Language modeling

e Natural language is a sequence of
sequences

e Some sentences are more likely than others:
o “How are you ?” has a high probability
o “How banana you ? “ has a low probability

[Slide: Wojciech Zarembal]



Neural Network Language Models

Input output

layer

gy P(w; = 1|h;)

projection hidden
layer layer

Hut

.P[-w_? - '5|h.})

d P(w; = nlhy)

shared
projection

Bengio, Y., Schwenk, H., Sencal, J. S., Morin, F., & Gauvain, J. L. (2006).
Neural probabilistic language models. In Innovations in Machine Learning (pp.

137-186). Springer Berlin Heidelberg.
[Slide: Antoine Border & Jason Weston, EMNLP Tutorial 2014 ]



Recurrent Neural Network Language Models

Key idea: input to predict next word is current word plus context fed-back
from previous word (i.e. remembers the past with recurrent connection).

INPUT (t) QUTPUT (t)

3 CONTEXT (t)

\

CONTEXT (t-1)

Figure: Recurrent neural network based LM
Recurrent neural network based language model. Mikolov et al., Interspeech, '10.

[Slide: Antoine Border & Jason Weston, EMNLP Tutorial 2014 ]



Recurrent neural networks - schema

-li it lassifi
My X\ Wi + his W non-linearity his W classifier X name
| |
transfers
memory
-linearity classifier
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name % M " — C s
|
[ | transfers
memory
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[Slide: Wojciech Zarembal]



Backpropagation through time

* The intuition is that we unfold the RNN in time

3
—

* We obtain deep neural network with shared
weights U and W wen)

[Slide: Thomas Mikolov, COLING 2014 ]




Backpropagation through time

* We train the unfolded RNN using normal
backpropagation + SGD

* In practice, we limit the number of

unfolding stepsto 5-10

* It is computationally more efficient to =

propagate gradients after few training ’/

examples (batch mode) A

Tomas Mikolov, COLING 2014

[Slide: Thomas Mikolov, COLING 2014 ]
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NNLMS

vs. RNNS: Penn Treebank Results (Mikolov)
Model Weight | PPL
3-gram with Good-Turing smoothing (GT3) 0 165.2
5-gram with Kneser-Ney smoothing (KN5) 0 141.2
5-gram with Kneser-Ney smoothing + cache || 0.0792 | 125.7
Maximum entropy model 0 142.1
Random clusterings LM 0 170.1
Random forest LM 0.1057 | 131.9
Structured LM 0.0196 | 146.1
Within and across sentence boundary LM 0.0838 | 116.6
Log-bilinear LM 0 144.5
Feedforward NNLM 0 140.2
Syntactical NNLM 0.0828 | 131.3
Combination of static RNNLMs 0.3231 | 102.1
Combination of adaptive RNNLMs 0.3058 | 101.0
ALL 1 83.5

Recent uses of NNLMs and RNNs to improve machine translation:

Fast and Robust NN Joint Models for Machine Translation, Devlin et al, ACL '14.

Also Kalchbrenner '13, Sutskever et al., '14., Cho et al., '14. .

[Slide: Antoine Border & Jason Weston, EMNLP Tutorial 2014 ]




Language modelling — RNN samples

the meaning of life is that only if an end would
be of the whole supplier. widespread rules are
regarded as the companies of refuses to
deliver. in balance of the nation’s information
and loan growth associated with the carrier
thrifts are in the process of slowing the seed
and commercial paper.

[Slide: Wojciech Zarembal]



More depth gives more power

Lt42

Lt41

[Slide: Wojciech Zarembal]



LSTM - Long Short Term Memory

[Hochreiter and Schmidhuber, Neural Computation 1997]

e Ad-hoc way of modelling
long dependencies

e Many alternative ways of
modelling it

e Next hidden state is
modification of previous
hidden state (so

[-1

[ —
ht 21

modulation

information doesn’t decay aile @M .

too fast).

