ICLR15]
 - Fixed by SPP-net [He et al. ECCV14]

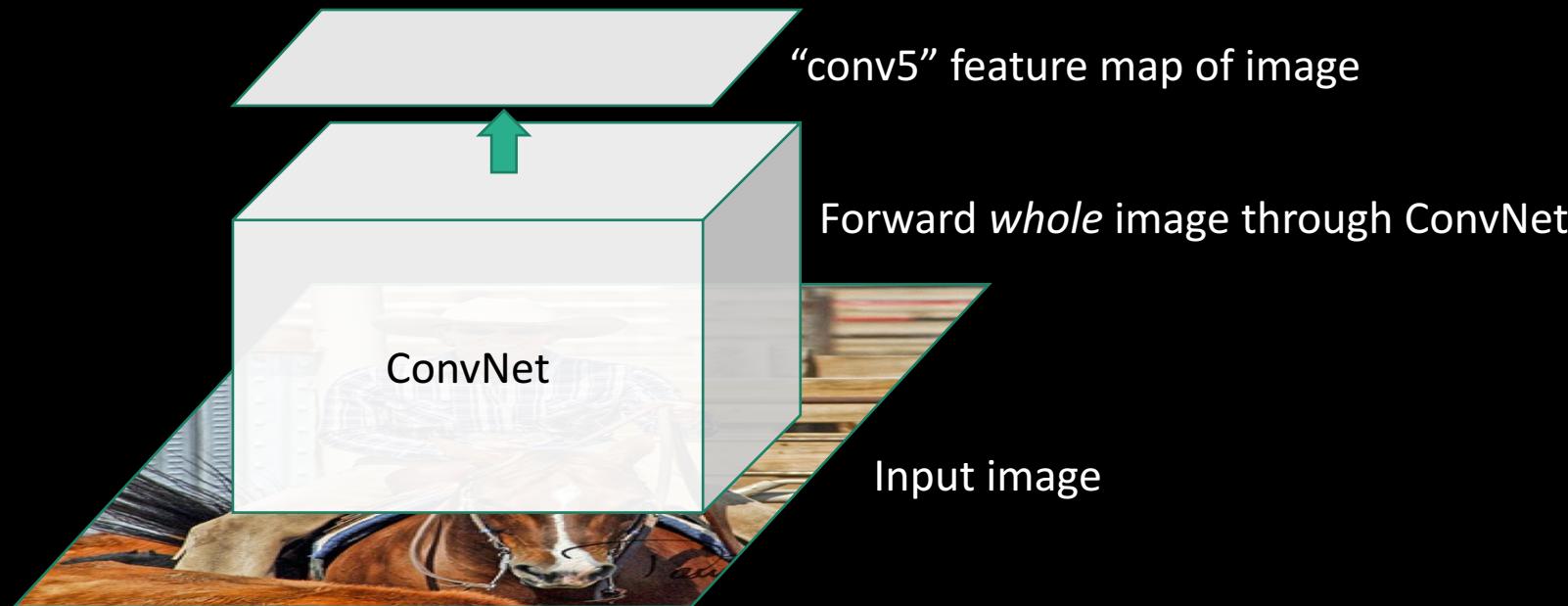


~2000 ConvNet forward passes per image

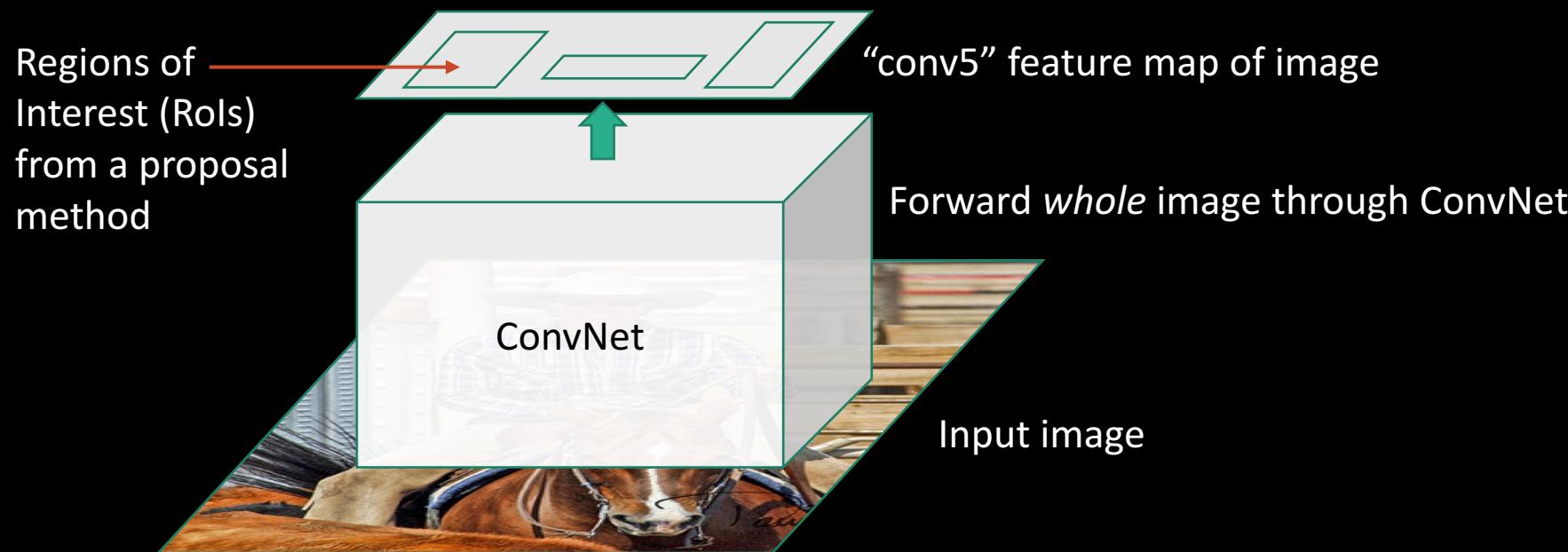
SPP-net

Input image

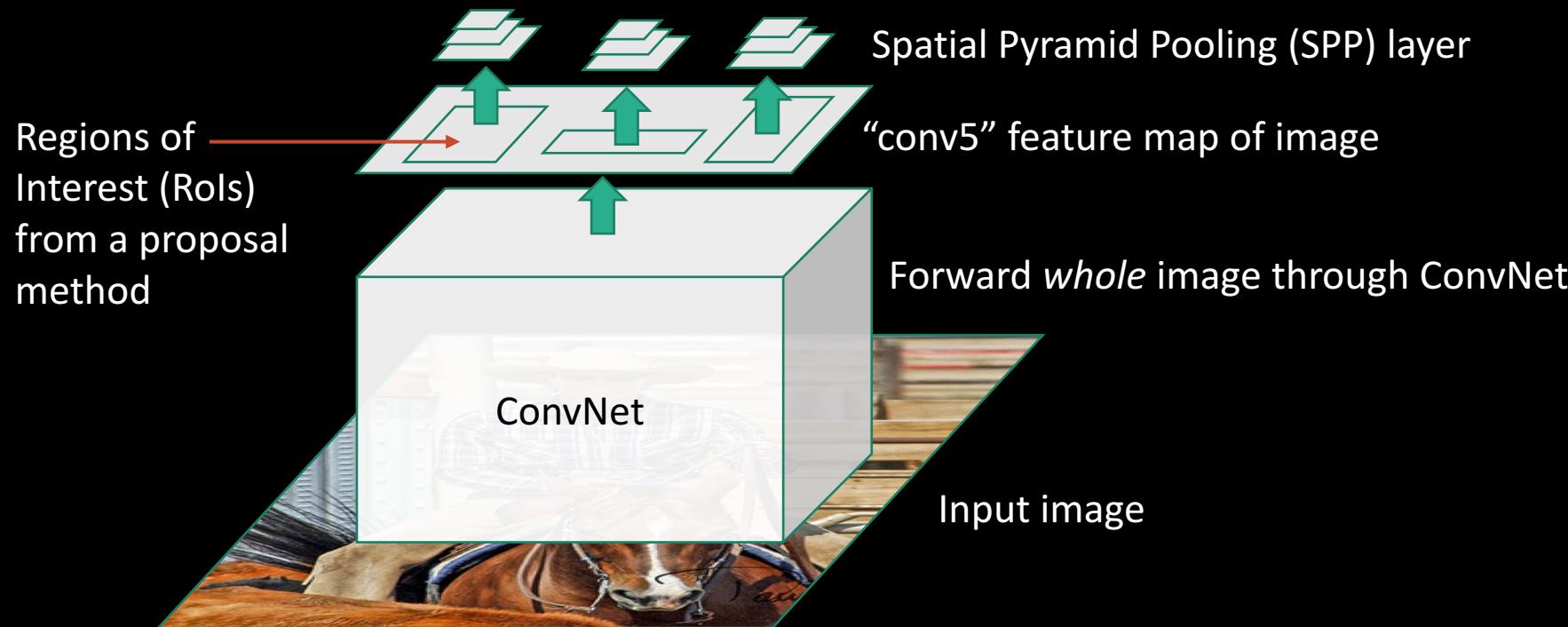
SPP-net



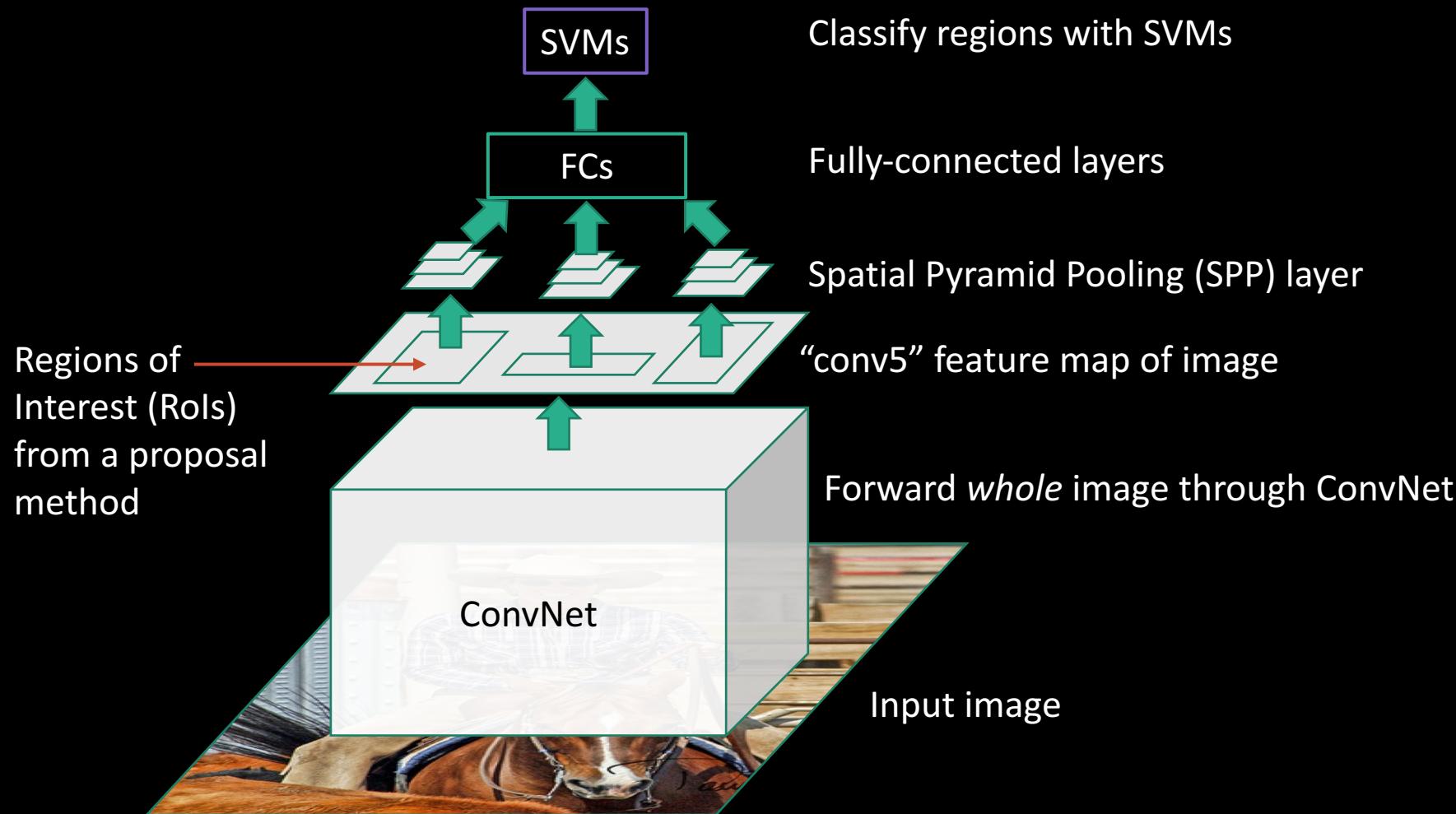
SPP-net



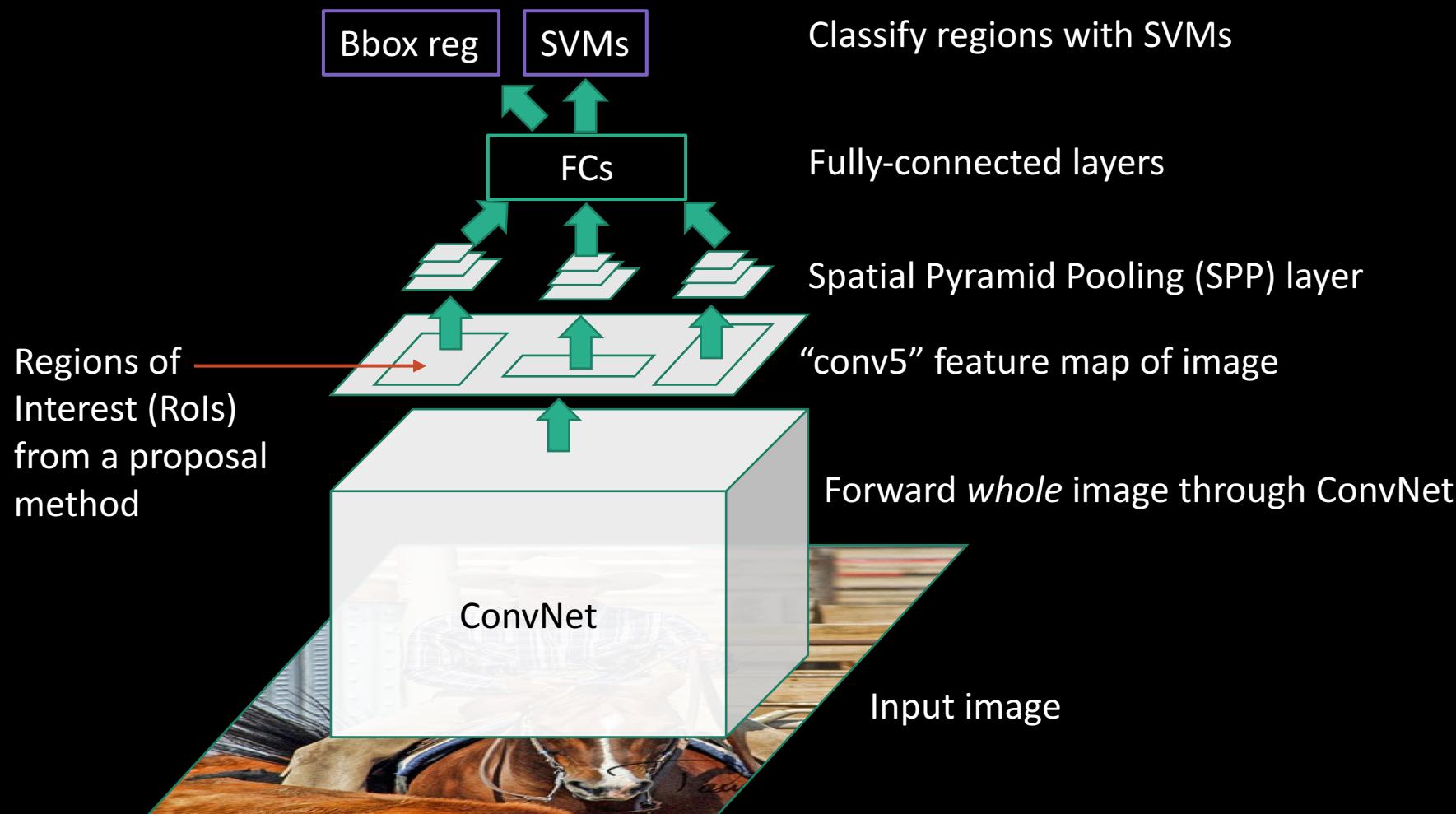
SPP-net



SPP-net

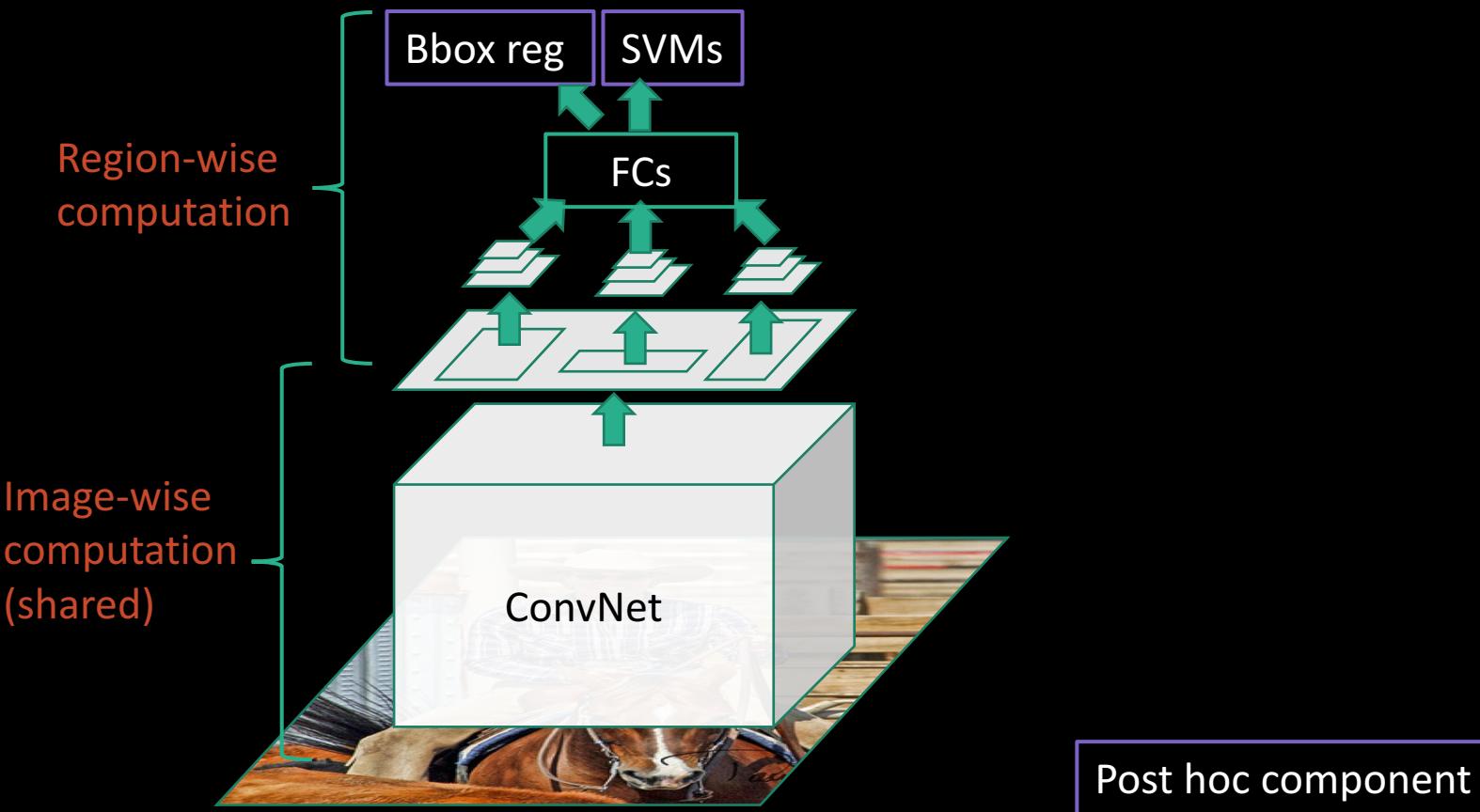


SPP-net



What's good about SPP-net?

- Fixes one issue with R-CNN: makes testing fast



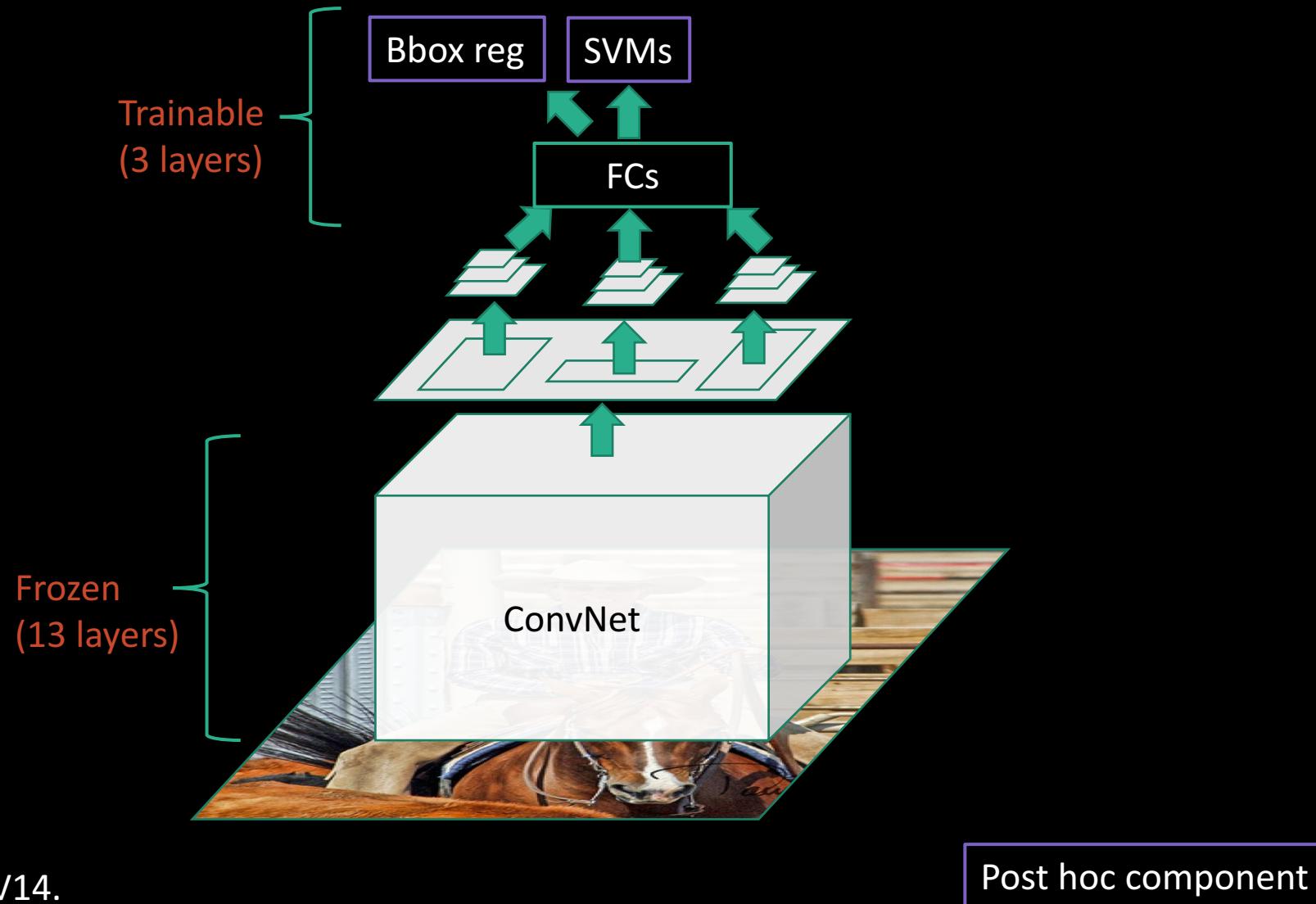
What's wrong with SPP-net?

