Object Detection

Lecture 9
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Detection with ConvNets

* So far, all about
classification

 What about

localizing objects
within the scene?

Groundtruth:
tv or monitor
tv or monitor (2)
tv or monitor (3)

person
remote control
remote control (2)




Two General Approaches

1. Examine very position / scale

— E.g. Overfeat: Integrated recognition, localization and detection
using convolutional networks, Sermanet et al., ICLR 2014

2. Use some kind of proposal mechanism to attend to a set of
possible regions

— E.g. Region-CNN [Rich feature hierarchies for accurate object
detection and semantic segmentation, Girshick et al., CVPR 2014]
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Sliding Window with ConvNet
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Sliding Window with ConvNet

Conv Conv Conv Conv Conv Full Full
image size 224 110 26 13 13 13 - .
filter size 7 @3 13
1 L384 V1 w384 256 B
| \2‘56 \
istride 2 96  3x3 max 3x3 max C
3x3 max pool[ | contras pool | | contrast pool 4096 4096 class
stride 2 stride 2\/ norm. stride 2 units units softmax
3 55 L
N 13 @3 6 256
Input Image L '\256 - -
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer6 Layer7 Output
240
7
16 204 6 C
Feature Extractor classes
€<> —>_ €, 256
1 \
Input Window

No need to compute two separate windows --- Just one big input window




Multi-Scale Sliding Window ConvNet

Feature Class
Maps Maps
256 C=1000
N N
Feature 256 g C=1000
Classifier
Extractor N N
256 C=1000
N N

256 C=1000
N ON



Multi-Scale Sliding Window ConvNet

Feature Bounding Box
Maps Maps
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Feature 256 Regression 4
Extractor N Network N
256 4
N N
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OverFeat — Output before NM$S
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Overfeat Detection Results

[Sermanet et al. ICLR 2014]
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Top predictions: Groundtruth:
). N _ - 3 watercraft (confidence 72.2) watercraft
p{v,rmm-:i's'wruss - SR\ i L. S : S5 < ] watercraft (confidence 2.1) watercraft (2)

ILSVRC2012_val 623.PEG

Top predictions: Groundtruth:
trombone (confidence 26.8) person
oboe (confidence 17.5) hat with a wide brim gy, jjpanis bell conf 3.46
oboe (confidence 11.5) hat with a wide brim (2)
012 14JPEG hat with a wide brim (3)
oboe
oboe (2)
saxophone
trombone
person (2)
person (3)
person (4)

Top predictions: Groundtruth:
tennis ball (confidence 3.5) strawberry
banana (confidence 2.4) strawberry (2)
banana (confidence 2.1) strawberry (3)
hotdog (confidence 2.0) strawberry (4)
banana (confidence 1.9) strawberry (5)
ILSVRC2012_val_00000320.JPEG strawberry (6)
strawberry (7)
strawberry (8)
- strawberry (9)
Top predictions: Groundtruth: strawberry (10)
microwave (confidence 5.6) bowl apple
refrigerator (confidence 2.5) microwave apple (2)
apple (3)




Two General Approaches

1. Examine very position / scale

— E.g. Overfeat: Integrated recognition, localization and detection
using convolutional networks, Sermanet et al., ICLR 2014

2. Use some kind of proposal mechanism to attend to a set of
possible regions

— E.g. Region-CNN [Rich feature hierarchies for accurate object
detection and semantic segmentation, Girshick et al., CVPR 2014]



Reproducible research — get the code! * 1CCV
O http://git.io/vBgm5 -

Fast R-CNN

Ross Girshick

Facebook Al Research (FAIR)

Work done at Microsoft Research



Fast Region-based ConvNets (R-CNNs)
for Object Detection

Localization
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Figure adapted from Kaiming He



Object detection renaissance (2013-present)

PASCAL VOC

Before deep convnets

Using deep convnets
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Object detection renaissance (2013-present)

PASCAL VOC
Fast R-CNN
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Region-based convnets (R-CNNs)

* R-CNN (aka “slow R-CNN”) [Girshick et al. cvPR14]
* SPP-net [He et al. ECccvis]



Slow R-CNN

Girshick et al. CVPR14.



Slow R-CNN

= — Regions of Interest (Rol)
from a proposal method
(~2k)

Girshick et al. CVPR14.