/N

-1
hi—1 h;

For simple explanation, see [Recurrent Neural Network Regularization,
Wojciech Zaremba, llya Sutskever, Oriol Vinyals, arXiv 1409.2329, 2014]

[Slide: Wojciech Zarembal]



RNN-LSTMs for Machine Translation

W X Y Z <E0S>
A A A A A
—> —> —> —> —> —> —>
T T ) ) ) ) )
A B C <E0S> w X Y Z

[Sutskever et. al. (2014)]

Sequence to Sequence Learning with Neural Networks,
llya Sutskever, Oriol Vinyals, Quoc Le, NIPS 2014

Learning Phrase Representations using RNN Encoder-Decoder for Statistical
Machine Translation, Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre,

Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, Yoshua Bengio, EMNLP
2014

[Slide: Wojciech Zarembal]



Visualizing Internal Representation

t-SNE projection of network state at end of input sentence

15 . .
O | was given a card by her in the garden
10 O In the garden , she gave me a card
O She gave me a card in the garden
5 -
0 -
=5r O She was given a card by me in the garden
O In the garden , | gave her a card
_10 -
_15 - .
O | gave her a card in the garden
_20 1 1 Il 1 1 1 J
-16 -10 =5 0 5 10 15 20

Sequence to Sequence Learning with Neural Networks,
llya Sutskever, Oriol Vinyals, Quoc Le, NIPS 2014



Translation - examples

e FR: Les avionneurs se querellent au sujet de la largeur des sieges alors que
de grosses commandes sont en jeu

e Google Translate: Aircraft manufacturers are quarreling about the seat width
as large orders are at stake

e L STM: Aircraft manufacturers are concerned about the width of seats while
large orders are at stake

e Ground Truth: Jet makers feud over seat width with big orders at stake

[Sequence to Sequence Learning with Neural Networks,
llya Sutskever, Oriol Vinyals, Quoc Le, NIPS 2014]

[Slide: Wojciech Zarembal]



Image Captioning: Vision + NLP

——
I._,.

Generate short text descriptions of m
image, given just picture. X \V

Use Convnet to extract image features

RNN or LSTM model takes image
features as input, generates text

woman, crowd, cat,
camera, holding, purple

A purple camera with a woman.
A woman holding a camera in a crowd.

A woman holding a cat.

#1 A woman holding a

"“i'“zi‘“i ﬁ i*“i_* camerain a crowd.

Many recent works on this:

« Baidu/UCLA: Explain Images with Multimodal Recurrent Neural Networks

» Toronto: Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models

« Berkeley: Long-term Recurrent Convolutional Networks for Visual Recognition and Description
* Google: Show and Tell: A Neural Image Caption Generator

« Stanford: Deep Visual-Semantic Alignments for Generating Image Description

« UML/UT: Translating Videos to Natural Language Using Deep Recurrent Neural Networks

« Microsoft/CMU: Learning a Recurrent Visual Representation for Image Caption Generation

* Microsoft: From Captions to Visual Concepts and Back



Image Captioning Examples

[person (0.55)] [street (0.53)] [holding rouf [slope (0.51)]
[snow (0.91)] [skis (0.74)] [player (0.54)]

[people (0.85)] [men (0.57)] [skiing (0.51)]

[skateboard (0.89)] [riding (0.75)] [tennis (0.74)] [trick (O
[man (0.86)] [down (0.61)]

a group of people riding skis down a snow covered slope

a guy on a skate board on the side of a ramp

[men (0.59)) Igrou/p (0.66)] ([woman (0.64)]

f L ) Iding [playing (0.61)]

[court (0.51)] [standing (0.59)] [skis (0.58)] [street (0.52)]
[man (0.77)) [skateboard (0.67)]

a group of people standing next to each other

people stand outside a large ad for gap featuring a young boy

53)] [skate (0.52)]

[fire (0.96)] [hydrant (0.96)] [street (0.79)] [«

[bench (0.81)] [standing (0.57)] [baseball (0.55)]
[white (0.82)] [sitting (0.65)] [people (0.79)] [photo (0.53)]

- 1)] [k [man (0.72)]
a black and white photo of a fire hydrant
a courtyard full of poles pigeons and garbage cans also has benches on
either side of it one of which shows the back of a large person facin
g in the direction of the pigeons

—— =i :
[horse (0.53)] [bear (0.71)] [elephant (0.99)] [elephant
[brown (0.68)] [laying (0.61)]
[man (0.57)] [standing (0.79)] [field (0.65)]
[water (0.83)] [large (0.71)] [dirt (0.65)] [river (0.58)]
a baby elephant standing next to each other on a field
elephants are playing together in a shallow watering hole

From Captions to Visual Concepts and Back, Hao Fang* Saurabh Gupta* Forrest landola* Rupesh K. Srivastava*, Li Deng Piotr
Dollar, Jianfeng Gao Xiaodong He, Margaret Mitchell John C. Platt, C. Lawrence Zitnick, Geoffrey Zweig, CVPR 2015.