- Inherits the rest of R-CNN's problems
 - Ad hoc training objectives
 - Training is slow (25h), takes a lot of disk space

What's wrong with SPP-net?

- Inherits the rest of R-CNN's problems
 - Ad hoc training objectives
 - Training is slow (though faster), takes a lot of disk space
- Introduces a new problem: **cannot update parameters below SPP layer during training**

SPP-net: the main limitation



Fast R-CNN

- Fast test-time, like SPP-net

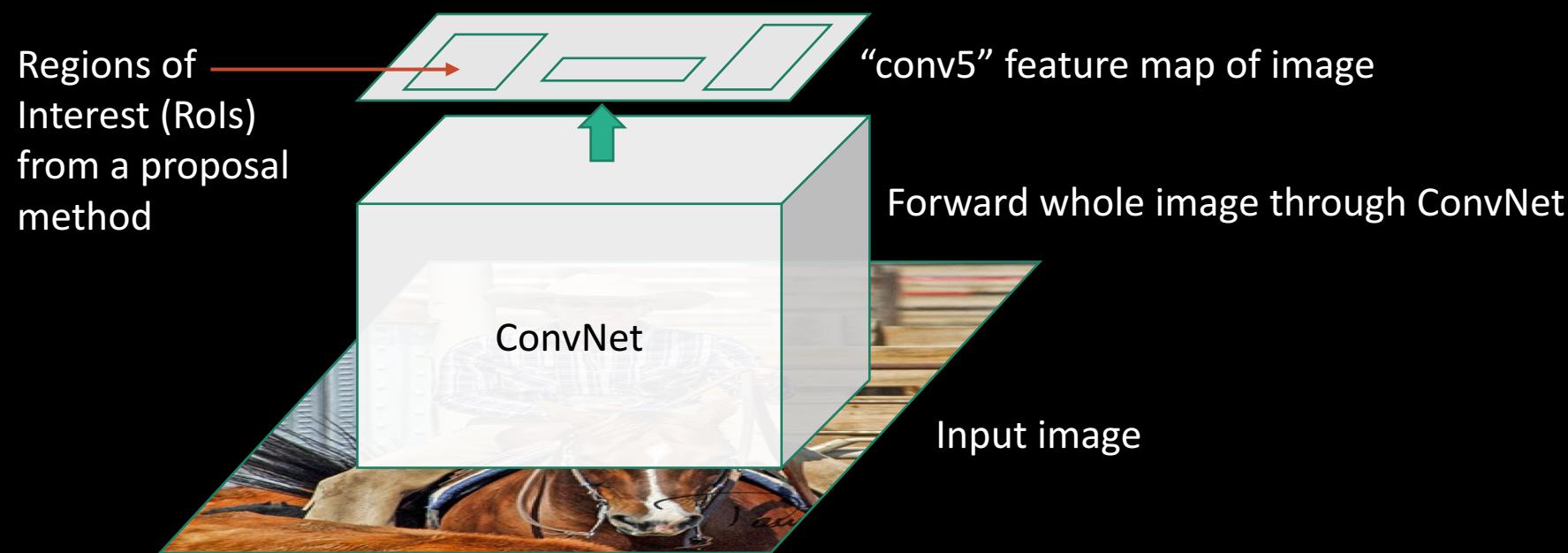
Fast R-CNN

- Fast test-time, like SPP-net
- One network, trained in one stage

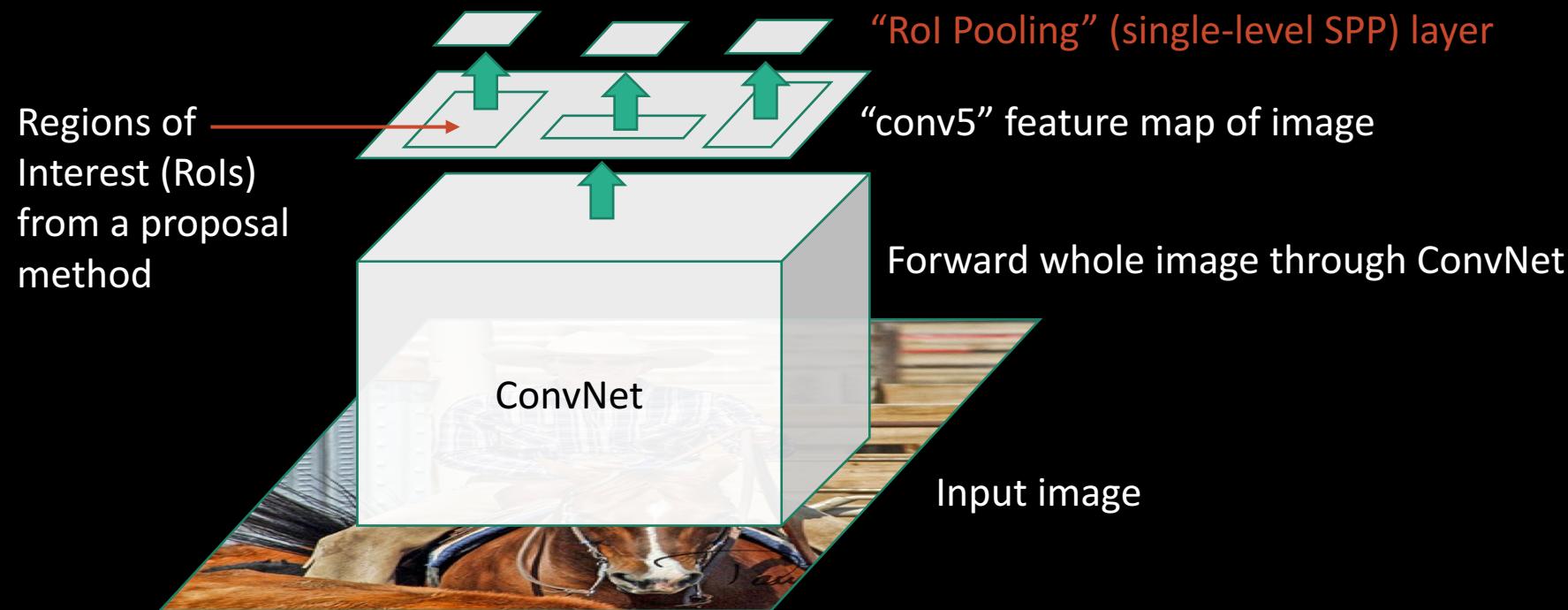
Fast R-CNN

- Fast test-time, like SPP-net
- One network, trained in one stage
- Higher mean average precision than slow R-CNN and SPP-net

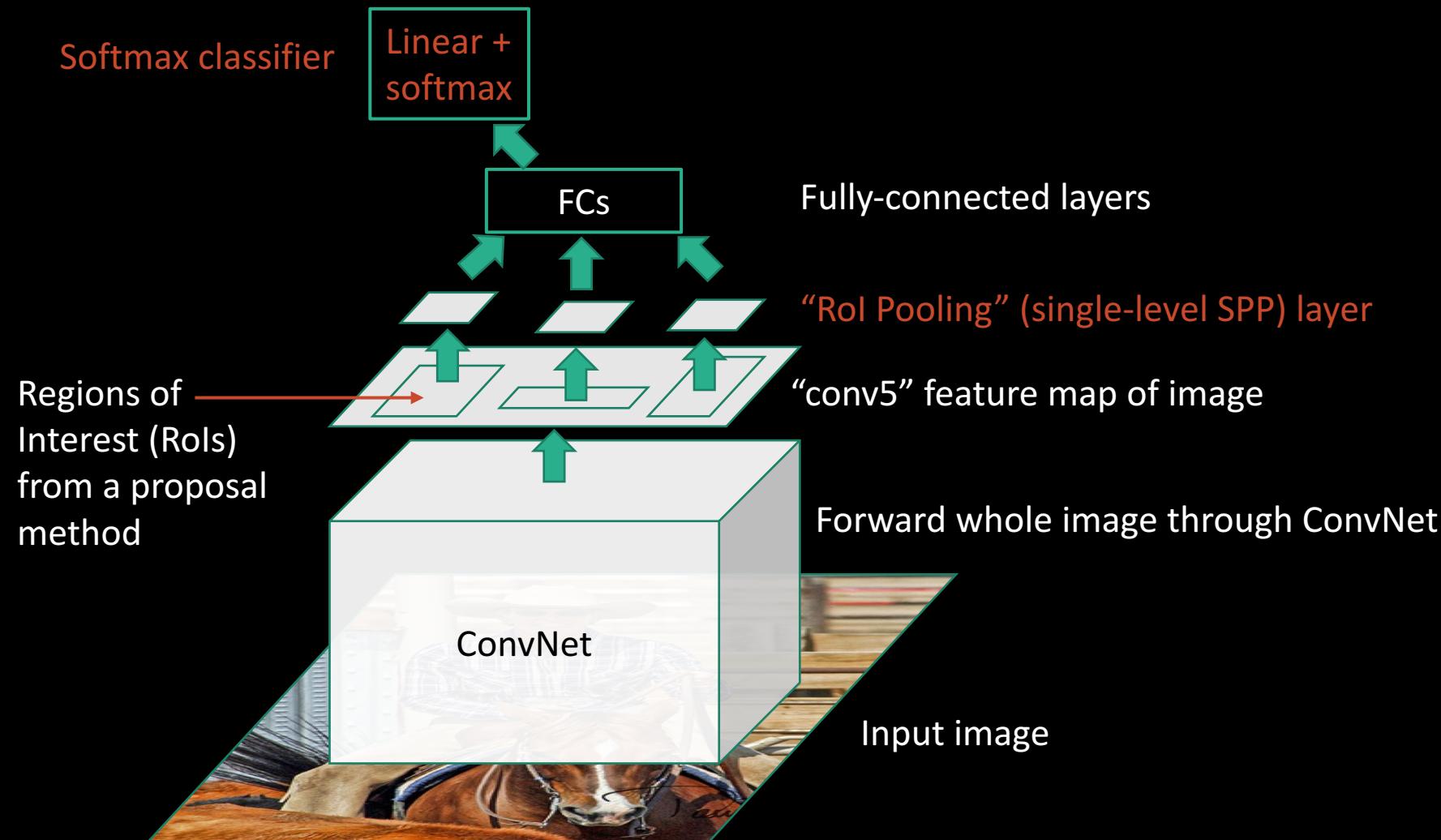
Fast R-CNN (test time)



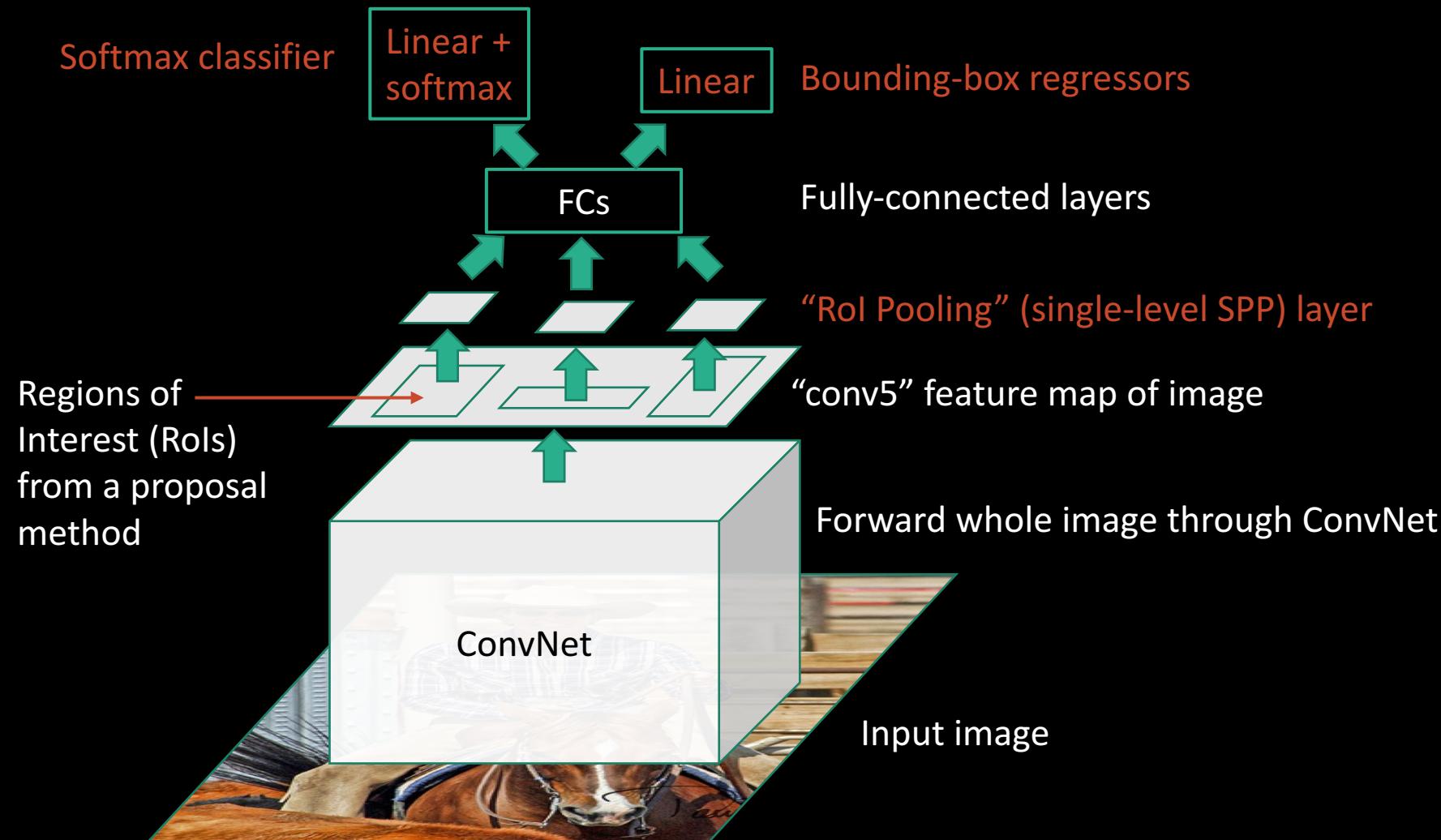
Fast R-CNN (test time)



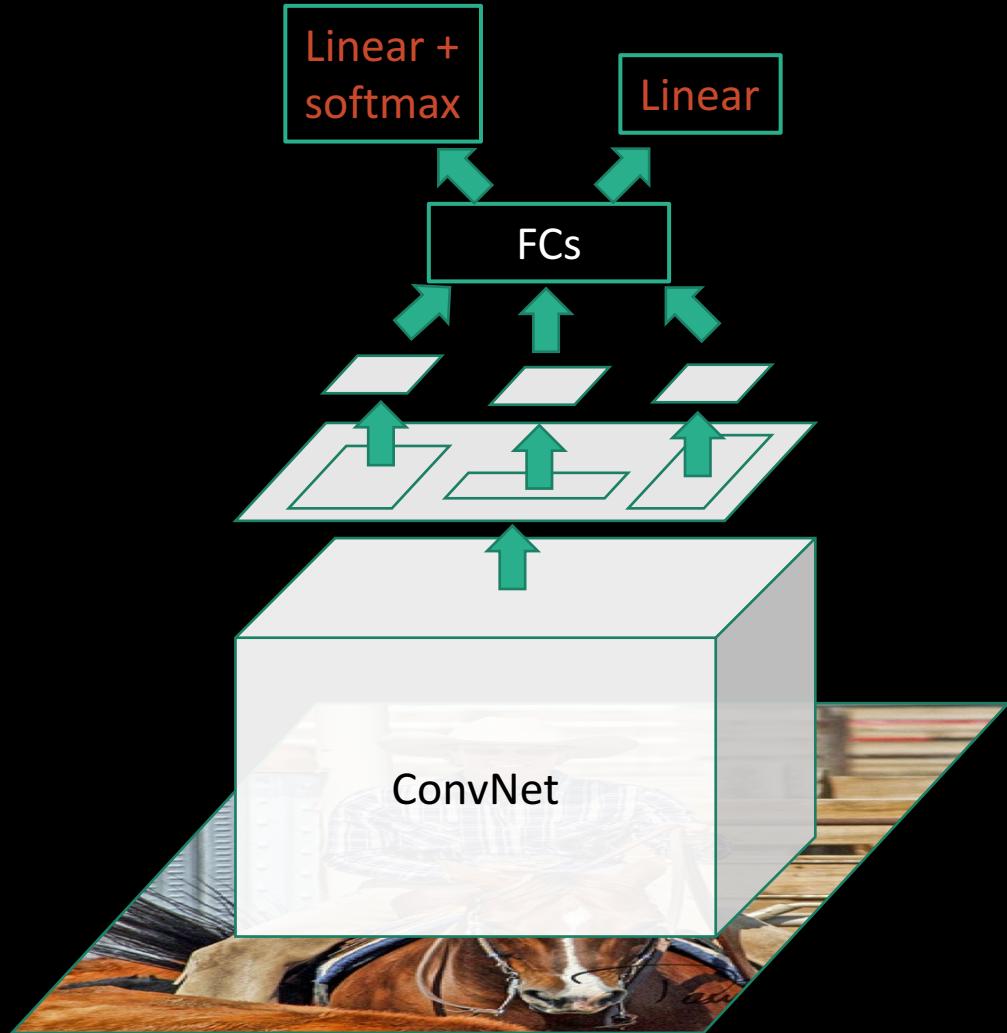
Fast R-CNN (test time)



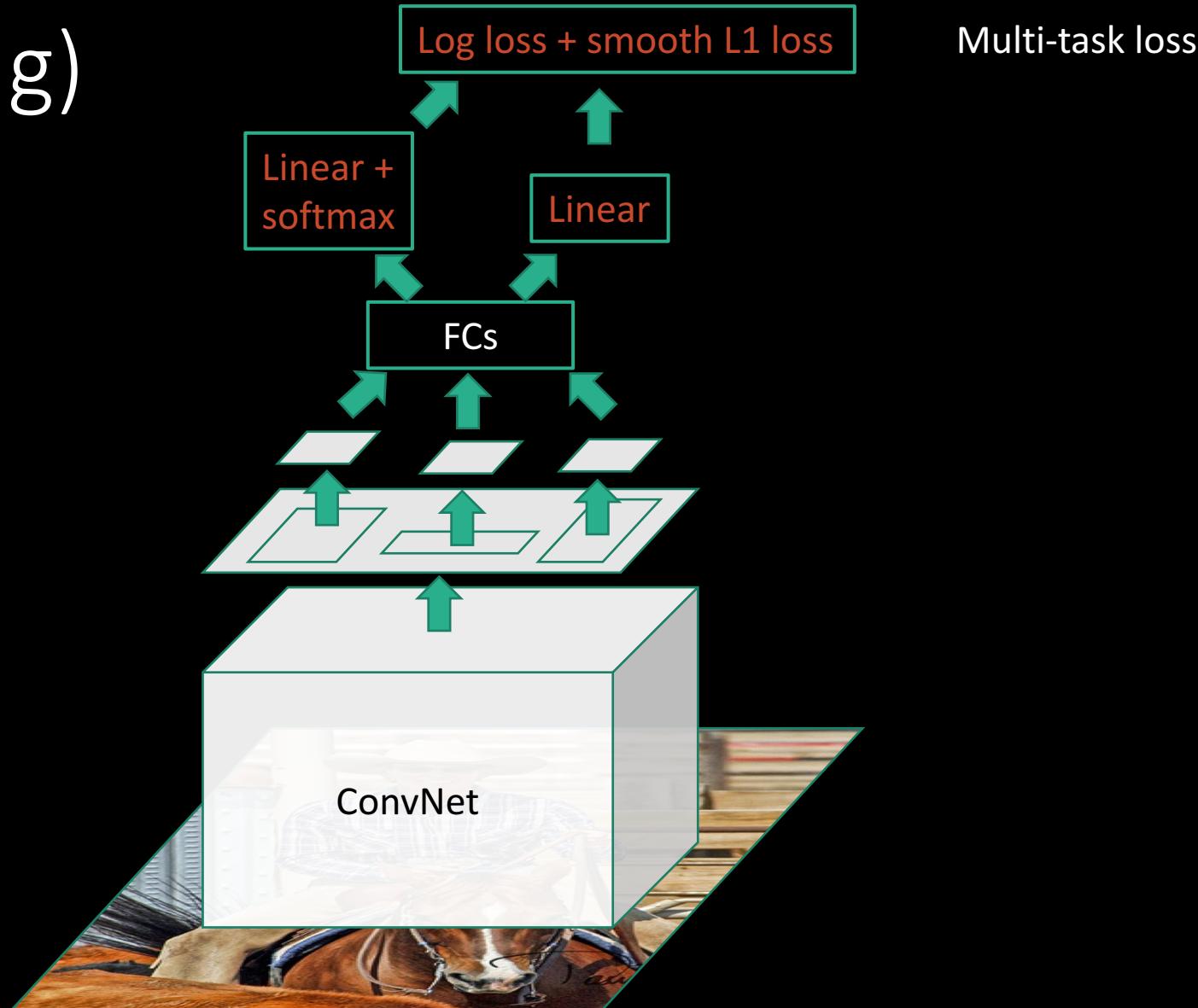
Fast R-CNN (test time)