Slow R-CNN

' Warped image regions

Regions of Interest (Rol)
from a proposal method
(~2k)

Girshick et al. CVPR14.



Forward each region
through ConvNet

Slow R-CNN
ConvNet
ConvNet
H Warped image regions

/ we"—" Regions of Interest (Rol)
‘ g\" - from a proposal method
= 4, (~2Kk)
/_' -

y ,:;—‘ “; T ‘ Input image

Girshick et al. CVPR14.



Slow R-CNN

SVIVIs

/_

/ e ¥

e
£ = e

Girshick et al. CVPR14.

SVMs

o
A &

ConvNet
ConvNet

7

\

—

SVMs

’

//-7

> Input image

Classify regions with SVMs

Forward each region
through ConvNet

H Warped image regions

Regions of Interest (Rol)
from a proposal method
(~2k)

Post hoc component




S I OW R_C N N Apply bounding-box regressors

Bbox reg SVMs Classify regions with SVMs

’

H Warped image regions

Bbox reg SVMs

Bbox reg SVIVIs

ConvNet
ConvNet

__
/ we"—" Regions of Interest (Rol)
‘ = from a proposal method
< ' (~2k)

//\

e = \-4' .
/ — — == Inputlmage

Forward each region
through ConvNet

Girshick et al. CVPR14. Post hoc component




What’s wrong with slow R-CNN?



What’s wrong with slow R-CNN?

* Ad hoc training objectives
* Fine-tune network with softmax classifier (log loss)
* Train post-hoc linear SVMs (hinge loss)
* Train post-hoc bounding-box regressors (squared loss)
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* Ad hoc training objectives
* Fine-tune network with softmax classifier (log loss)
* Train post-hoc linear SVMs (hinge loss)
* Train post-hoc bounding-box regressors (squared loss)

* Training is slow (84h), takes a lot of disk space



What’s wrong with slow R-CNN?

* Ad hoc training objectives
* Fine-tune network with softmax classifier (log loss)
* Train post-hoc linear SVMs (hinge loss)
* Train post-hoc bounding-box regressions (least squares)

* Training is slow (84h), takes a lot of disk space

* Inference (detection) is slow
e 47s / image with VGG16 [Simonyan & Zisserman. ICLR15]
* Fixed by SPP-net [He et al. ECCV14]

~2000 ConvNet forward passes per image



SPP-net

He et al. ECCV14,



SPP-net

Forward whole image through ConvNet

ConvNet F

==
V=

Input image

He et al. ECCV14.



SPP-net

Regions of w’conv?’ feature map of image

Interest (Rols) t
from a proposal
method

Forward whole image through ConvNet

ConvNet F

d

’ Input image

He et al. ECCV14.



SPP-net

=." =", ="[ Spatial Pyramid Pooling (SPP) layer

Regions of l”Z-I.!ﬁ; “conv5” feature map of image
Interest (Rols) t
Forward whole image through ConvNet

method
ConvNet F

==
! Input image

He et al. ECCV14.



SPP-net

SVMs Classify regions with SVMs
FCs Fully-connected layers

Regions of
Interest (Rols)
from a proposal
method

ConvNet

He et al. ECCV14. Post hoc component




S P P— n et Apply bounding-box regressors

Bbox reg | | SVMs Classify regions with SVMs

FCs Fully-connected layers

Regions of
Interest (Rols)
from a proposal
method

ConvNet

He et al. ECCV14. Post hoc component




What's good about SPP-net?

* Fixes one issue with R-CNN: makes testing fast

e

Bbox reg I_SVMS

Post hoc component




What’s wrong with SPP-net?

* Inherits the rest of R-CNN’s problems
* Ad hoc training objectives
* Training is slow (25h), takes a lot of disk space



What’s wrong with SPP-net?

* Inherits the rest of R-CNN’s problems
* Ad hoc training objectives
* Training is slow (though faster), takes a lot of disk space

* Introduces a new problem: cannot update parameters below SPP
layer during training



SPP-net: the main limitation

He et al. ECCV14.