Memory in Neural Networks

Rob Fergus

New York University
Facebook Al Research



Introduction

* Many tasks require some kind of memory

* But traditional neural networks are not good at
remembering things, especially when input is
large but only part of it is relevant

* Recently, there has been lot of interest in

incorporating memory and attention to neural
networks

— Memory Networks, Neural Turing Machine,...
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Discrete Memory

— Learning algorithms using 1-D tape, 2-D grid
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Implicit Internal Memory

* Internal state of the model can be used for memory
— Recurrent Neural Networks (RNNs)

———><::>———% linear

+

®

tanh

* Computation and memory is mixed

——(h)—

— Complex computation requires many layers of non-linearity

— But some information is lost with each non-linearity

— Problems with vanishing/exploding gradients & catastrophic

forgetting



Ways to Prevent Forgetting in RNNs

* Split state into fast and slow changing parts: structurally
constrained recurrent nets (e.g. Mikolov et al., 2014)

— Fast changing part 1s good for computation
— Slow changing part is good for storing information
* Gated units for internal state
— Control when to forget/write using gates
— Long-short term memory (LSTM) (see Graves, 2013)
— Simpler Gated Recurrent Unit (GRU) (Cho et al., 2014)

* Other problems

— Memory capacity is fixed and limited by the dimension of state
vector (computation is O(N?) where N is memory capacity)

— Vulnerable to distractions in inputs
— Restricted to sequential inputs
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External Global Memory

* Separate memory from computation

— Add separate memory module for storage

— Memory contains list/set of items

Memory
module

N

read

Output

J

write

input

\.

Main
module

* Main module can read and write to the memory

* Advantage: long-term, scalable, flexible



Selective Addressing is Key for Memory

* Often, you only want to interact with few items in
memory at once

— Memory needs some addressing mechanism
* Memory addressing types
— Soft or hard addressing

* Soft addressing can be trained by backpropagation

* Hard addressing 1s not differentiable (e.g. has to be trained with

reinforcement learning or additional training signal for where to
attend)

— Context and Location based addressing

* When input is ordered in some way, location based addressing 1s
useful

* Location addressing is same as context if location is embedded in the
context (e.g. MemN2N)



Stack RNNs (Joulin & Mikolov, 2015)

* Simple RNN extended with a stack that the

neural net learns to control
* The idea itself 1s very old (from 80’s — 90%)

* Very simple and learns complex toy patterns
with much less supervision & scales to more
complex tasks



Stack RNN

Add structured memory to RINN:

— Trainable [read/write]
— Unbounded

Continuous actions:

PUSH / POP / NO-OP
Multiple stacks

Examples of memory structures:

stacks, lists, queues, tapes, grids, ...

Learns algorithms from examples

input

hidden

Xt

st-1[0]

St-1

stack(t-1)

>yt

dat

action

output

st[0]

St

stack(t)



Stack RNN - Algorithmic Patterns

Sequence generator Example
[a"0" | n > 0) aabbaaabbbabaaaaabbbbb I
aovc |n>0; aaapbbcccabcaaaaa CCcccc

{a"b"c"d" | n > 0} aabbccddaaabbbeccecdddabed
{a™b®" | n > 0} aabbbbaaabbbbbbabb
{a™b™c™ ™™ | n,m > 0} aabceccaaabbcececcabee

ne|lLkl, X ->nXn, X -= | (k=2)12=212122=221211121=12111

* Examples of simple algorithmic patterns generated by
short programs (grammars)

* The goal is to learn these patterns in an unsupervised
manner just by observing the example sequences