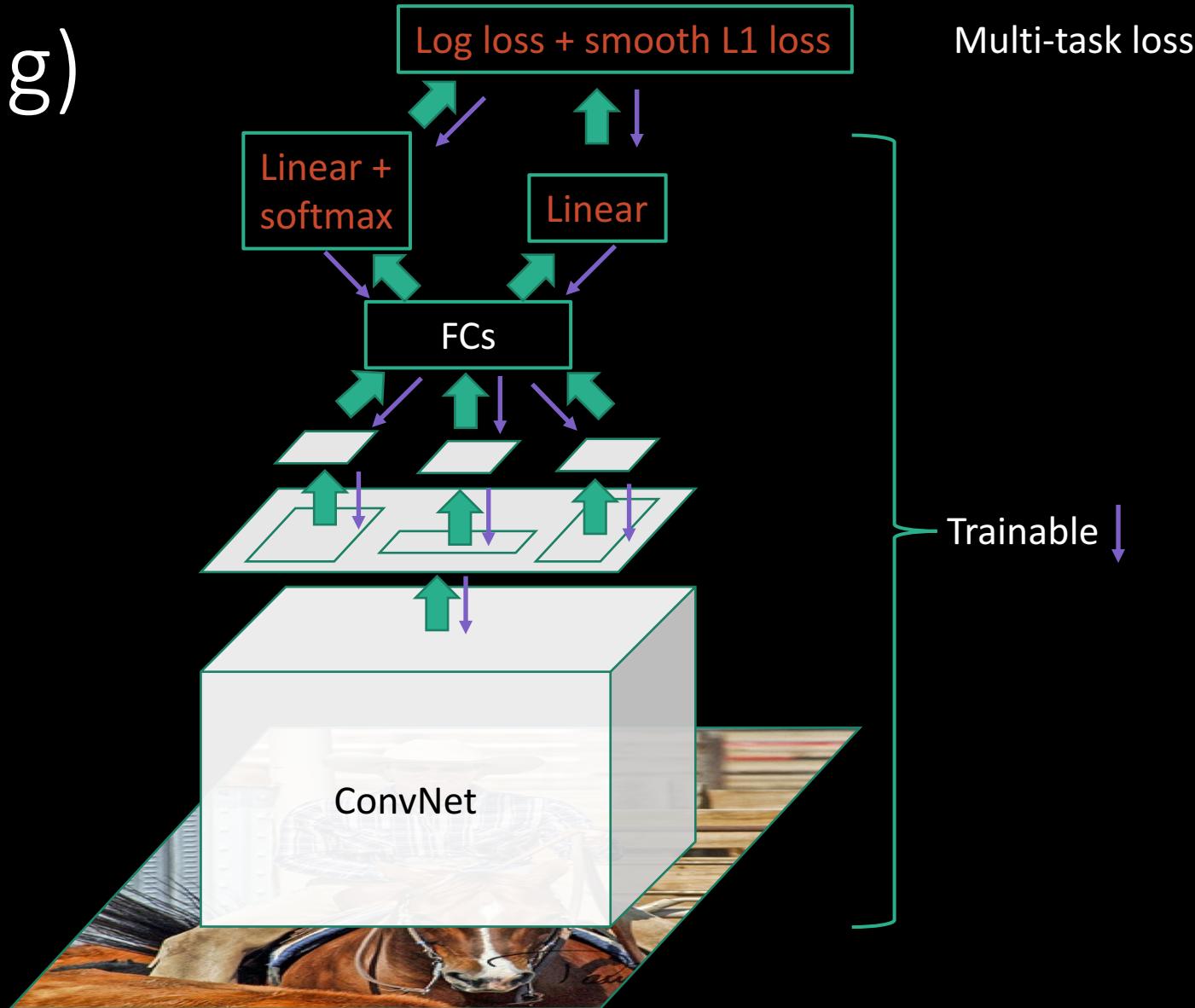
Fast R-CNN (training)



Fast R-CNN (training)



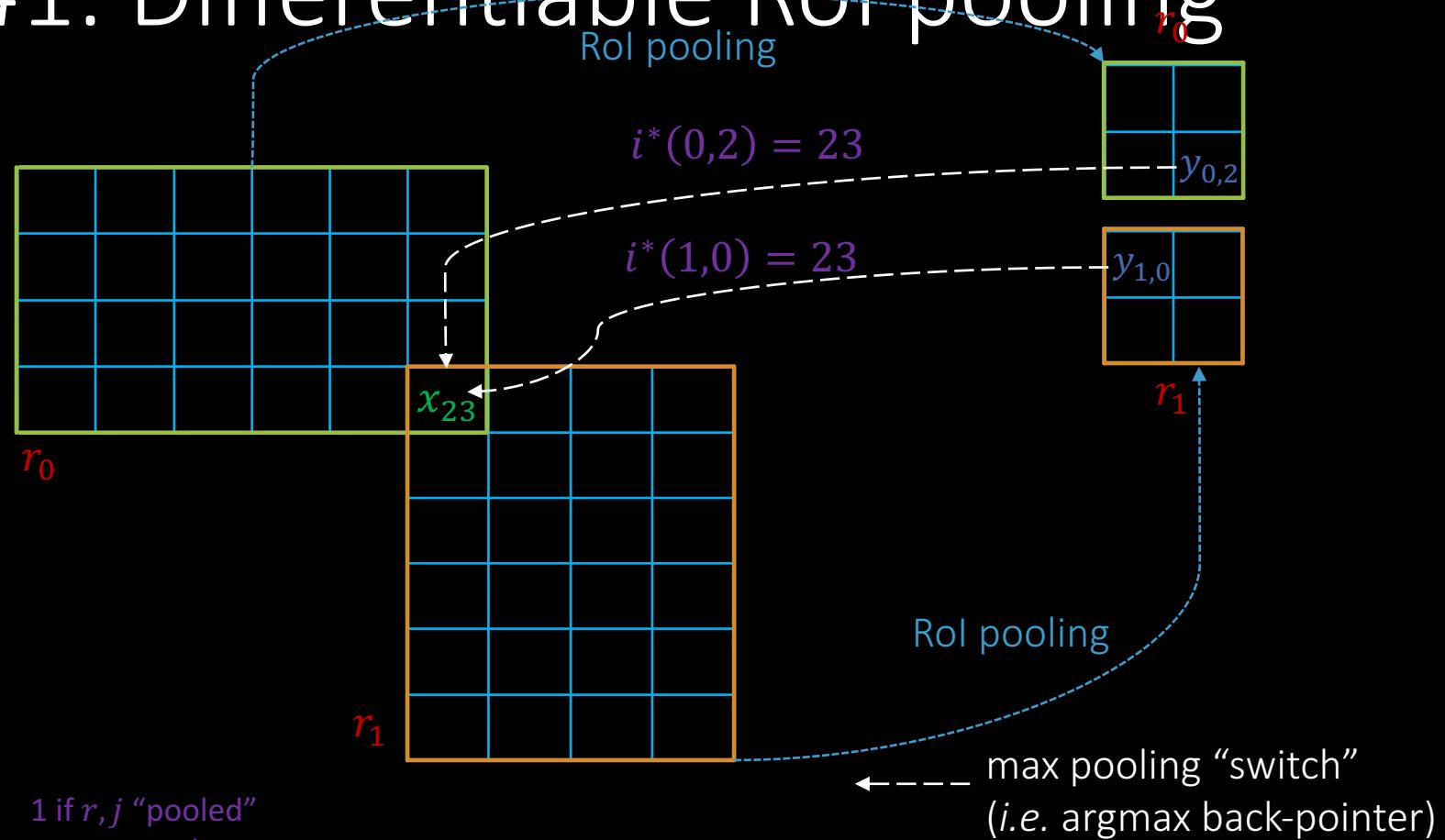
Fast R-CNN (training)



Obstacle #1: Differentiable RoI pooling

Region of Interest (RoI) pooling must be (sub-) differentiable to train conv layers

Obstacle #1: Differentiable RoI pooling



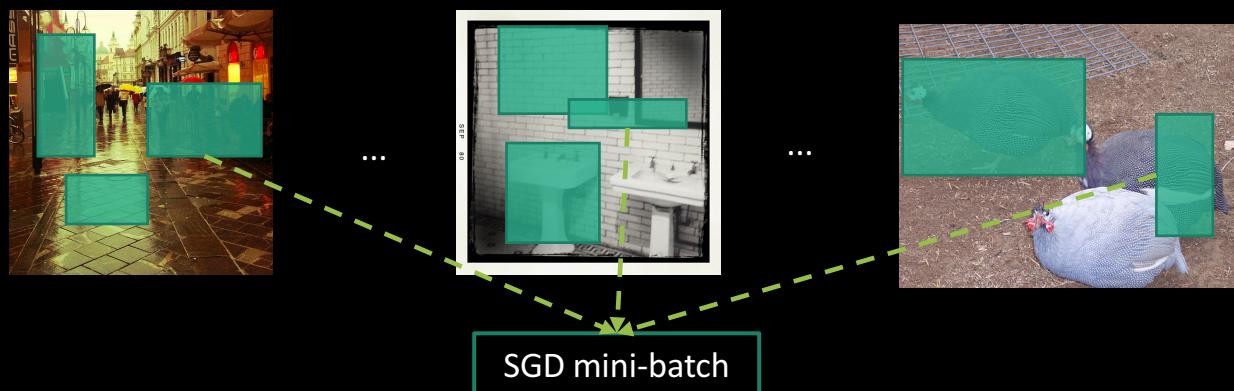
$$\frac{\partial L}{\partial x_i} = \sum_r \sum_j \begin{cases} 1 & \text{if } r, j \text{ "pooled"} \\ \text{input } i & \text{; 0 o/w} \end{cases} [i = i^*(r, j)] \frac{\partial L}{\partial y_{rj}}$$

Partial for x_i Over regions r ,
locations j Partial from
next layer

Obstacle #2: efficient SGD steps

Slow R-CNN and SPP-net use region-wise sampling to make mini-batches

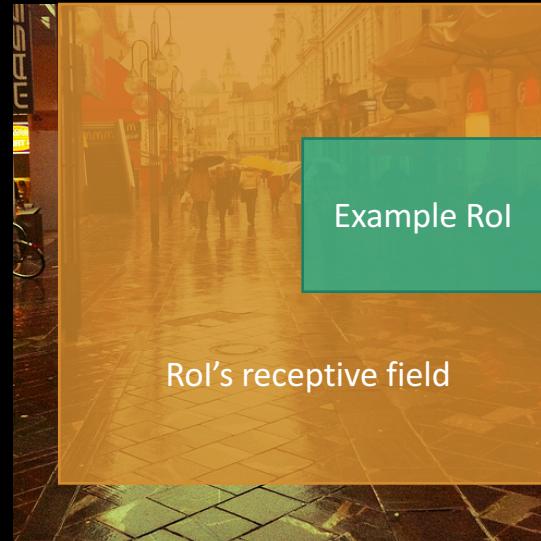
- Sample 128 example Rols uniformly at random
- Examples will come from different images with high probability



Obstacle #2: efficient SGD steps

Note the receptive field for one example RoI is often very large

- Worst case: the receptive field is the entire image



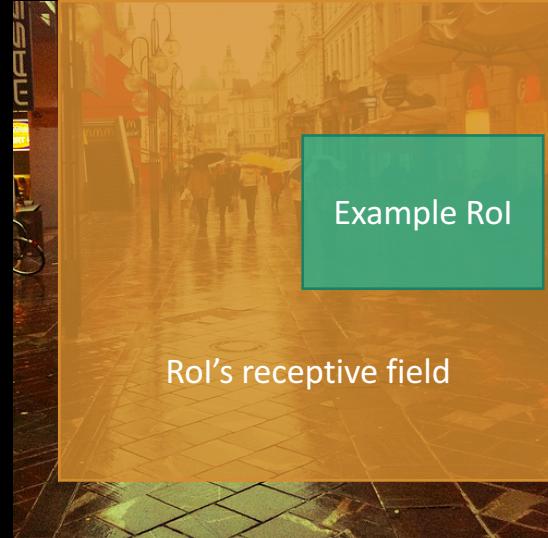
Obstacle #2: efficient SGD steps

Worst case cost per mini-batch (crude model of computational complexity)

input size for Fast R-CNN

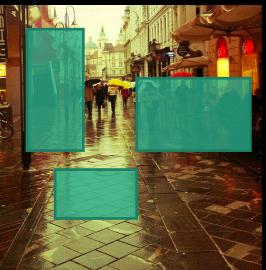
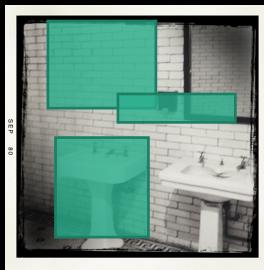
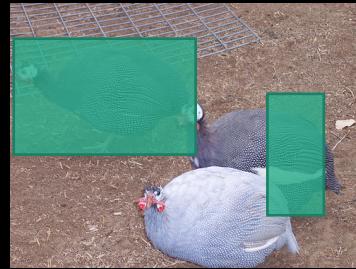
input size for slow R-CNN

$128*600*1000 / (128*224 *224) = 12x$ more computation than slow R-CNN



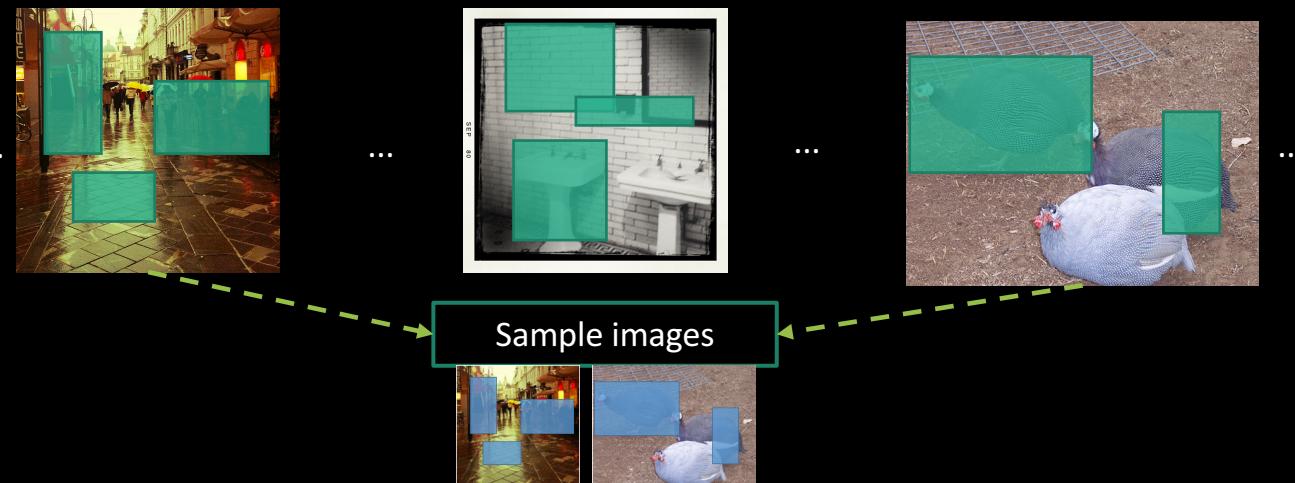
Obstacle #2: efficient SGD steps

Solution: use **hierarchical sampling** to build mini-batches



Obstacle #2: efficient SGD steps

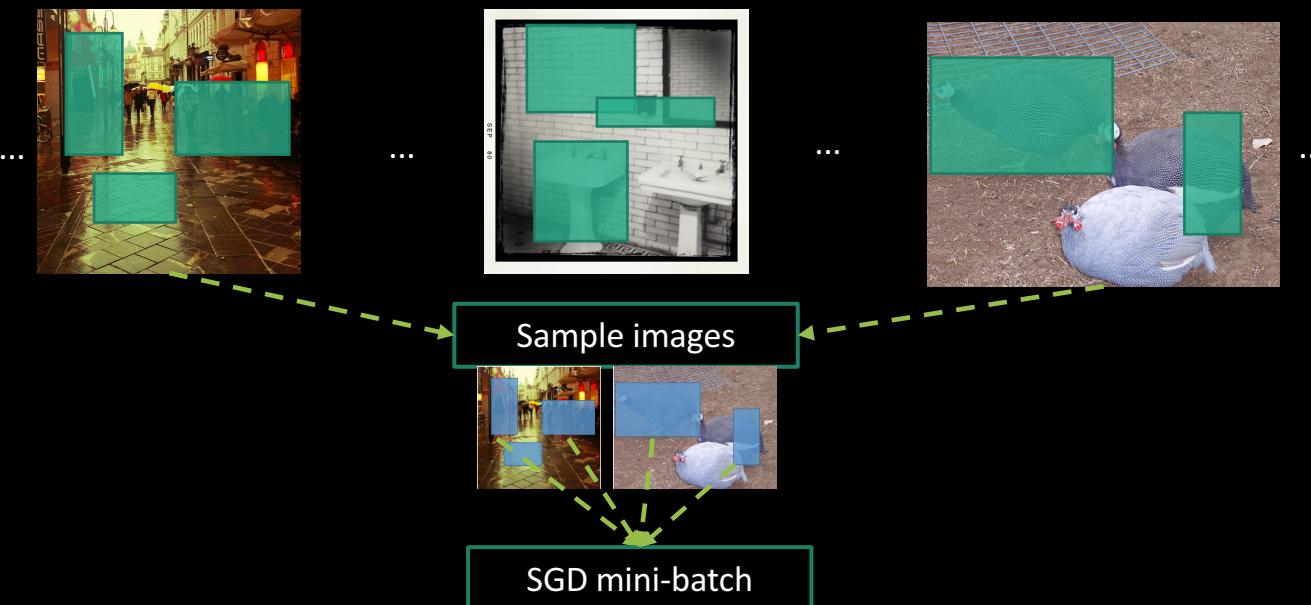
Solution: use **hierarchical sampling** to build mini-batches



- Sample a **small number** of images (2)

Obstacle #2: efficient SGD steps

Solution: use **hierarchical sampling** to build mini-batches

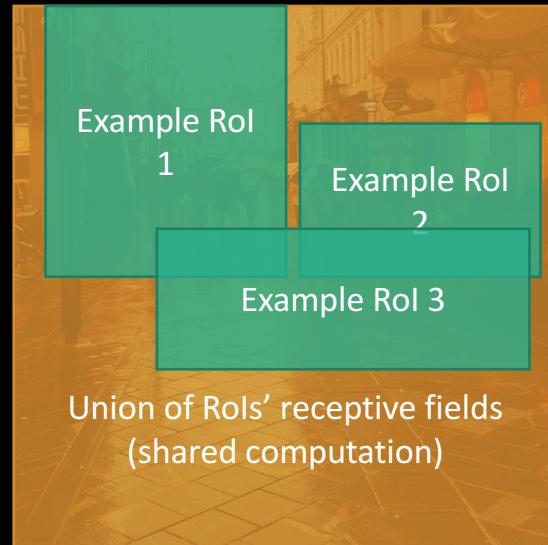


- Sample a **small number** of images (2)
- Sample **many examples** from each image (64)

Obstacle #2: efficient SGD steps

Use the test-time trick from SPP-net during training

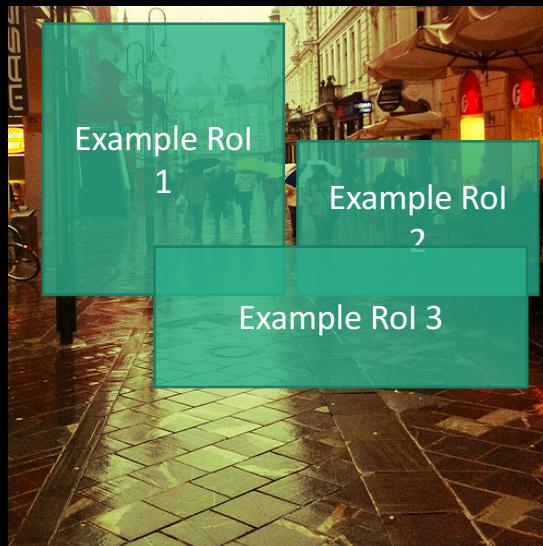
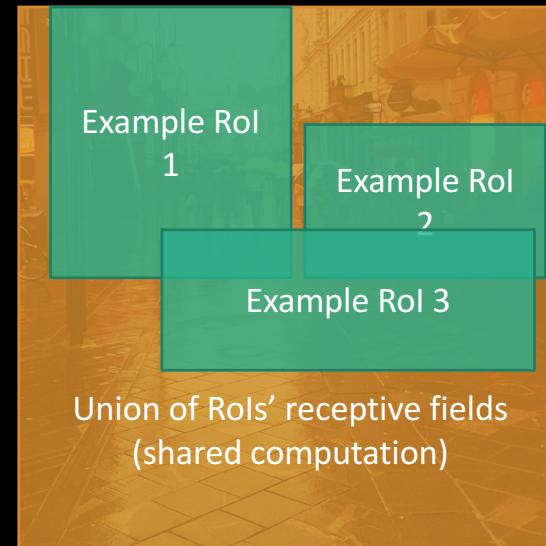
- Share computation between overlapping examples from the same image



Obstacle #2: efficient SGD steps

Cost per mini-batch compared to slow R-CNN (same crude cost model)

- $2*600*1000 / (128*224*224) = 0.19x$ less computation than slow R-CNN



Main results

	Fast R-CNN	R-CNN [1]	SPP-net [2]
Train time (h)	9.5	84	25
- Speedup	8.8x	1x	3.4x
Test time / image	0.32s	47.0s	2.3s
Test speedup	146x	1x	20x
mAP	66.9%	66.0%	63.1%

Timings exclude object proposal time, which is equal for all methods.
All methods use VGG16 from Simonyan and Zisserman.

[1] Girshick et al. CVPR14.

[2] He et al. ECCV14.

Main results

	Fast R-CNN	R-CNN [1]	SPP-net [2]
Train time (h)	9.5	84	25
- Speedup	8.8x	1x	3.4x
Test time / image	0.32s	47.0s	2.3s
Test speedup	146x	1x	20x
mAP	66.9%	66.0%	63.1%

Timings exclude object proposal time, which is equal for all methods.
All methods use VGG16 from Simonyan and Zisserman.

[1] Girshick et al. CVPR14.

[2] He et al. ECCV14.