Bbox reg | | SVMs

ConvNet

Post hoc component




Fast R-CNN

e Fast test-time, like SPP-net



Fast R-CNN

* Fast test-time, like SPP-net
* One network, trained in one stage



Fast R-CNN

* Fast test-time, like SPP-net
* One network, trained in one stage

* Higher mean average precision than slow R-CNN
and SPP-net



Fast R-CNN (test time)

w’conv?’ feature map of image
Interest (Rols) t
Forward whole image through ConvNet

method
ConvNet F

d

L= 4

Regions of

Input image



Fast R-CNN (test time)

‘,’z-I.ZI7 “conv5” feature map of image
Interest (Rols) t
Forward whole image through ConvNet

method
ConvNet F

d

Regions of

Input image



Fast R-CNN (test time)

N

FCs Fully-connected layers

7 N
Y Ay A& 4

Regions of I&-ﬁ-b"

Interest (Rols) t
method Forward whole image through ConvNet
ConvNet F

=
! Input image

“conv5” feature map of image



Fast R-CNN (test time)

o JEE .

FCs Fully-connected layers

7 N
Y Ay A& 4

Regions of I&-ﬁ-b"

Interest (Rols) t
method Forward whole image through ConvNet
ConvNet F

=
! Input image

“conv5” feature map of image



Fast R-CNN
(training)




Fast R-CNN
(training) -

Multi-task loss

ConvNet




Fast R-CNN
(training)

Log loss + smooth L1 loss

Linear +
softmax

&

L i

Linear

& &/

FCs

% 1 \N
-

Multi-task loss

= Trainable l




Obstacle #1: Differentiable Rol pooling

Region of Interest (Rol) pooling must be (sub-)
differentiable to train conv layers



Obstacle #1: lef/e_,_r__entlaglpg;lijeI---- ooling
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Obstacle #2: efficient SGD steps

Slow R-CNN and SPP-net use region-wise sampling to
make mini-batches

e Sample 128 example Rols uniformly at random

e Examples will come from different images with high
probability

LN/t

SGD mini-batch




Obstacle #2: efficient SGD steps

Note the receptive field for one example Rol is often
very large

* Worst case: the receptive field is the entire image




Obstacle #2: efficient SGD steps

Worst case cost per mini-batch (crude model of
computational complexity)

input size for Fast R-CNN input size for slow R-CNN

128*600*1000 / (128%*224 *224) = 12x more
computation than slow R-CNN




Obstacle #2: efficient SGD steps

Solution: use hierarchical sampling to build mini-
batches




Obstacle #2: efficient SGD steps

Solution: use hierarchical sampling to build mini-
batches

 Sample a small
number of images

(2)




Obstacle #2: efficient SGD steps

Solution: use hierarchical sampling to build mini-
batches

 Sample a small
number of images

(2)

Sample images

e Sample many
examples from

Ui each image (64)
SGD mini-batch

-
/3 a D
N




Obstacle #2: efficient SGD steps

Use the test-time trick from SPP-net during training

* Share computation between overlapping examples
from the same image




Obstacle #2: efficient SGD steps

Cost per mini-batch compared to slow R-CNN (same
crude cost model)

input size for Fast R-CNN input size for slow R-CNN

e 2*600*1000 / (128*224*224) = 0.19x less
computation than slow R-CNN




Main results

Train time (h) 9.5

- Speedup 8.8x

Timings exclude object proposal time, which is equal for all methods.
All methods use VGG16 from Simonyan and Zisserman.

[1] Girshick et al. CVPR14.
[2] He et al. ECCV14.



Main results

Test time /image 0.32s

Test speedup 146x

Timings exclude object proposal time, which is equal for all methods.
All methods use VGG16 from Simonyan and Zisserman.

[1] Girshick et al. CVPR14.
[2] He et al. ECCV14.



Main results

66.0% 63.1%

Timings exclude object proposal time, which is equal for all methods.
All methods use VGG16 from Simonyan and Zisserman.

[1] Girshick et al. CVPR14.
[2] He et al. ECCV14.



Further test-time speedups

Forward pass timing
MAP 66.9% @ 320ms / image

Fully connected layers take
45% of the forward pass

fco6

38.7% (122ms) time
other

3.5% (11ms)
5.4% (17ms)

6.2% (20ms) fc7

roi/pool5

46.3% (146ms)




Further test-time speedups

Forward pass timing
MAP 66.9% @ 320ms / image

Compress these layers with
truncated SVD

fco6

38.7% (122ms)
other

3.5% (11ms)
5.4% (17ms)

6.2% (20ms) fc7

roi/pool5

46.3% (146ms)

J. Xue, J. Li, and Y. Gong.
Restructuring of deep neural network acoustic models with singular value decomposition.
Interspeech, 2013.



Further test-time speedups

Forward pass timing
MAP 66.9% @ 320ms / image

fco6

38.7% (122ms)
other

3.5% (11ms)
5.4% (17ms)

6.2% (20ms) fc7

roi_pool5

46.3% (146ms)

Without SVD

Forward pass timing (SVD)
MAP 66.6% @ 223ms / image

fco

17.5% (37ms)  other
5.1% (11ms) .
roi_pool5

7.9% (17ms)
1.7% (4ms) fc7

67.8% (143ms)

conv

With SVD



Other findings



End-to-end training matters

Fine-tune layers =>conv3_1 =conv2_1

VOCO7 mAP 66.9% 67.2%
Test time per image 0.32s 0.32s

1.4x slower
training



Multi-task training helps

Multi-task training?

Stage-wise training?

Test-time bbox reg.
VOCO7 mAP 62.6% 63.4% 64.0% 66.9%




Multi-task training helps

Multi-task training?

Stage-wise training?

Test-time bbox reg.
VOCO7 mAP 62.6% 63.4% 64.0%

T

Trained without
a bbox regressor




Multi-task training helps

Multi-task training?

Stage-wise training?

Test-time bbox reg.
VOCO7 mAP 62.6% 63.4% 64.0%

Trained with

a bbox regressor,
but it’s disabled at
test time



Multi-task training helps

Multi-task training?

Stage-wise training?

Test-time bbox reg.
VOCO7 mAP 62.6% 63.4% 64.0% 66.9%

Post hoc bbox
regressor, used
at test time



Multi-task training helps

Multi-task training?

Stage-wise training?

Test-time bbox reg.
VOCO7 mAP 62.6% 63.4% 64.0% 66.9%

|

Multi-task objective,
using bbox regressors
at test time




More proposals is harmful

66-

Sel. Search (SS)

63- SS (2k) + Rand Dense
SS replace Dense

61- 45k Dense Softmax
45k Dense SVM

—eo— SS Avg. Recall

~
I
O~

i

Average Recall

-~
...
N

10
Number of object proposals




What’s still wrong?

* OQut-of-network region proposals
* Selective search: 2s /im; EdgeBoxes: 0.2s/im

e Fortunately, we have a solution
e Our follow-up work was presented last week at NIPS

Shaoging Ren, Kaiming He, Ross Girshick & Jian Sun.
“Faster R-CNN: Towards Real-Time Object Detection with Region
Proposal Networks.” NIPS 2015.



Object Detection: Faster R-CNN

features

- Faster R-CNN E
Rol pooling

* Solely based on CNN
proposals

* No external modules
e Each step is end-to-end / /

Region Proposal Net End-to-End
training

eature map

CNN Aé"i

Shaoqing Ren, Kaiming He, Ross Girshick, & Jian Sun. “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”. NIPS 2015.



Fast R-CNN take-aways

* End-to-end training of deep ConvNets for detection
* Fast training times

e Open source for easy experimentation
“I think [the Fast R-CNN] code is average-somewhat above average for what it is.”
— sporkles on r/MachinelLearning

* A large number of ImageNet detection and COCO detection methods

are built on Fast R-CNN
Checkout the ImageNet / COCO Challenge workshop on Thursday!