Main results

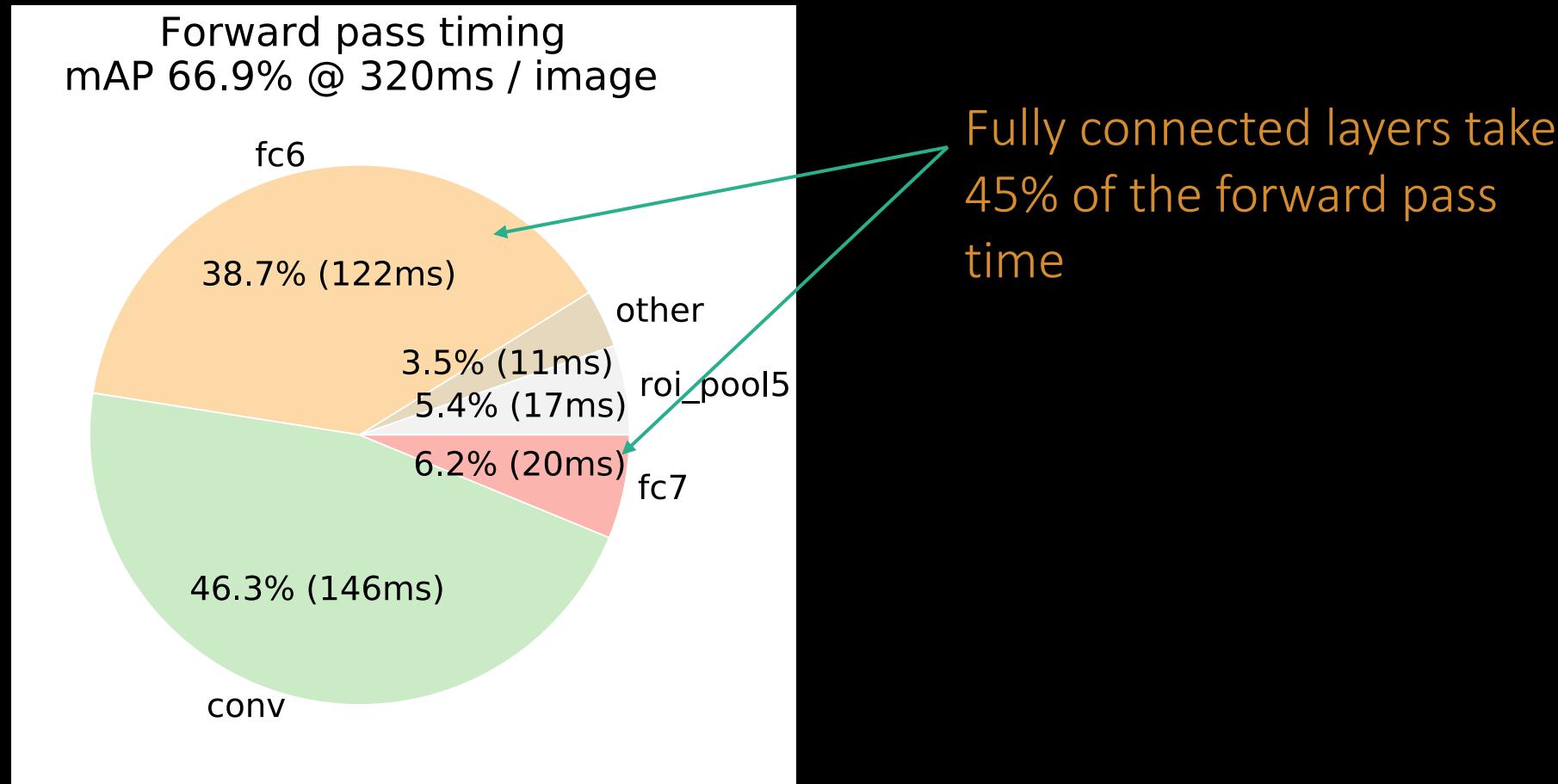
	Fast R-CNN	R-CNN [1]	SPP-net [2]
Train time (h)	9.5	84	25
- Speedup	8.8x	1x	3.4x
Test time / image	0.32s	47.0s	2.3s
Test speedup	146x	1x	20x
mAP	66.9%	66.0%	63.1%

Timings exclude object proposal time, which is equal for all methods.
All methods use VGG16 from Simonyan and Zisserman.

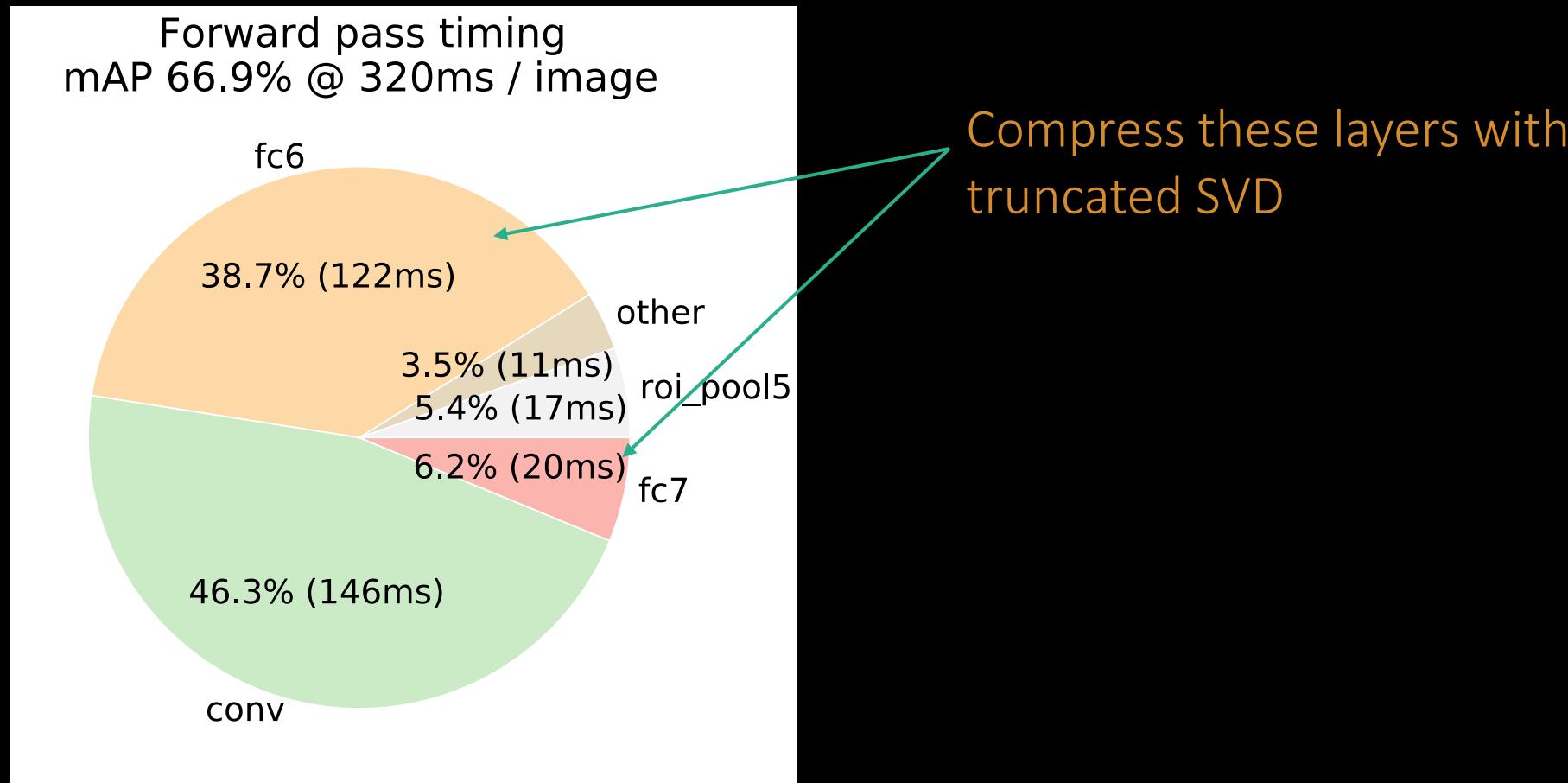
[1] Girshick et al. CVPR14.

[2] He et al. ECCV14.

Further test-time speedups



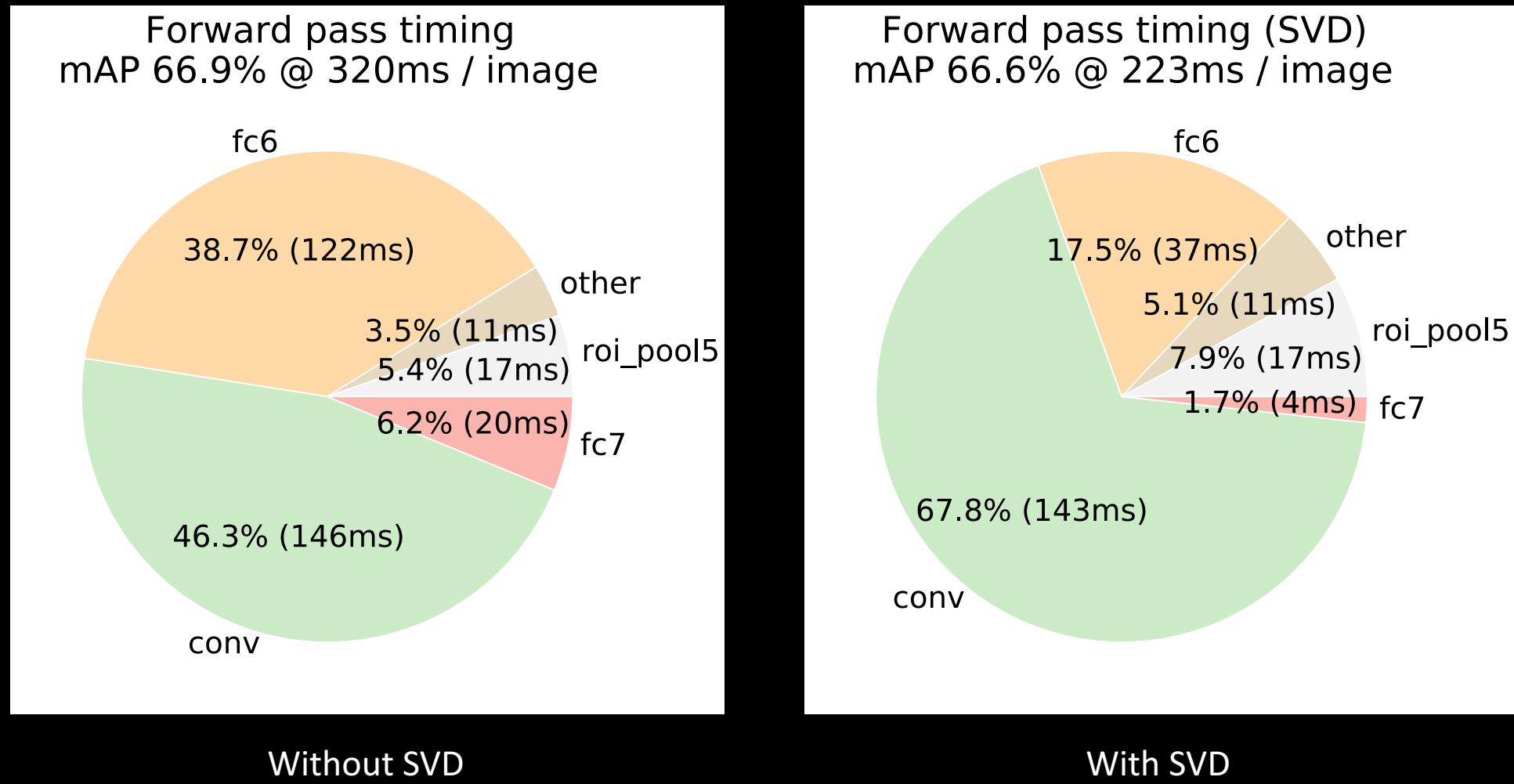
Further test-time speedups



J. Xue, J. Li, and Y. Gong.

Restructuring of deep neural network acoustic models with singular value decomposition.
Interspeech, 2013.

Further test-time speedups



Other findings

End-to-end training matters

Fast R-CNN (VGG16)			
Fine-tune layers	\geq fc6	\geq conv3_1	\geq conv2_1
VOC07 mAP	61.4%	66.9%	67.2%
Test time per image	0.32s	0.32s	0.32s

1.4x slower
training

Multi-task training helps

	Fast R-CNN (VGG16)			
Multi-task training?		Y		Y
Stage-wise training?			Y	
Test-time bbox reg.			Y	Y
VOC07 mAP	62.6%	63.4%	64.0%	66.9%

Multi-task training helps

	Fast R-CNN (VGG16)			
Multi-task training?		Y		Y
Stage-wise training?			Y	
Test-time bbox reg.			Y	Y
VOC07 mAP	62.6%	63.4%	64.0%	66.9%

Trained without
a bbox regressor

Multi-task training helps

	Fast R-CNN (VGG16)			
Multi-task training?		Y		Y
Stage-wise training?			Y	
Test-time bbox reg.			Y	Y
VOC07 mAP	62.6%	63.4%	64.0%	66.9%

Trained with
a bbox regressor,
but it's disabled at
test time

Multi-task training helps

	Fast R-CNN (VGG16)			
Multi-task training?		Y		Y
Stage-wise training?			Y	
Test-time bbox reg.			Y	Y
VOC07 mAP	62.6%	63.4%	64.0%	66.9%

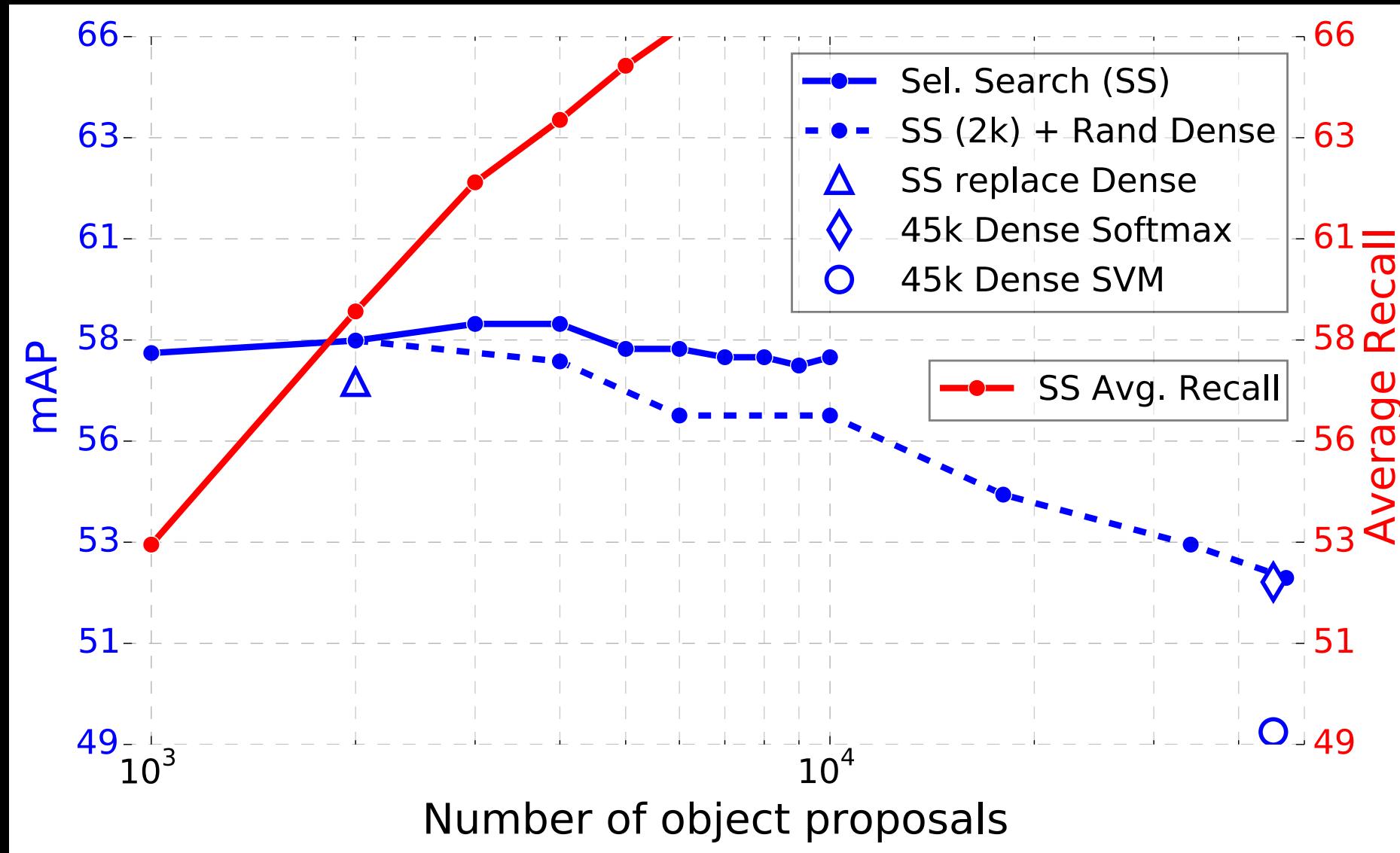
Post hoc bbox
regressor, used
at test time

Multi-task training helps

	Fast R-CNN (VGG16)			
Multi-task training?		Y		Y
Stage-wise training?			Y	
Test-time bbox reg.			Y	Y
VOC07 mAP	62.6%	63.4%	64.0%	66.9%

Multi-task objective,
using bbox regressors
at test time

More proposals is harmful



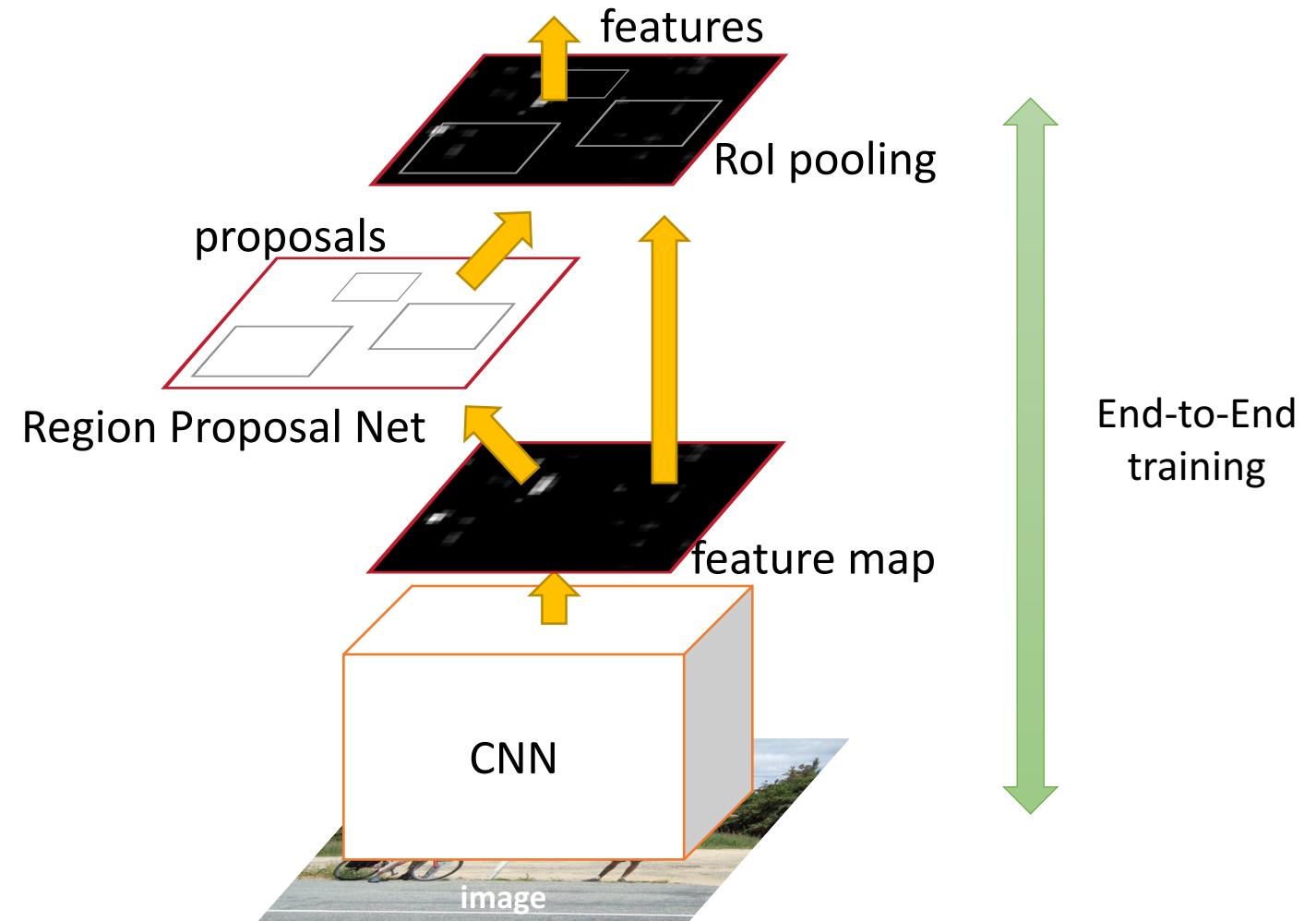
What's still wrong?

- Out-of-network region proposals
 - Selective search: 2s / im; EdgeBoxes: 0.2s / im
- Fortunately, we have a solution
 - Our follow-up work was presented last week at NIPS

Shaoqing Ren, Kaiming He, Ross Girshick & Jian Sun.
“Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.” NIPS 2015.

Object Detection: Faster R-CNN

- Faster R-CNN
 - Solely based on CNN
 - No external modules
 - Each step is end-to-end



Fast R-CNN take-aways

- End-to-end training of deep ConvNets for detection
- Fast training times
- Open source for easy experimentation

“I think [the Fast R-CNN] code is average-somewhat above average for what it is.”
– [sporkles](#) on r/MachineLearning

- A large number of ImageNet detection and COCO detection methods are built on Fast R-CNN

Checkout the ImageNet / COCO Challenge workshop on Thursday!