Focal Loss for
Dense Object Detection

Tsung-Yi Lin, Google Brain

Work done at Facebook Al Research with
Priya Goyal, Ross Girshick, Kaiming He, Piotr Dollar



Viola and Jones (2001)

R *ﬁ‘} ‘ s - \

Image from OpenCV 3.3 website



Fast R-CNN, Girshick

-

|- Rol \
. i AR |
“—=[==projection’\_ |

Fast R-CNN

~{Deep
~ [ConvNet

2~

Conv

feature map

Rol
pooling
layer |

N\

Outputs: bbox

softmax regressor

L 3

A FC =23 FC

Rol feature
vector

For each Rol



One-stage vs. Two-stage

* One-stage
— Fast
— Simple
* Two-stage
— 10 -40% better accuracy



Overall mAP

One-stage vs. Two-stage

40

Faster R-CNN w/ResNet, Hi ta Architecture
Res, 50 Proposals m R-FCN @
3 5 — D ————— . _— CT _——

100 Proposals

R-FCN w/ O
ResNet, Hi Res, j > ” O (") e
(@

25 S =
(O
. Why:
SSD w/Inception V2, Lo Res
15 SSD w/MobileNet, Lo Res
10
0 200 400 600

GPU Time

Faster R-CNN w/Inception
Resnet, Hi Res, 300
Proposals, Stride 8

[ N NONON N@)

Feature Extractor
Inception Resnet V2
Inception V2
Inception V3
MobileNet
Resnet 101
VGG

800 1000

Speed/accuracy trade-offs for modern convolutional object detectors, Huang et al., CVPR 2017



Toward dense detection

YOLOv1 — 98 boxes
YOLOv2 — ~1k
OverFeat — ~1-2k
SSD — ~8-26k

This work — ~100k



Class Imbalance

Few training examples from foreground
Most examples from background

— Easy and uninformative

— Distracting

Many negative
examples, no
useful signal

Few positive
examples, rich
information




loss

Cross Entropy

— Cross Entropy

Well classified
examples

)

0.2

] ]
0.4 0.6 0.8 1.0
probability of ground truth class



Cross Entropy

— Cross Entropy

Loss = 0.1

] ]
0.2 0.4 0.6 0.8
probability of ground truth class




Cross Entropy with Imbalance Data

* 100000 easy : 100 hard examples
* 40x bigger loss from easy examples

— Cross Entropy

Loss = 2.3

| | | |
0.0 0.2 0.4 0.6 0.8 1.0
probability of ground truth class



Focal Loss

CE(p) = —log(p1)
FL(p) = —‘(1 — pt)”‘log(pt)

— Cross Entropy

CE=2.3 — e
FL=2.1

CE=0.1

\

| | |
0.2 0.4 0.6 0.8
probability of ground truth class

FL= 0.01

1.0



Focal Loss

5
CE(p) = — log(p) 170,
)
4 FL(p) = —(1 — pv)" log(p) y=1
— = 2
3f =2
wn
n
o
2 L
well-classified
examples
1+ A
)
0 e ——e————
0 0.2 0.4 0.6 0.8 1

probability of ground truth class



Prior

a-balanced Cross entropy
CE(p) = —ou log(py)

o-balanced Focal Loss
FL(pt> — —Oét(l - pt)7 1Og(pt)

y: focus more on hard examples
a: offset class imbalance of number of examples



Feature Pyramid Network

* Multiscale
* Semantically strong at all scales
* Fast to compute

predict

predict

predict

Feature Pyramid Network for Object Detection, Lin et al., CVPR 2017



Architecture

e RetinaNet
— FPN + 100k boxes
— Focal loss

Y

y [

box+class
subnets

box+class
subnets

/1 g

y

(a) ResNet (b) feature pyramid net

box+class

subnets

\
\
\
\
. -
\
N subnet / / /
\
Vi U U U

—————————————————————————————————

- A/

subnet

Y

class

S
AN

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

(c) box & class subnets



Loss Distribution under Focal Loss

Background Boxes

—h

O
03]

O
o

o
N

O
N

cumulative normalized loss

o

0 2 4 .6 .8 1
fraction of background examples



Loss Distribution under Focal Loss

Foreground Boxes

N
]

O
o

O
(o)
I

o
™

O
N

cumulative normalized loss

()

b 4 .6 8 1
fraction of foreground examples

o



vs. Cross Entropy

* + 2.9 AP to a-balanced cross entropy

v o AP APso APry

0 75[ 31.1 494 330 CE(py) = — log(p) —-0
0.1 75[ 314 499 331 FL(p) = ~(1 ~ p:)" log(p) —>-1
02 75| 319 507 334 o — s

0.5 50| 329 51.7 35.2
1.0 .25 | 33.7 52.0 36.2
20 25| 34.0 52.5 36.5
50 25| 322 49.6 34.8