Focal Loss for Dense Object Detection

Tsung-Yi Lin, Google Brain

Work done at Facebook AI Research with
Priya Goyal, Ross Girshick, Kaiming He, Piotr Dollár

Viola and Jones (2001)

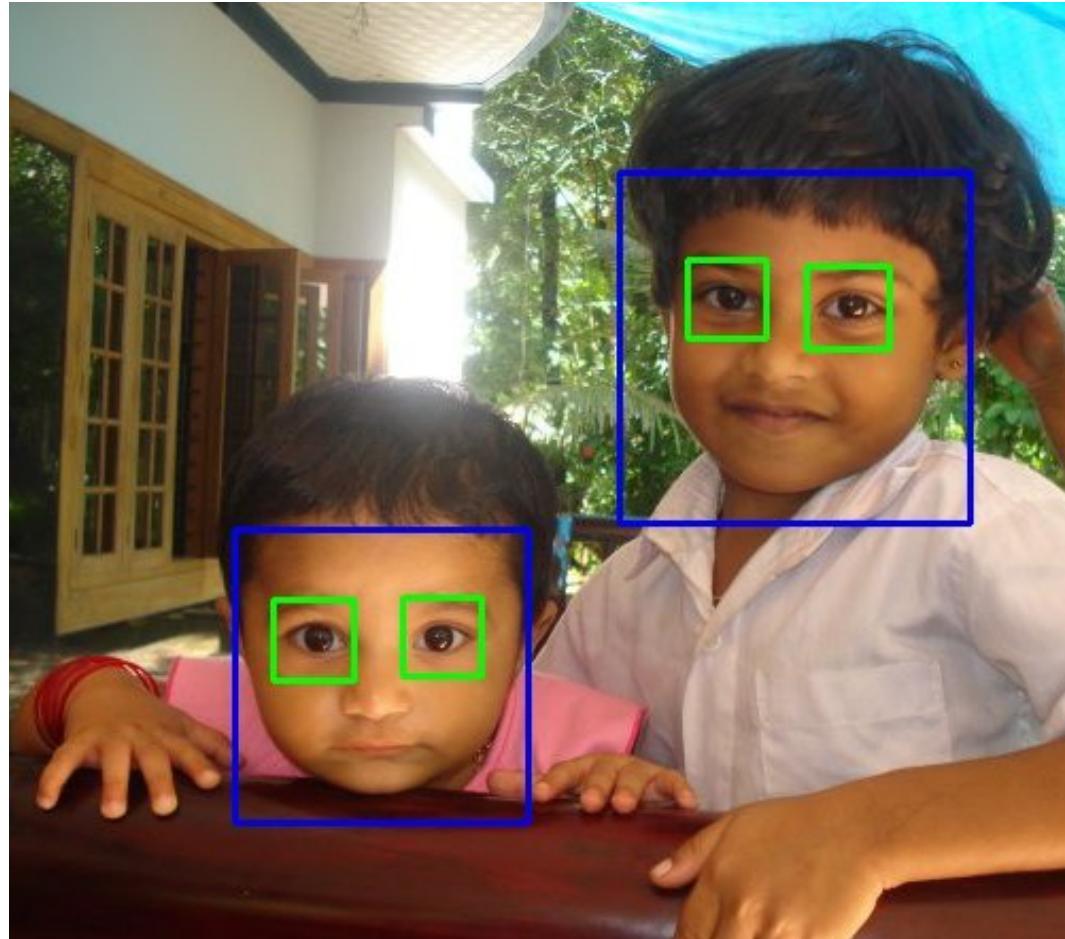
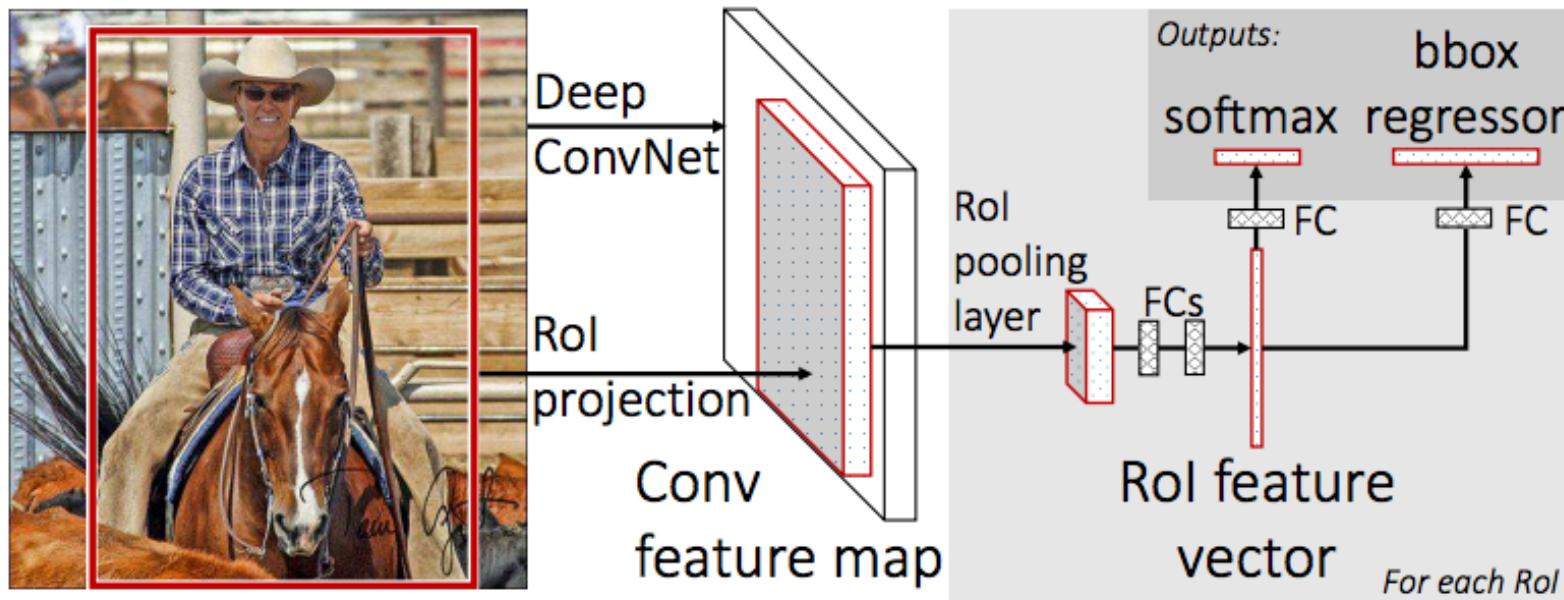


Image from OpenCV 3.3 website

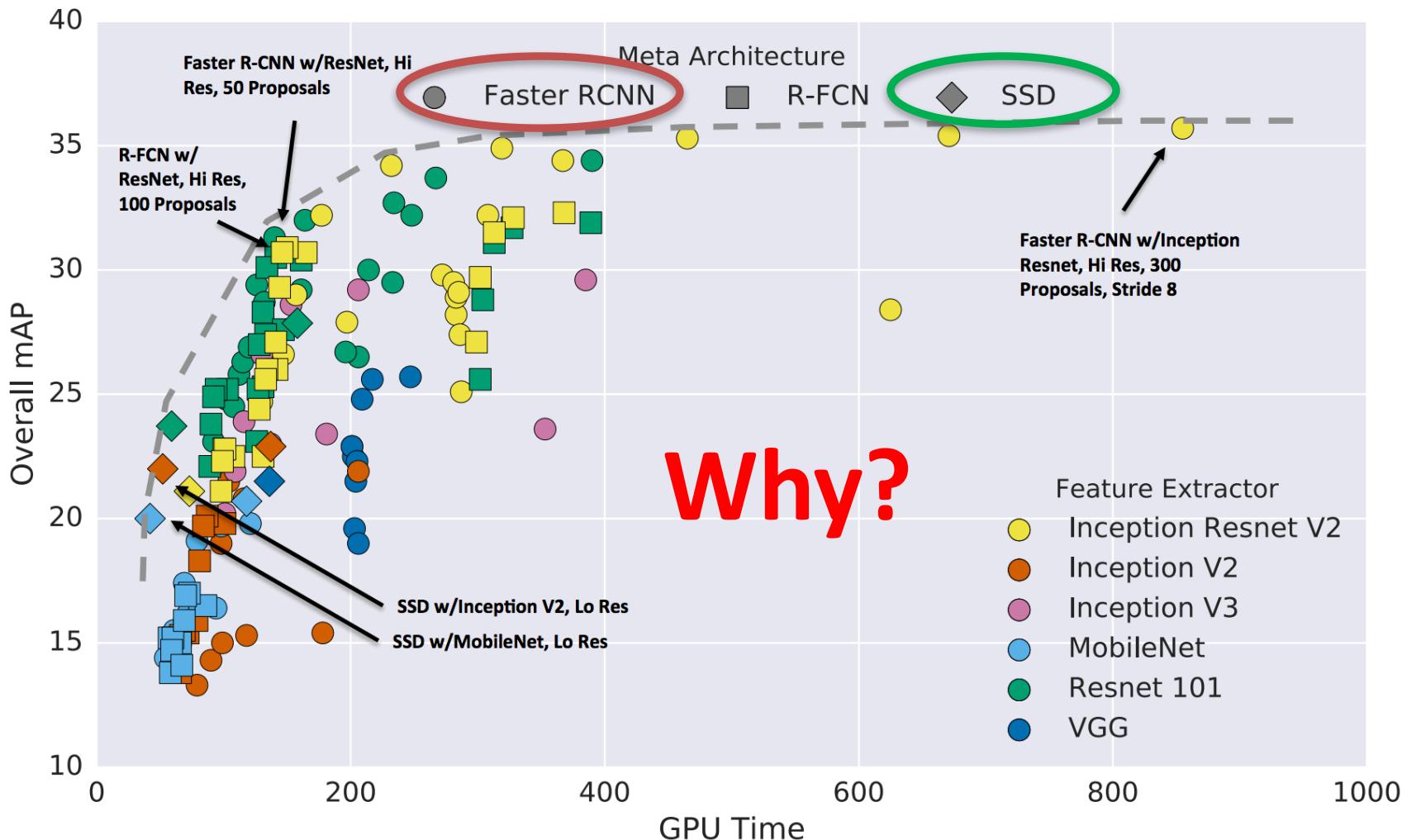
Fast R-CNN



One-stage vs. Two-stage

- One-stage
 - Fast
 - Simple
- Two-stage
 - 10 - 40% better accuracy

One-stage vs. Two-stage

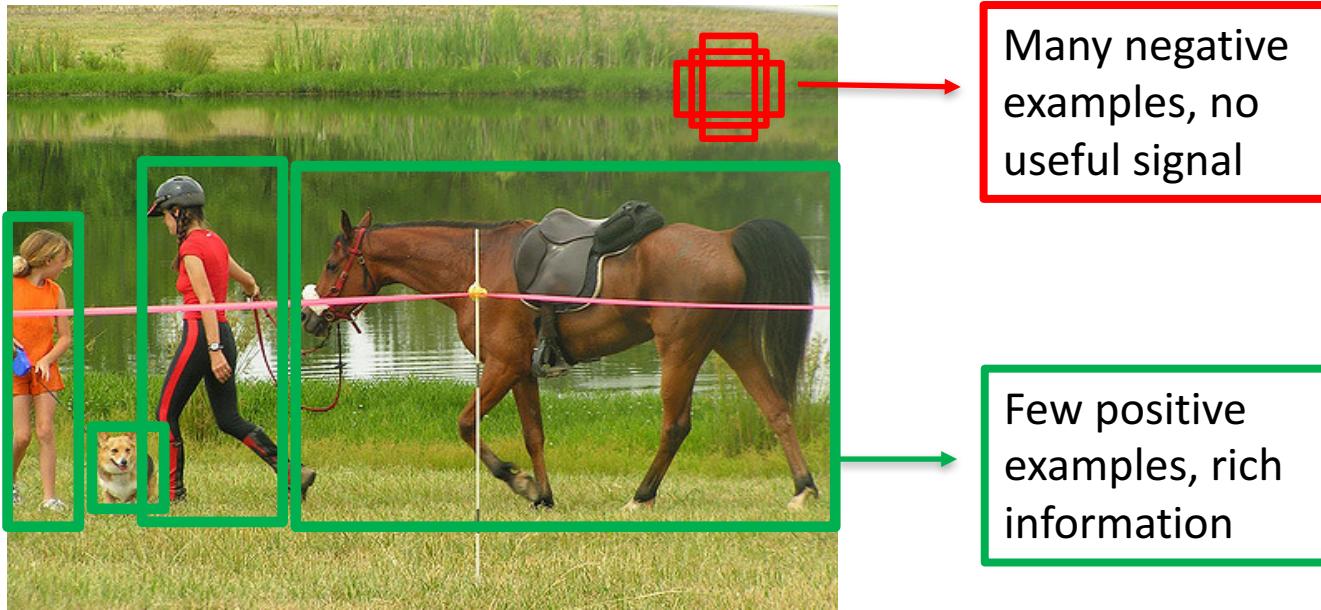


Toward dense detection

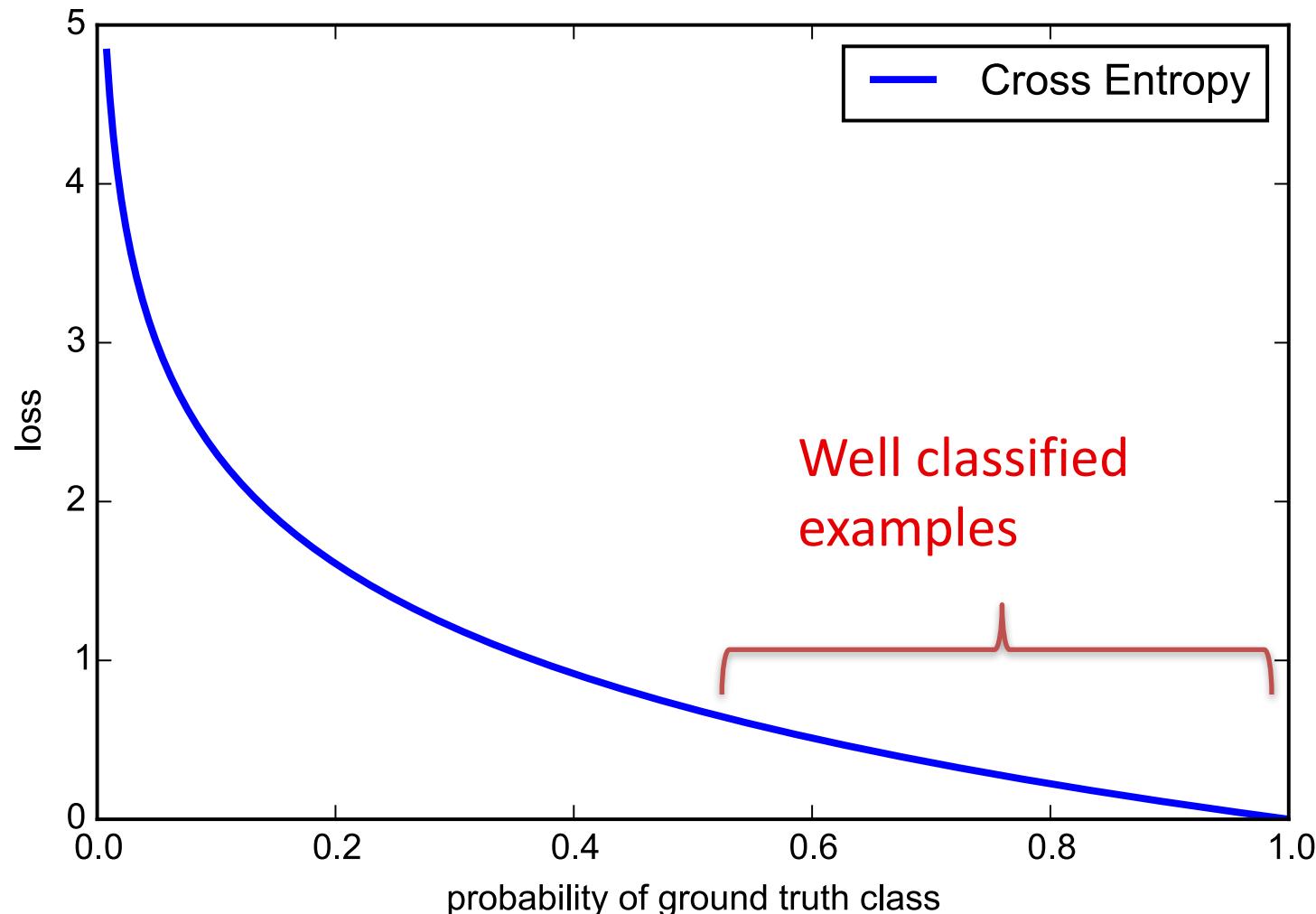
- YOLOv1 – 98 boxes
- YOLOv2 – ~1k
- OverFeat – ~1-2k
- SSD – ~8-26k
- This work – **~100k**

Class Imbalance

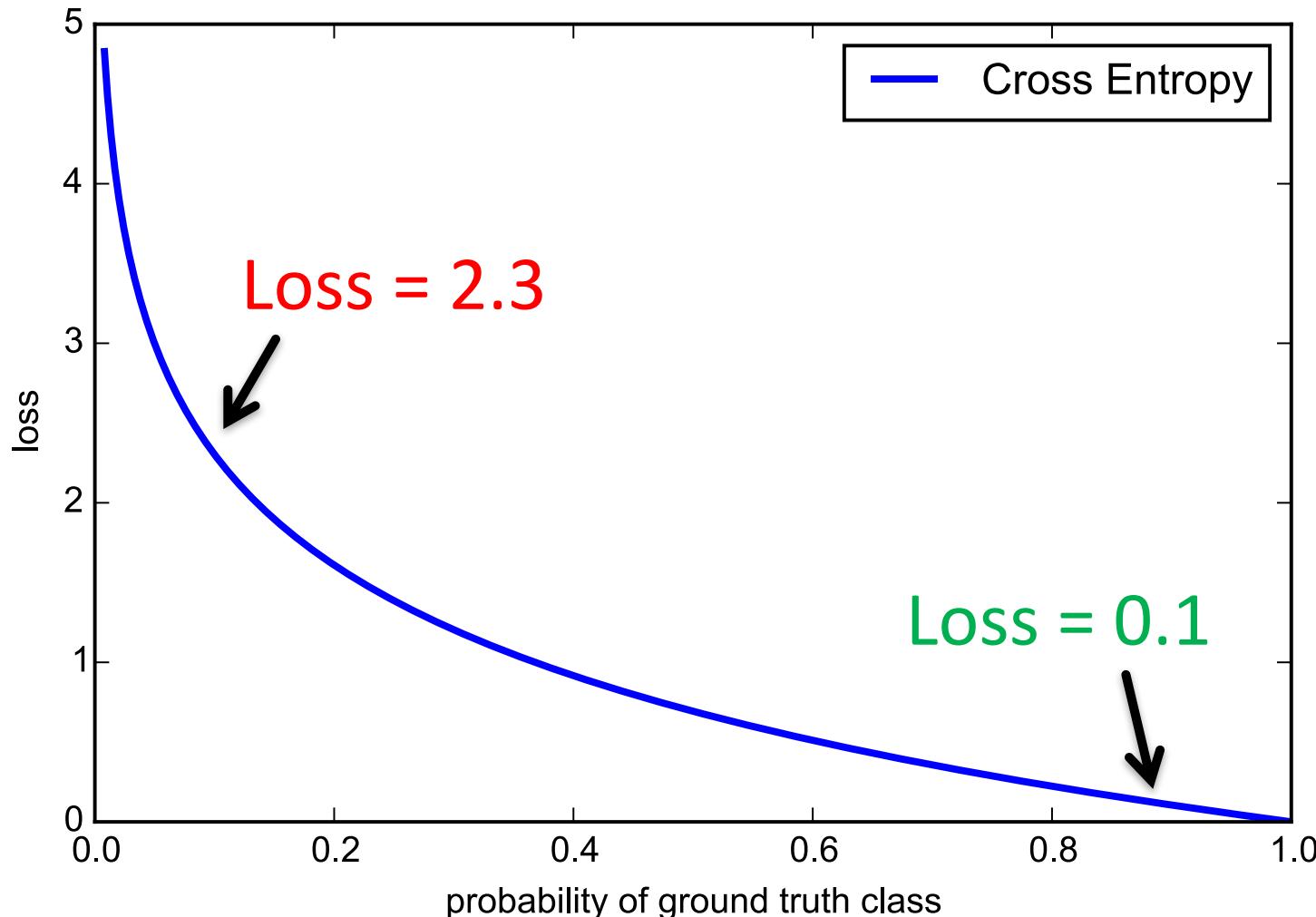
- Few training examples from foreground
- Most examples from background
 - Easy and uninformative
 - Distracting



Cross Entropy



Cross Entropy



Cross Entropy with Imbalance Data

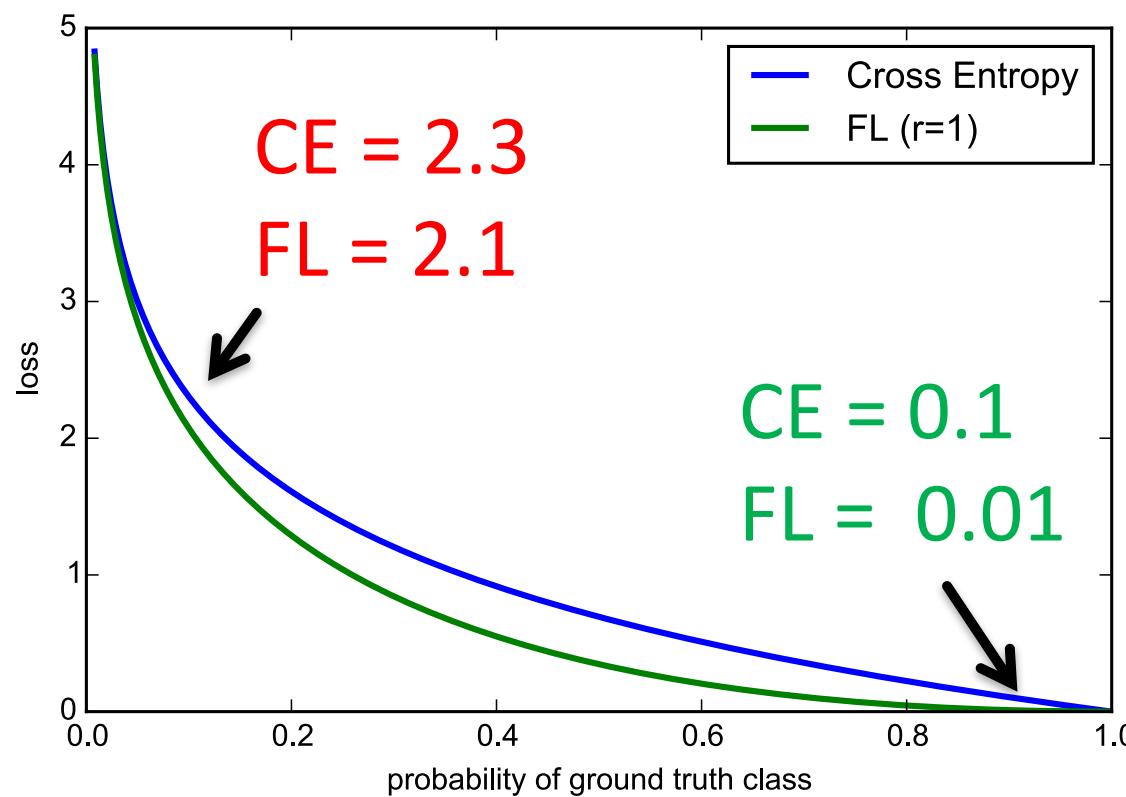
- 100000 easy : 100 hard examples
- **40x bigger loss** from easy examples