(b) Varying ~ for FL (w. optimal «)

well-classified
examples

0 0.2 0.4 0.6 0.8 1
probability of ground truth class

(ResNet-50-FPN 600px input image)



e +3.2 AP to best O

vs. OHEM

_l E M (ResNet-101 FPN)

batch nms

method size  thr AP
OHEM 128 .7 31.1
OHEM 256 .7 31.8
OHEM 512 7 30.6
OHEM 128 .5 32.8
OHEM 256 .5 31.0
OHEM 512 5 27.6
OHEM 1:3 | 128 .5 31.1
OHEM 1:3 | 256 .5 28.3
OHEM 1:3 | 512 .5 24.0
FL n/a___n/a | 36.0

—>» Best OHEM

—> Best Focal Loss

Online Hard Example Mining, Shrivastava et al., 2016



RetinaNet performance

38 r 4
3: RetinaNet-50
36 | @ RetinaNet-101
FPN Fast R-CNN
<™ 7]
@)
O 3ol DSSD513
3 [E]
@) R-FCN
30l @ SSD513

SSD321 DSSD321

28 [E]

YOLOV2 | | | |

AP22@25ms  pq 100 150 200 250
‘ inference time (ms)



Summary

* |dentify class imbalance is the major issue for training one-
stage dense detector

* Propose Focal Loss to address class imbalance
* Achieve state-of-the-art accuracy and speed



Mask R-CNN
Introduction



Visual Perception Problems

Object Detection Semantic Segmentation Instance Segmentation

/ / ?



A Challenging Problem...

# entries on COCO # entries on Cityscapes
leaderboard leaderboard
31

58

11

Object Det. Instance Seg. Semantic Seg. Instance Seg.



Object Detection

* Fast/Faster R-CNN
v'Good speed

v'Good accuracy
v'Intuitive
v'Easy to use

7

RolPool

Ross Girshick. “Fast R-CNN”. ICCV 2015.
Shaoqing Ren, Kaiming He, Ross Girshick, & Jian Sun. “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”. NIPS 2015.



Semantic Segmentation

* Fully Convolutional Net (FCN)
v'Good speed

v'Good accuracy
v'Intuitive
v'Easy to use

forward /inference

<€

backward /learning

(—i—1—7

00 0© 21
| b b 100 89780

21

Figure credit: Long et al

Jonathan Long, Evan Shelhamer, & Trevor Darrell. “Fully Convolutional Networks for Semantic Segmentation”. CVPR 2015.



Instance Segmentation

* Goals of Mask R-CNN
v'Good speed

v'Good accuracy
v'Intuitive
v'Easy to use
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Instance Segmentation Methods
R-CNN driven | FCN driven




Instance Segmentation Methods

e SDS [Hariharan et al, ECCV’14]

e HyperCol [Hariharan et al, CVPR’15]

- — —— —— —— ——— — — — — T Sy

RCNN-driven

® PFN [Liang et al, arXiv’15] FCN-driven
e CFM [Dai et al, CVPR’15]
, ¢ |[nstanceCut [Kirillov et al, CVPR’17]
e MINC [Dai et al, CVPR’16]

e \Watershed [Bai & Urtasun, CVPR’17]

e FCIS [Lietal, CVPR'17]

‘e DIN [Arnab & Torr, CVPR’17]

|
!
|
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Mask R-CNN

e Mask R-CNN = Faster R-CNN with FCN on Rols

Faster R-CNN
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Result Analysis



Instance Segmentation Results on COCO

backbone AP APso AP75 | APg APp AP
MNC [7] ResNet-101-C4 24.6 443 24.8 4.7 25.9 43.6
FCIS [20] +OHEM ResNet-101-C5-dilated | 29.2 49.5 - 7.1 31.3 50.0
FCIS+++ [20] +OHEM | ResNet-101-C5-dilated | 33.6 54.5 - - - -
Mask R-CNN ResNet-101-C4 33.1 54.9 34.8 12.1 35.6 51.1
Mask R-CNN ResNet-101-FPN 35.7 58.0 37.8 15.5 38.1 52.4
Mask R-CNN ResNeXt-101-FPN 37.1 60.0 39.4 16.9 39.9 53.5