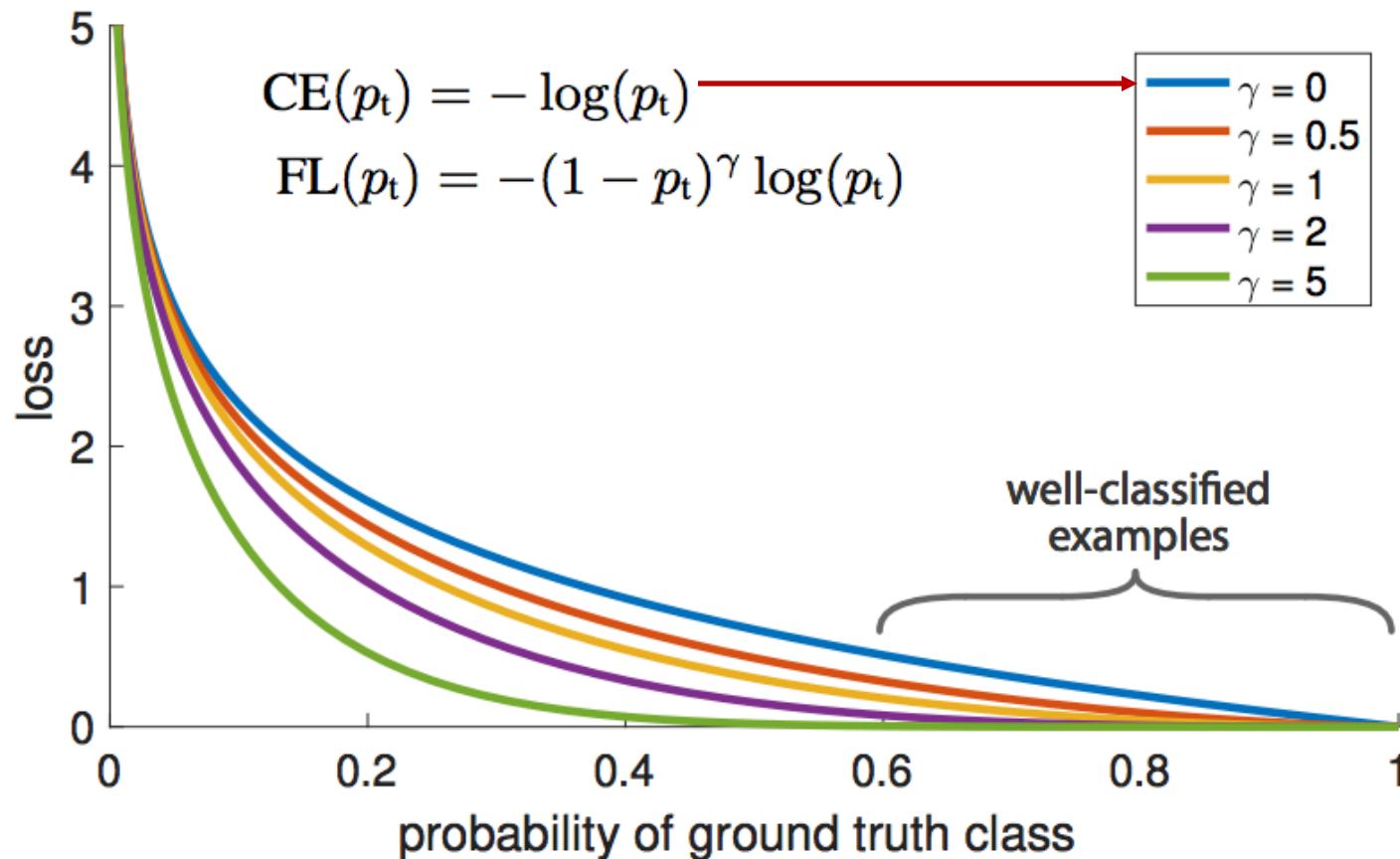
Focal Loss

$$\text{CE}(p_t) = -\log(p_t)$$

$$\text{FL}(p_t) = -(1 - p_t)^\gamma \log(p_t)$$



Focal Loss



Prior

- α -balanced Cross entropy

$$\text{CE}(p_t) = -\alpha_t \log(p_t)$$

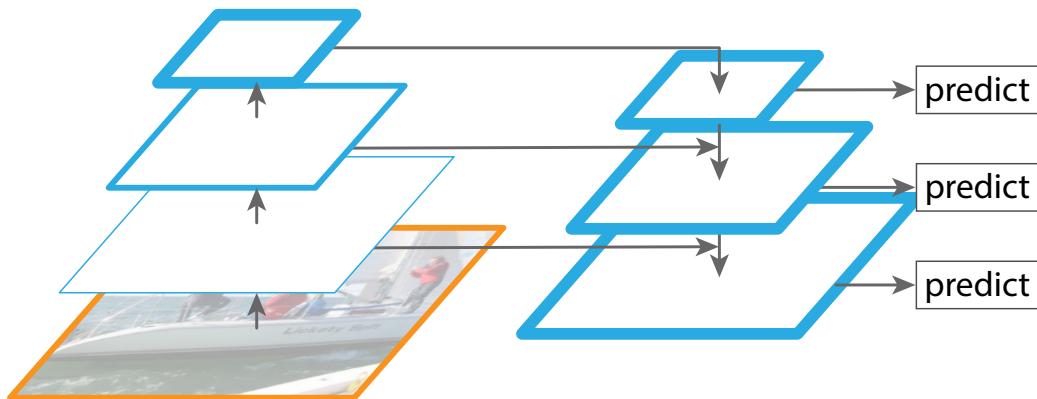
- α -balanced Focal Loss

$$\text{FL}(p_t) = -\alpha_t (1 - p_t)^\gamma \log(p_t)$$

- γ : focus more on hard examples
- α : offset class imbalance of number of examples

Feature Pyramid Network

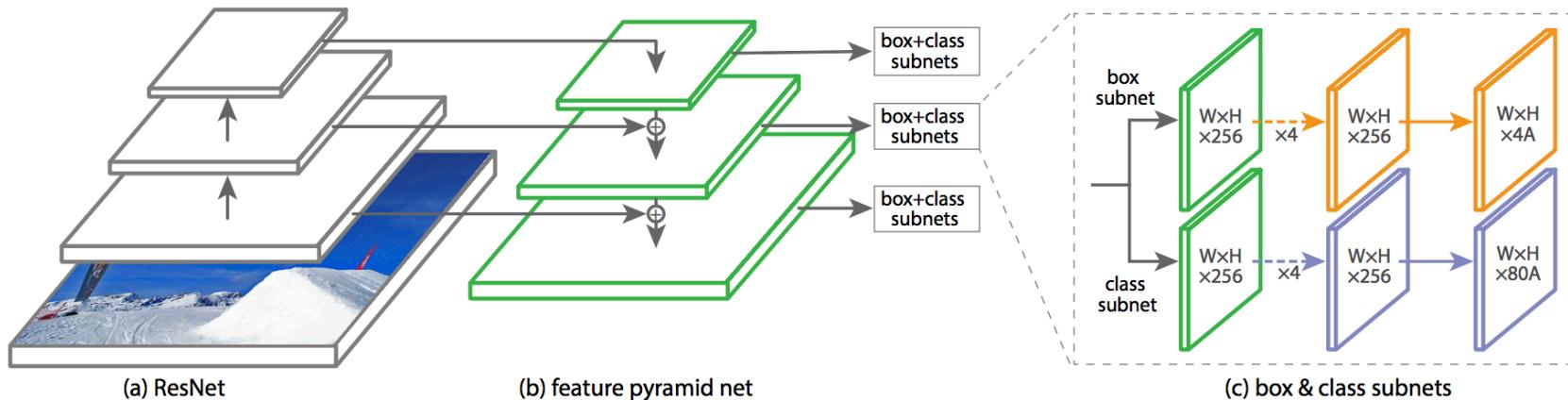
- Multiscale
- Semantically strong at all scales
- Fast to compute



Feature Pyramid Network for Object Detection, Lin et al., CVPR 2017

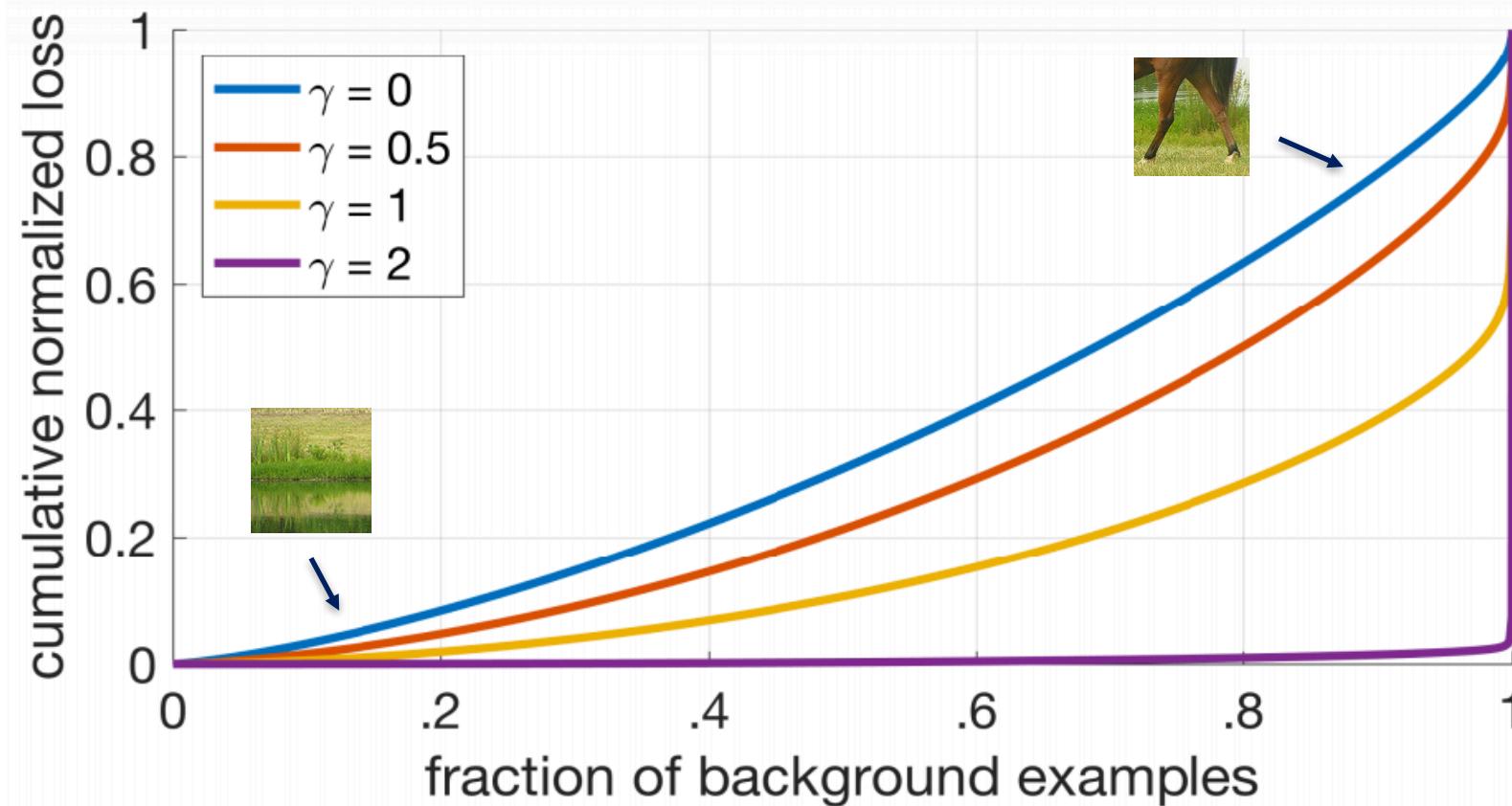
Architecture

- RetinaNet
 - FPN + 100k boxes
 - Focal loss



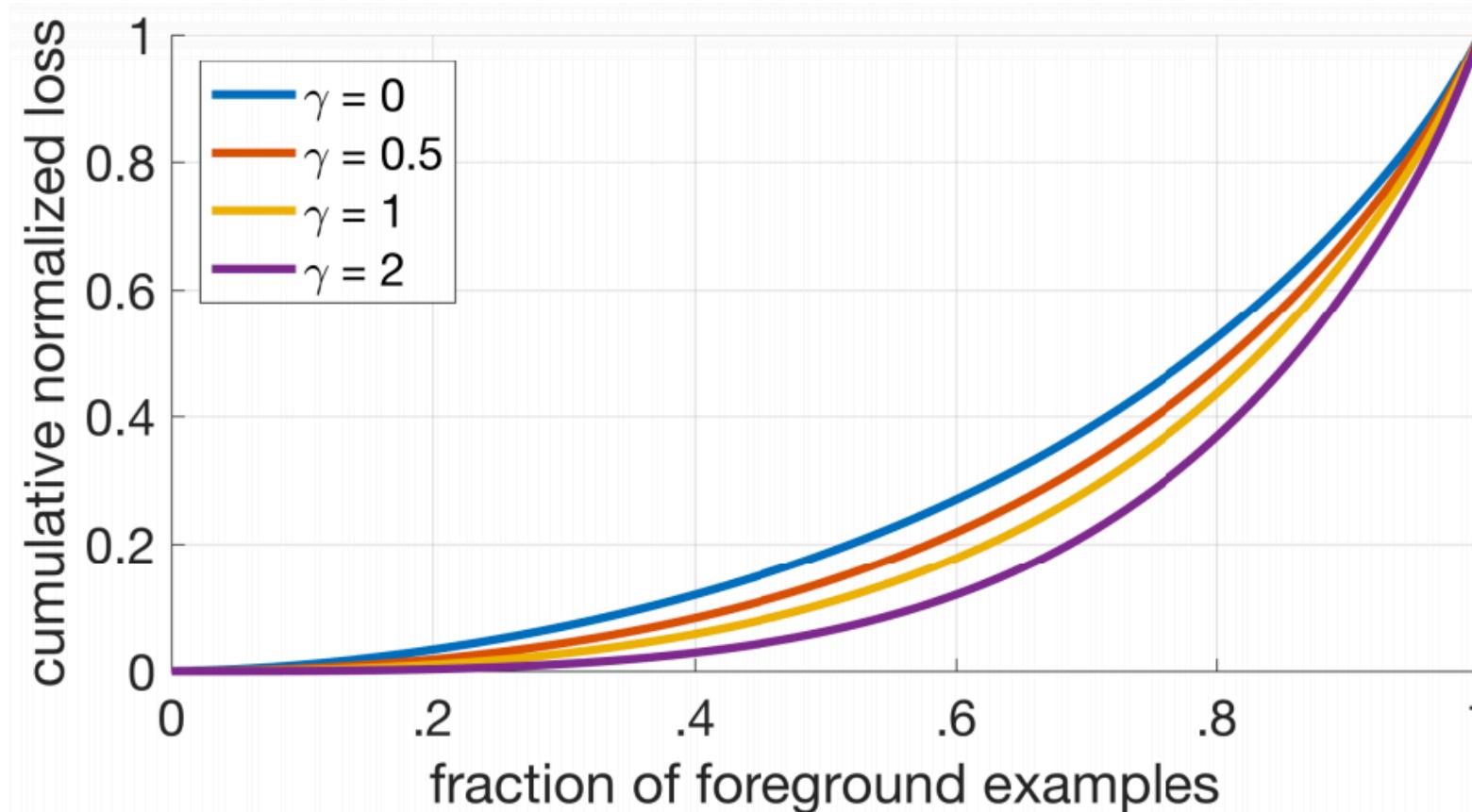
Loss Distribution under Focal Loss

Background Boxes



Loss Distribution under Focal Loss

Foreground Boxes



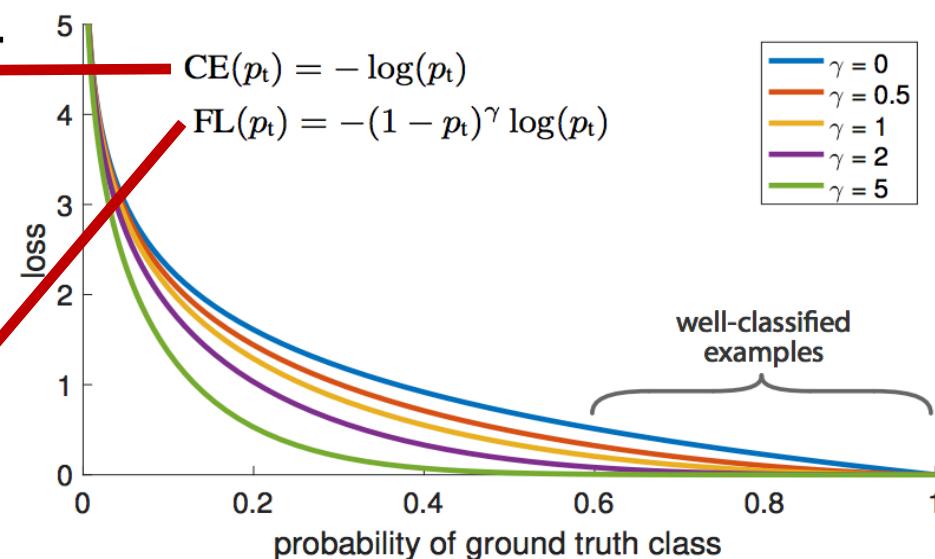
vs. Cross Entropy

- + 2.9 AP to α -balanced cross entropy

γ	α	AP	AP ₅₀	AP ₇₅
0	.75	31.1	49.4	33.0
0.1	.75	31.4	49.9	33.1
0.2	.75	31.9	50.7	33.4
0.5	.50	32.9	51.7	35.2
1.0	.25	33.7	52.0	36.2
2.0	.25	34.0	52.5	36.5
5.0	.25	32.2	49.6	34.8

(b) Varying γ for FL (w. optimal α)

(ResNet-50-FPN 600px input image)



vs. OHEM

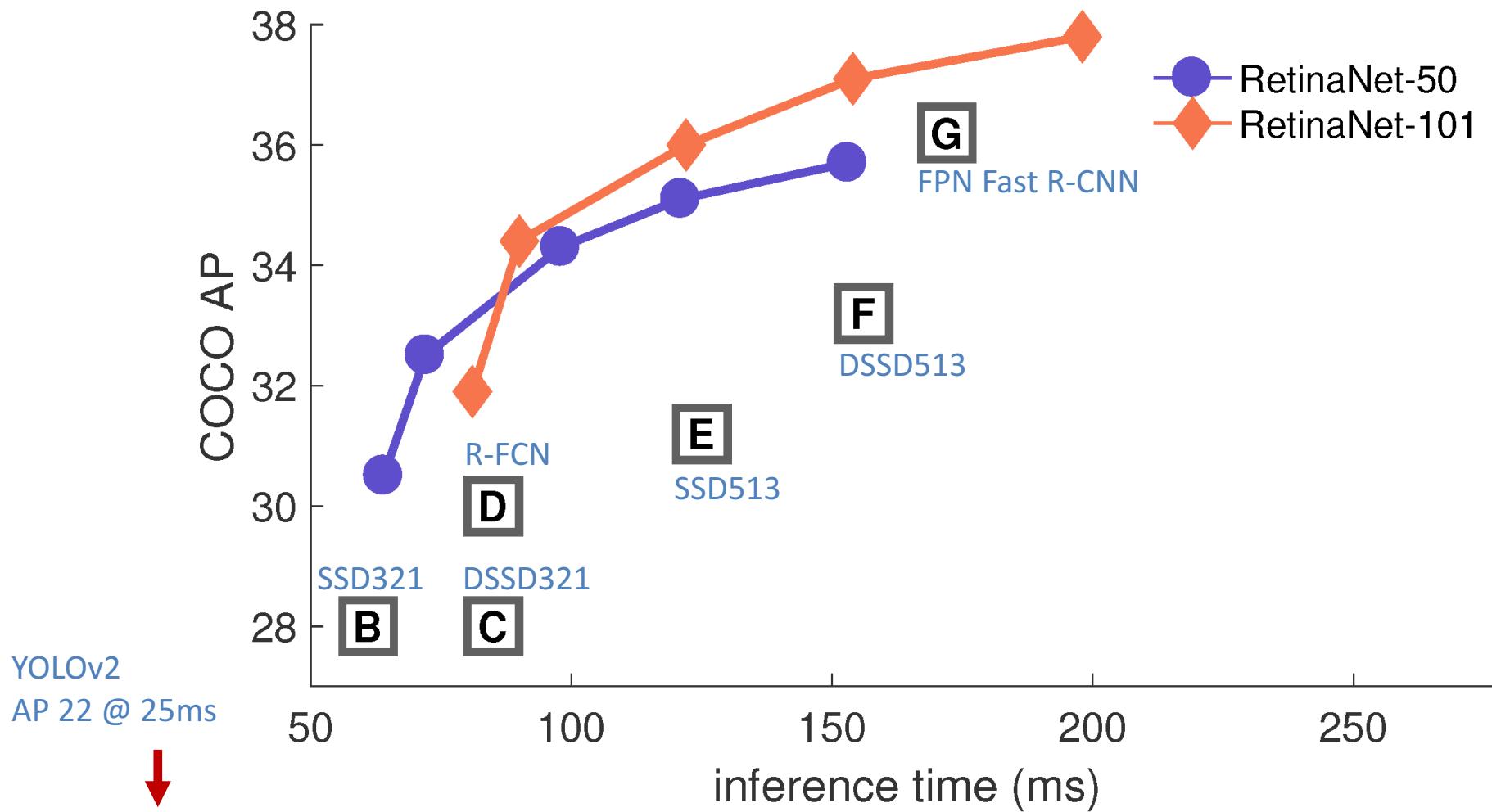
- +3.2 AP to best OHEM (ResNet-101 FPN)

method	batch size	nms thr	AP
OHEM	128	.7	31.1
OHEM	256	.7	31.8
OHEM	512	.7	30.6
OHEM	128	.5	32.8
OHEM	256	.5	31.0
OHEM	512	.5	27.6
OHEM 1:3	128	.5	31.1
OHEM 1:3	256	.5	28.3
OHEM 1:3	512	.5	24.0
FL	n/a	n/a	36.0

→ Best OHEM

→ Best Focal Loss

RetinaNet performance



Summary

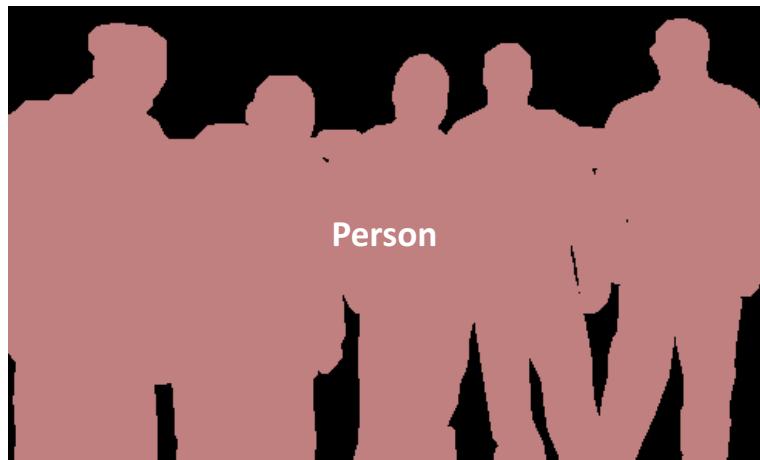
- Identify **class imbalance** is the major issue for training one-stage dense detector
- Propose **Focal Loss** to address class imbalance
- Achieve state-of-the-art **accuracy** and **speed**