e 2 AP better than SOTA w/ R101, without bells and whistles

 200ms / img




Instance Segmentation Results on COCO

backbone AP APso AP75 | APg APp AP
MNC [7] ResNet-101-C4 24.6 443 24.8 4.7 25.9 43.6
FCIS [20] +OHEM ResNet-101-C5-dilated | 29.2 49.5 - 7.1 31.3 50.0
FCIS+++ [20] +OHEM | ResNet-101-C5-dilated | 33.6 54.5 - - - -
Mask R-CNN ResNet-101-C4 33.1 54.9 34.8 12.1 35.6 51.1
Mask R-CNN ResNet-101-FPN 35.7 58.0 37.8 15.5 38.1 52.4
Mask R-CNN ResNeXt-101-FPN 37.1 60.0 39.4 16.9 39.9 53.5

e benefit from better features (ResNeXt [xic et al. cvpPrR'17])




Object Detection Results on COCO

backbone AP®  AP2  APSY | AP® AP APY
Faster R-CNN+++ [15] ResNet-101-C4 34.9 55.7 37.4 15.6 38.7 50.9
Faster R-CNN w FPN [22] | ResNet-101-FPN 36.2 | 59.1 39.0 | 182 39.0 482

Faster R-CNN by G-RMI [17] | Inception-ResNet-v2 [32] 34.7 55.5 36.7 13.5 38.1 52.0
Faster R-CNN w TDM [31] Inception-ResNet-v2-TDM | 36.8 57.7 39.2 16.2 39.8 52.1

Faster R-CNN, RoIAlign ResNet-101-FPN 37.3 59.6 40.3 19.8 40.2 48.8
Mask R-CNN ResNet-101-FPN 38.2 60.3 41.7 20.1 41.1 50.2
Mask R-CNN ResNeXt-101-FPN 39.8 62.3 43.4 22.1 43.2 51.2

bbox detection improved by:
* RolAlign



Object Detection Results on COCO

backbone AP®  AP2  APSY | AP® AP APY
Faster R-CNN+++ [15] ResNet-101-C4 34.9 55.7 37.4 15.6 38.7 50.9
Faster R-CNN w FPN [22] | ResNet-101-FPN 3.2 59.1 39.0 | 182 39.0 482

Faster R-CNN by G-RMI [17] | Inception-ResNet-v2 [32] 34.7 55.5 36.7 13.5 38.1 52.0
Faster R-CNN w TDM [31] Inception-ResNet-v2-TDM | 36.8 57.7 39.2 16.2 39.8 52.1

Faster R-CNN, RolAlign ResNet-101-EPN 373 | 596 403 | 198 402 488
Mask R-CNN ResNet-101-FPN 603 417 | 201 411 502
Mask R-CNN ResNeXt-101-FPN 398 623 434 | 221 432 512

bbox detection improved by:
* RolAlign
e Multi-task training w/ mask



COCO Competition

* Our Mask R-CNN achieves a single-model result of
* 47.9 bbox AP
* 43.5 mask AP

* More in our talk in COCO workshop (10/29, Sun)
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Mask R-CNN results on COCO
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Mask R-CNN results on COCO
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Failure case: recognition
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28x28 soft prediction from Mask R-CNN
(enlarged)

Soft prediction resampled to image coordinates

(bilinear and bicubic interpolation work equally well)

Final prediction (threshold at 0.5)

Validation image with box detection shown in red



28x28 soft prediction

Resized Soft prediction

Final mask

o\

Validation image with box detection shown in red



Mask R-CNN: for Human Keypoint Detection

* 1 keypoint = 1-hot “mask”
* Human pose = 17 masks

* Softmax over spatial locations
* e.g. 562-way softmax on 56x56

* Desire the same equivariances
 translation, scale, aspect ratio

0.94 nose 1.00 left_eye 1.00  right_eye 0.98 left_ear 0.98

Lgligigligt

right_ear 0.93 left_shoulder 0.97right_shoulder 1.00 left_elbow 0.41 right_elbow 0.99

SO

left_wrist 0.91  right_wrist 0.97 left_hip 0.96 right_hip 0.97 left_knee 0.99

AR R R X

right knee 0.99 left_ankle 0.91 right_ankle 0.98

= 1R
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