Mask R-CNN

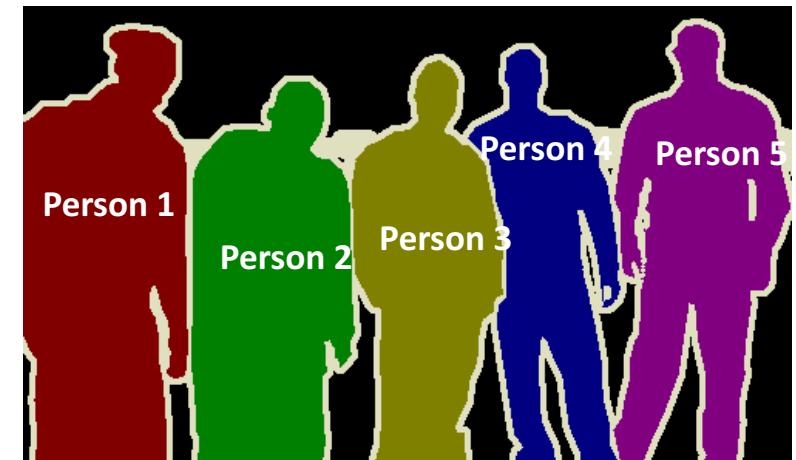
Introduction

Visual Perception Problems

Object Detection

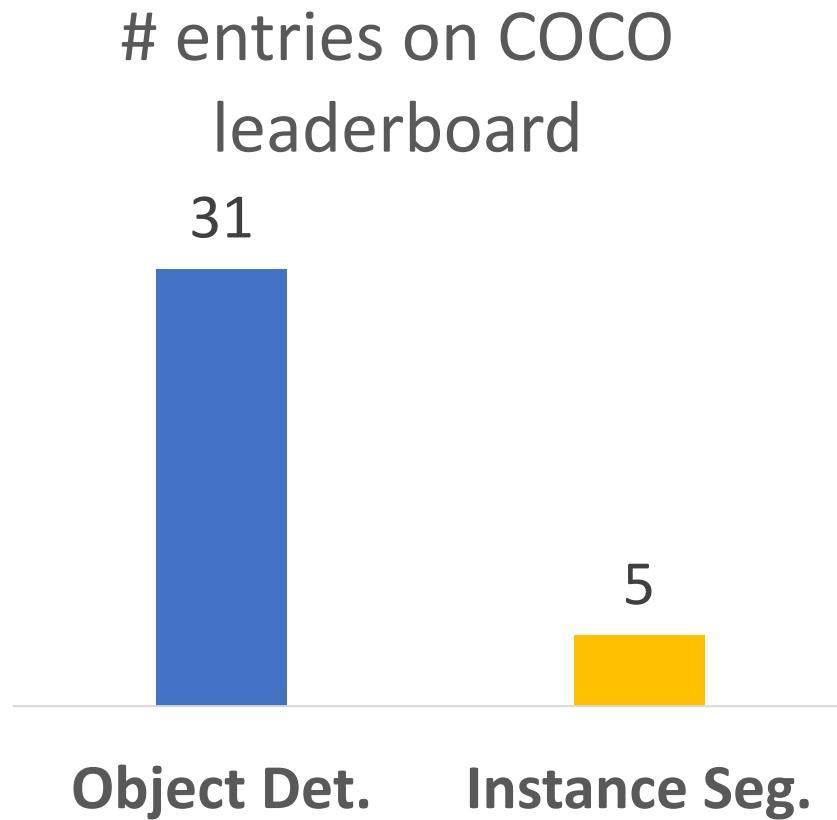
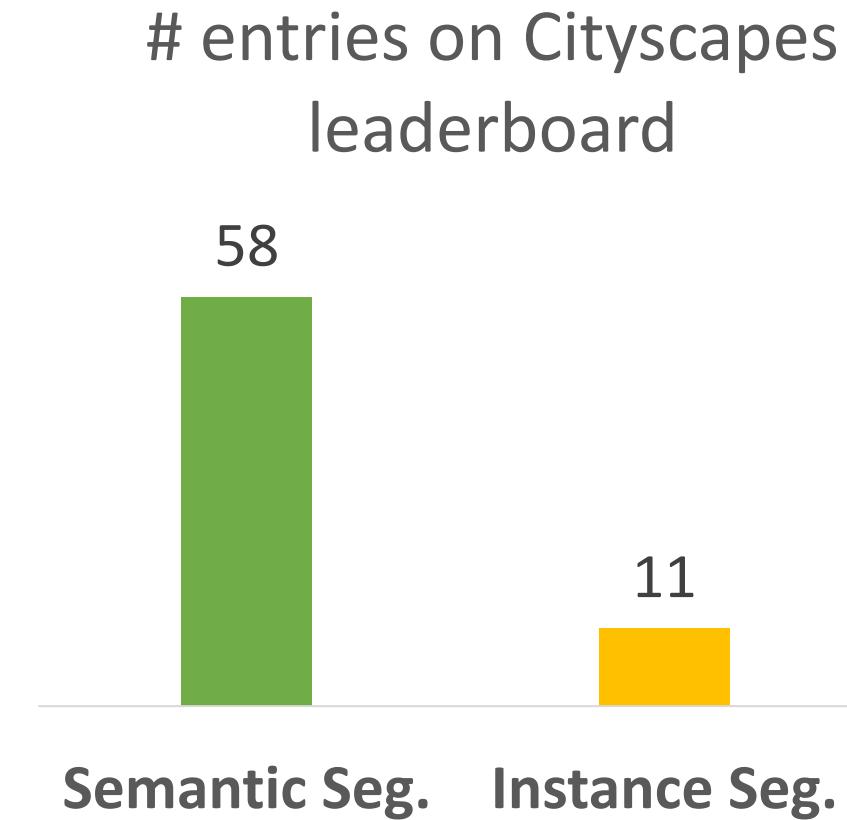


Semantic Segmentation



Instance Segmentation

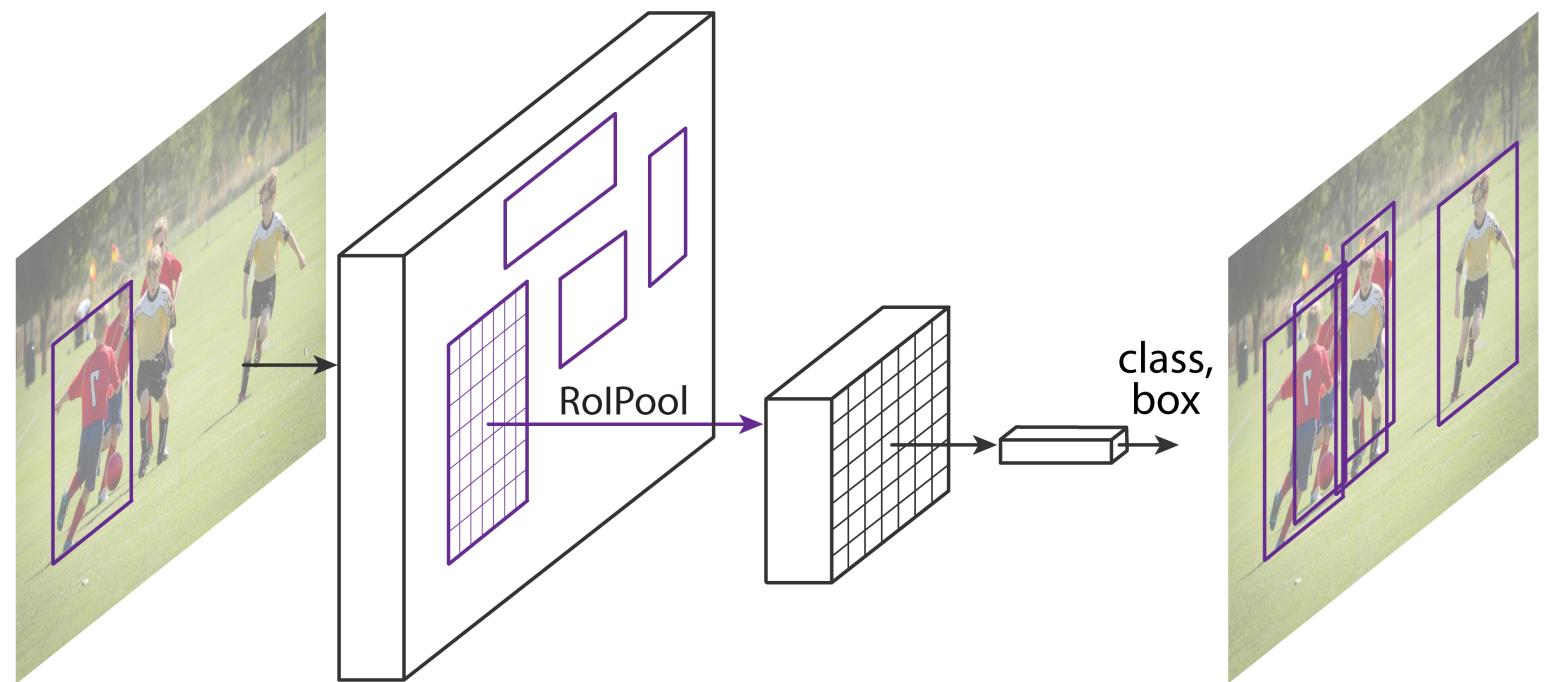
A Challenging Problem...



Object Detection

- Fast/Faster R-CNN

- ✓ Good speed
- ✓ Good accuracy
- ✓ Intuitive
- ✓ Easy to use



Ross Girshick. "Fast R-CNN". ICCV 2015.

Shaoqing Ren, Kaiming He, Ross Girshick, & Jian Sun. "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks". NIPS 2015.

Semantic Segmentation

- Fully Convolutional Net (FCN)

- ✓ Good speed
- ✓ Good accuracy
- ✓ Intuitive
- ✓ Easy to use

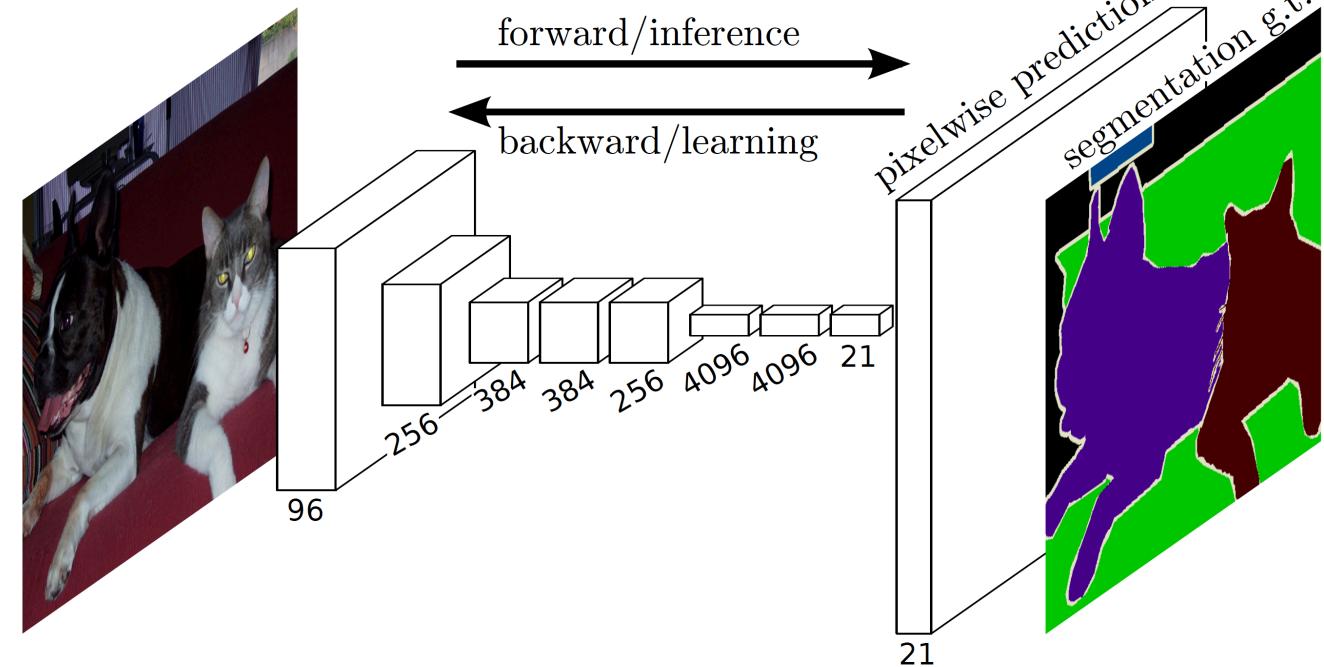
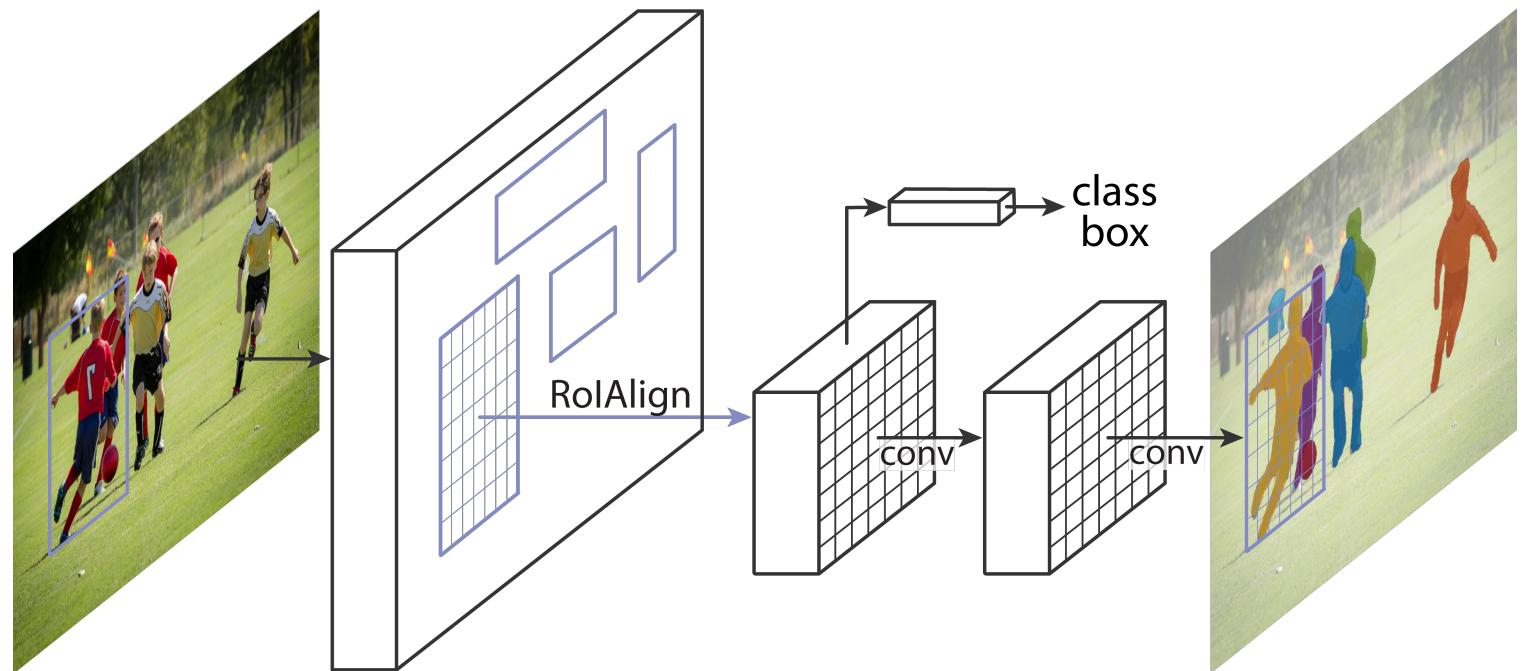


Figure credit: Long et al

Instance Segmentation

- **Goals of Mask R-CNN**

- ✓ Good speed
- ✓ Good accuracy
- ✓ Intuitive
- ✓ Easy to use

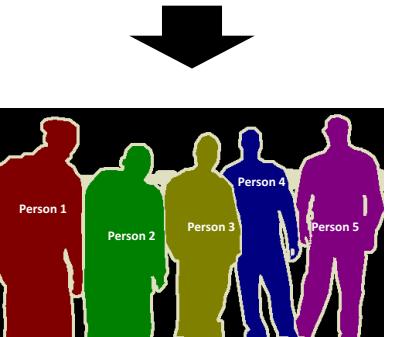


Instance Segmentation Methods

R-CNN driven

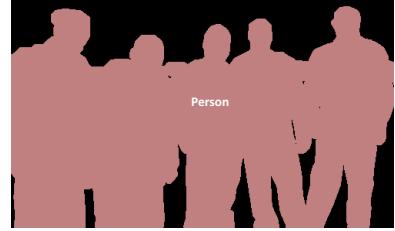
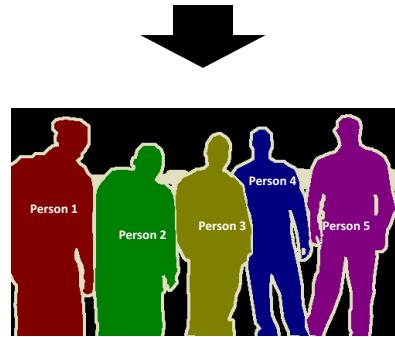
FCN driven

Instance Segmentation Methods



RCNN-driven

- SDS [Hariharan et al, ECCV'14]
- HyperCol [Hariharan et al, CVPR'15]
- CFM [Dai et al, CVPR'15]
- MNC [Dai et al, CVPR'16]

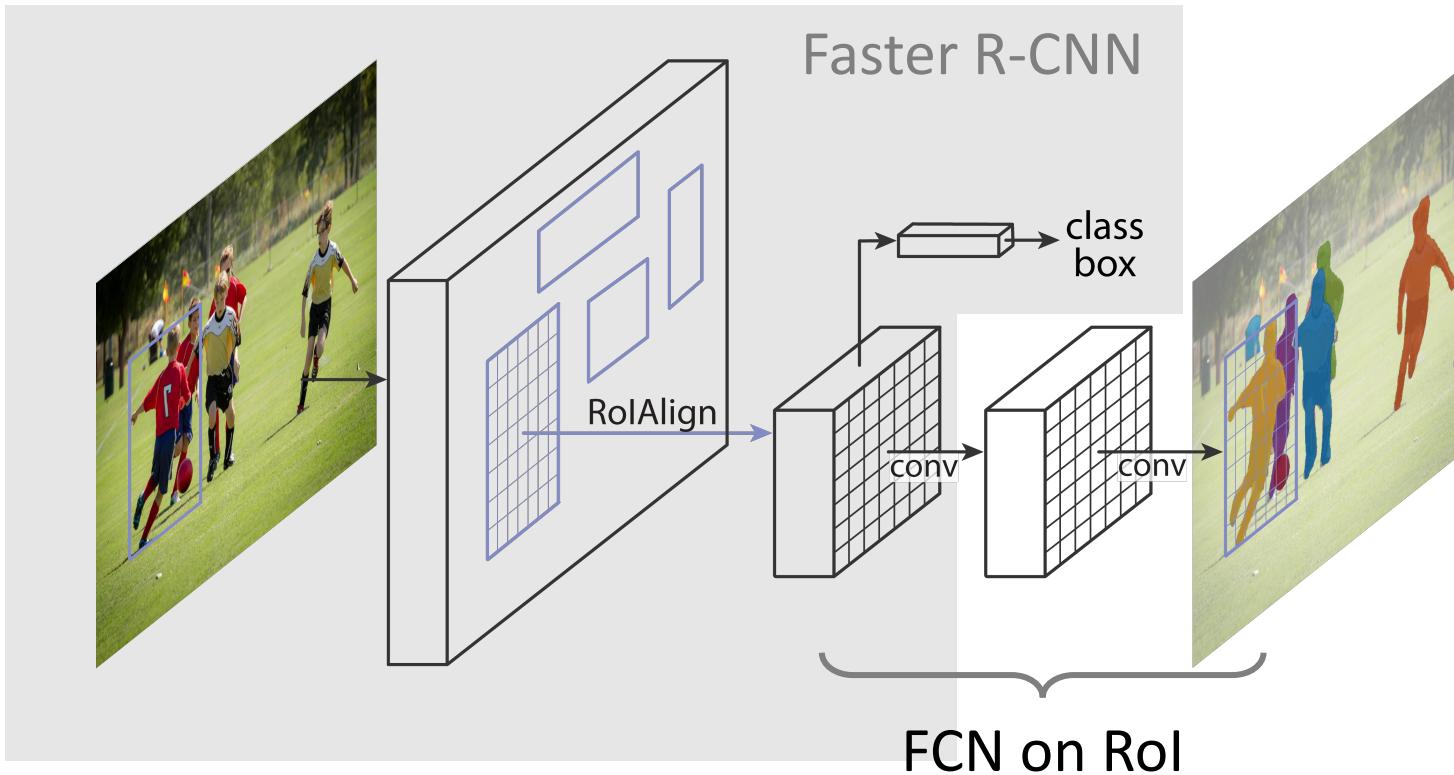


FCN-driven

- PFN [Liang et al, arXiv'15]
- InstanceCut [Kirillov et al, CVPR'17]
- Watershed [Bai & Urtasun, CVPR'17]
- FCIS [Li et al, CVPR'17]
- DIN [Arnab & Torr, CVPR'17]

Mask R-CNN

- Mask R-CNN = **Faster R-CNN** with **FCN** on Rols



Result Analysis

Instance Segmentation Results on COCO

	backbone	AP	AP ₅₀	AP ₇₅	AP _S	AP _M	AP _L
MNC [7]	ResNet-101-C4	24.6	44.3	24.8	4.7	25.9	43.6
FCIS [20] +OHEM	ResNet-101-C5-dilated	29.2	49.5	-	7.1	31.3	50.0
FCIS+++ [20] +OHEM	ResNet-101-C5-dilated	33.6	54.5	-	-	-	-
Mask R-CNN	ResNet-101-C4	33.1	54.9	34.8	12.1	35.6	51.1
Mask R-CNN	ResNet-101-FPN	35.7	58.0	37.8	15.5	38.1	52.4
Mask R-CNN	ResNeXt-101-FPN	37.1	60.0	39.4	16.9	39.9	53.5

- **2 AP better** than SOTA w/ R101, without bells and whistles
- **200ms / img**

Instance Segmentation Results on COCO

	backbone	AP	AP ₅₀	AP ₇₅	AP _S	AP _M	AP _L
MNC [7]	ResNet-101-C4	24.6	44.3	24.8	4.7	25.9	43.6
FCIS [20] +OHEM	ResNet-101-C5-dilated	29.2	49.5	-	7.1	31.3	50.0
FCIS+++ [20] +OHEM	ResNet-101-C5-dilated	33.6	54.5	-	-	-	-
Mask R-CNN	ResNet-101-C4	33.1	54.9	34.8	12.1	35.6	51.1
Mask R-CNN	ResNet-101-FPN	35.7	58.0	37.8	15.5	38.1	52.4
Mask R-CNN	ResNeXt-101-FPN	37.1	60.0	39.4	16.9	39.9	53.5

- benefit from better features (ResNeXt [Xie et al. CVPR'17])

Object Detection Results on COCO

	backbone	AP ^{bb}	AP ₅₀ ^{bb}	AP ₇₅ ^{bb}	AP _S ^{bb}	AP _M ^{bb}	AP _L ^{bb}
Faster R-CNN+++ [15]	ResNet-101-C4	34.9	55.7	37.4	15.6	38.7	50.9
Faster R-CNN w FPN [22]	ResNet-101-FPN	36.2	59.1	39.0	18.2	39.0	48.2
Faster R-CNN by G-RMI [17]	Inception-ResNet-v2 [32]	34.7	55.5	36.7	13.5	38.1	52.0
Faster R-CNN w TDM [31]	Inception-ResNet-v2-TDM	36.8	57.7	39.2	16.2	39.8	52.1
Faster R-CNN, RoIAlign	ResNet-101-FPN	37.3	59.6	40.3	19.8	40.2	48.8
Mask R-CNN	ResNet-101-FPN	38.2	60.3	41.7	20.1	41.1	50.2
Mask R-CNN	ResNeXt-101-FPN	39.8	62.3	43.4	22.1	43.2	51.2

bbox detection improved by:

- RoIAlign

Object Detection Results on COCO

	backbone	AP ^{bb}	AP ₅₀ ^{bb}	AP ₇₅ ^{bb}	AP _S ^{bb}	AP _M ^{bb}	AP _L ^{bb}
Faster R-CNN+++ [15]	ResNet-101-C4	34.9	55.7	37.4	15.6	38.7	50.9
Faster R-CNN w FPN [22]	ResNet-101-FPN	36.2	59.1	39.0	18.2	39.0	48.2
Faster R-CNN by G-RMI [17]	Inception-ResNet-v2 [32]	34.7	55.5	36.7	13.5	38.1	52.0
Faster R-CNN w TDM [31]	Inception-ResNet-v2-TDM	36.8	57.7	39.2	16.2	39.8	52.1
Faster R-CNN, RoIAlign	ResNet-101-FPN	37.3	59.6	40.3	19.8	40.2	48.8
Mask R-CNN	ResNet-101-FPN	38.2	60.3	41.7	20.1	41.1	50.2
Mask R-CNN	ResNeXt-101-FPN	39.8	62.3	43.4	22.1	43.2	51.2

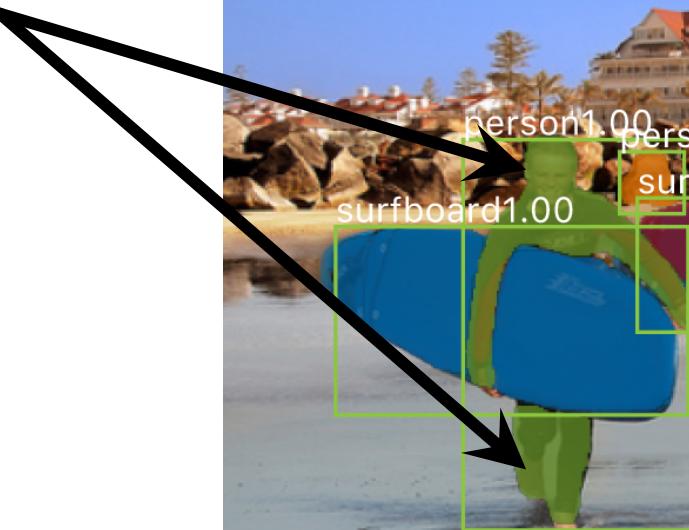
bbox detection improved by:

- RoIAlign
- Multi-task training w/ mask

COCO Competition

- Our Mask R-CNN achieves a **single-model** result of
 - 47.9 bbox AP
 - 43.5 mask AP
- More in our talk in COCO workshop (10/29, Sun)

disconnected
object

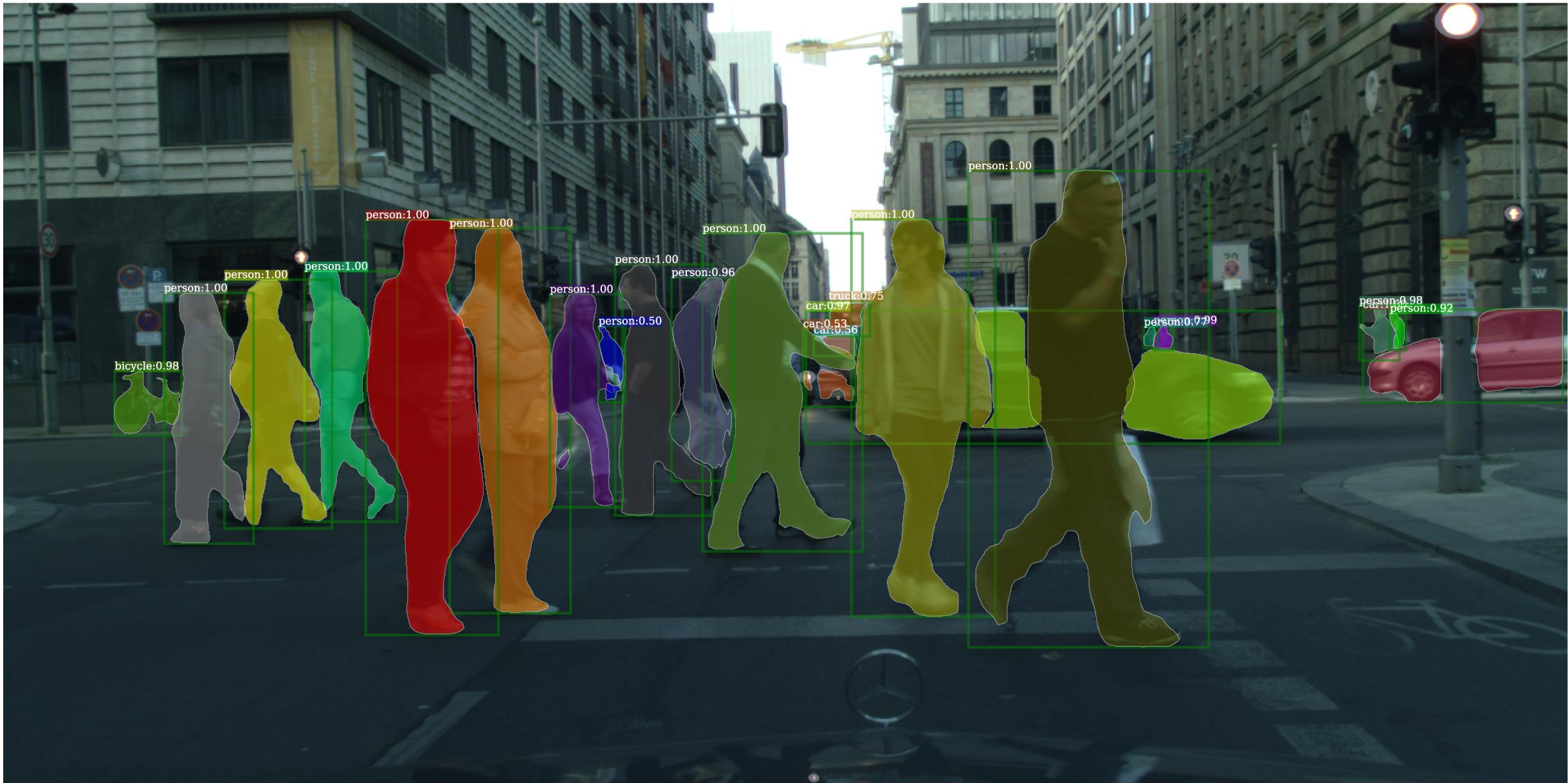


Mask R-CNN results on COCO

small
objects



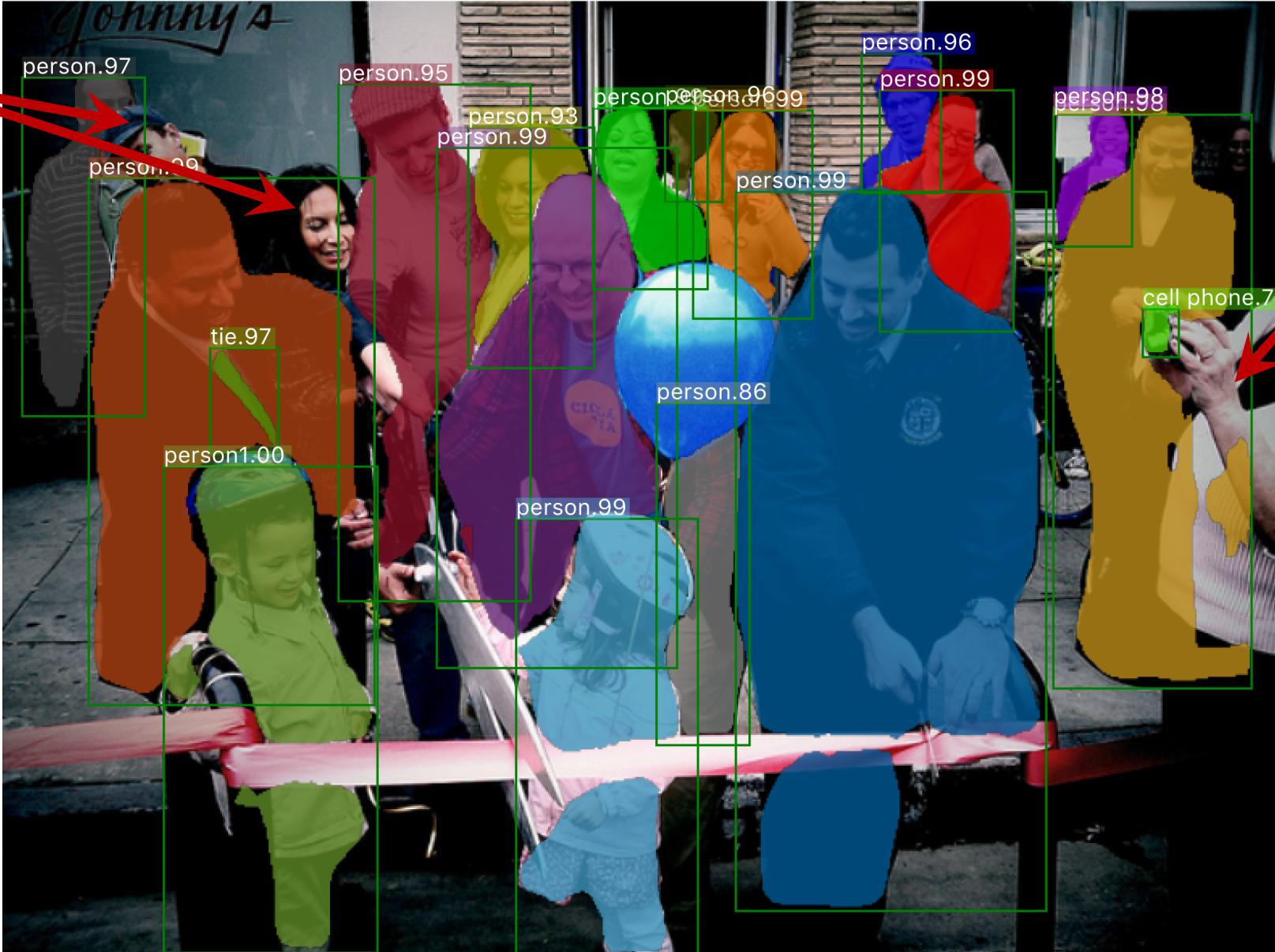
Mask R-CNN results on COCO



Mask R-CNN results on CityScapes

Failure case: detection/segmentation

missing

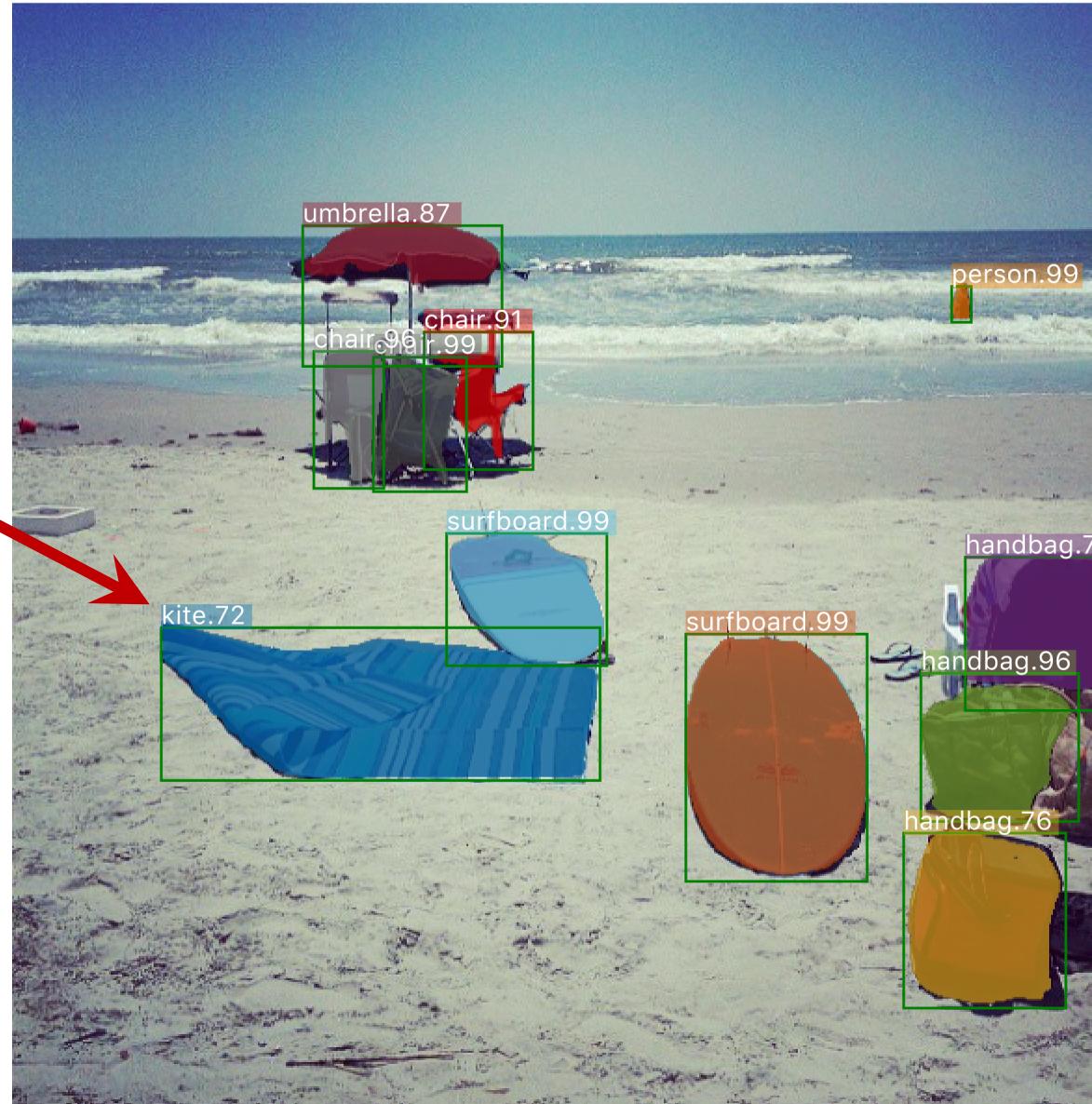


missing,
false mask

Mask R-CNN results on COCO

Failure case: recognition

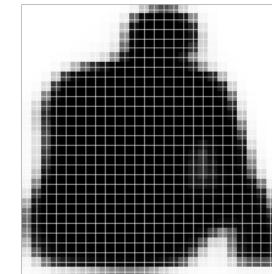
not a kite



Mask R-CNN results on COCO

Validation image with box detection shown in red

28x28 soft prediction from Mask R-CNN
(enlarged)

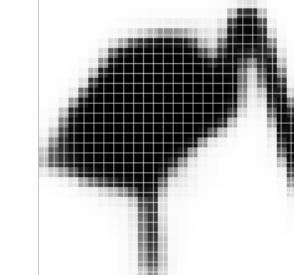


Soft prediction **resampled to image coordinates**
(bilinear and bicubic interpolation work equally well)

Final prediction (threshold at 0.5)

Validation image with box detection shown in red

28x28 soft prediction

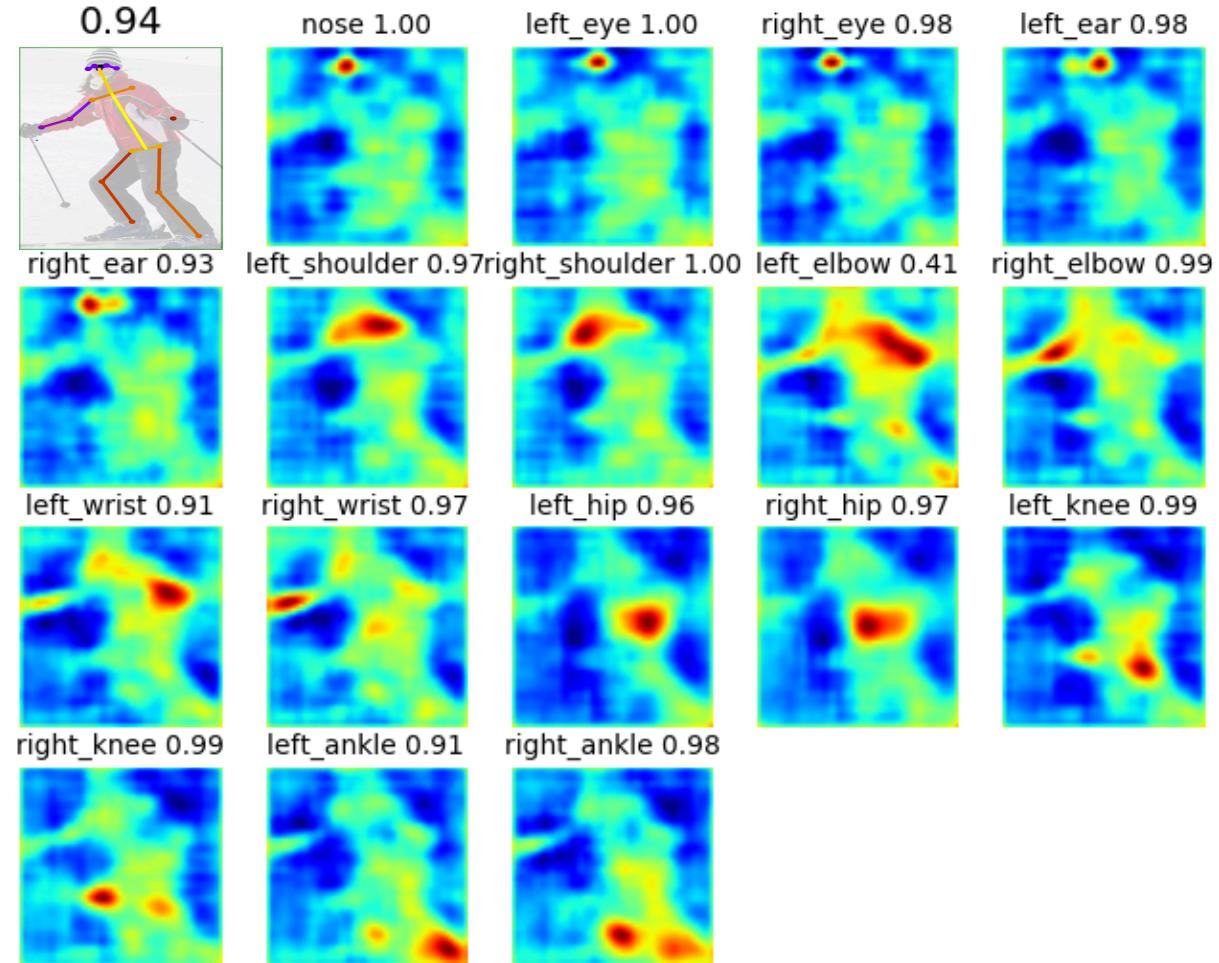


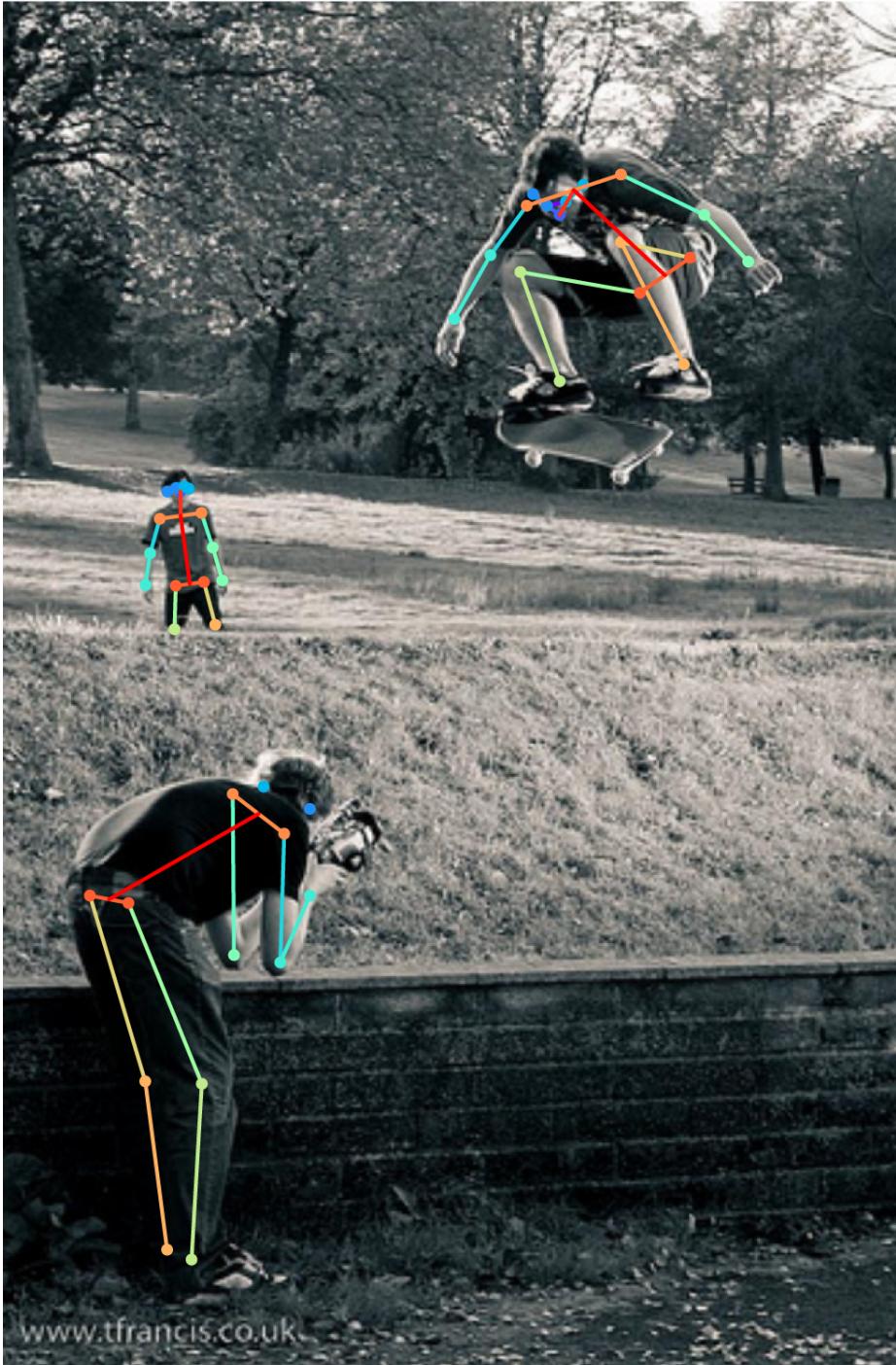
Resized Soft prediction

Final mask

Mask R-CNN: for Human Keypoint Detection

- 1 keypoint = 1-hot “mask”
- Human pose = 17 masks
- Softmax over **spatial locations**
 - e.g. 56^2 -way softmax on 56×56
- Desire the same equivariances
 - translation, scale, aspect ratio





Mask R-CNN frame-by-frame