Tomas Mikolov, FAIR, 2016



Stack RNN - Example

* Sequence: a°b!?

current next prediction | proba(next) action stack1[top] | stack2[top]
b a a 0.99 POP POP -1 0.53
a a a 0.99 PUSH | POP 0.01 0.97
a a a 0.95 PUSH | PUSH 0.18 0.99
a a a 0.93 PUSH | PUSH 0.32 0.98
a a a 0.91 PUSH | PUSH 0.40 0.97
a a a 0.90 PUSH | PUSH 0.46 0.97
a b a 0.10 PUSH | PUSH 0.52 0.97
b b b 0.99 PUSH | PUSH 0.57 0.97
b b b 1.00 POP | PUSH 0.52 0.56
b b b 1.00 POP | PUSH 0.46 0.01
b b b 1.00 POP | PUSH 0.40 0.00
b b b 1.00 POP | PUSH 0.32 0.00
b b b 1.00 POP | PUSH 0.18 0.00
b b b 0.99 POP | PUSH 0.01 0.00
b b b 0.99 POP POP -1 0.00
b b b 0.99 POP POP -1 0.00
b b b 0.99 POP POP -1 0.00
b b b 0.99 POP POP -1 0.01
b a a 0.99 POP POP -1 0.56

Table 3: Example of the Stack RNN with 20 hidden units and 2 stacks on a sequence a"b?" with
n = 6. —1 means that the stack is empty. The depth £ is set to 1 for clarity. We see that the first
stack pushes an element every time it sees a and pop when it sees b. The second stack pushes when
it sees a. When it sees b , it pushes if the first stack is not empty and pop otherwise. This shows how
the two stacks interact to correctly predict the deterministic part of the sequence (shown in bold).



Algorithmic Patterns - Counting

method a T b". a]'l brl C'l a""l b'l» C”l d'l‘l a"l‘l b2 T afl. b'l‘”-c'n. —+m
RNN 25% 23.3% 13.3% 23.3% 33.3%
LSTM 100%  100% 68.3% 75% 100%
List RNN 40+5 100%  33.3% 100% 100% 100%
Stack RNN 40+10 100%  100% 100% 100% 43.3%
Stack RNN 40+10 + rounding | 100%  100% 100% 100% 100%

* Performance on simple counting tasks

* RNN with sigmoidal activation function cannot
count

e Stack-RNN and I.STM can count

Tomas Mikolov, FAIR, 2016



Algorithmic Patterns - Sequences

Memorization Blnary addition
100. 100;;
80 \ 80 1 ‘. |
. il
g 60 : g 601 |
3 ! 3 i)
1 ==Stack RNN \
20 \ ==|_ist RNN 20 % \ =Stack RNN
\  LANN 2\ --RNN
V. —LSTM ot —LSTM
10 20 30 40 50 10 20 30 40 50
n n

Sequence memorization and binary addition are
out-of-scope of LSTM

* Expandable memory of stacks allows to learn the
solution

Tomas Mikolov, FAIR, 2016



Stack RNN - Binary Addition

Inputs: .Il 0O 0 0 1 1|+ 1

Predictions: 0 0 . O 1 0 1 0 1

[EEN Y

Stack 1: . . . Counter

Stack 2: . End of number 2
Stack 3: . Number 2

Stack 4: Length of number 2
Stack 5: ....... l Carry

Stack 6:

EEEREEE e
Stack 7: .. | .. Junk

Stack 8: | Junk
Stack 9: Junk
st ENE N EEEEEEE

* No supervision in training, just prediction
* Learns to: store digits, when to produce output, carry

Tomas Mikolov, FAIR, 2016



Stack RNNs: summary

The good:

* Turing-complete model of computation (with >=2 stacks)
* Learns some algorithmic patterns

* Has long term memory

* Works for some problems that break RNNs and LSTMs

* Reproducible: https://github.com/facebook/Stack-RNN

The bad:

* The long term memory 1s used only to store partial computation (le.
learned skills are not stored there yet)

* Does not seem to be a good model for incremental learning due to
computational inefficiency of the model

* Stacks do not seem to be a very general choice for the topology of the
memory
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Motivation

e Good models exist for some data structures
— RNN for temporal structure

— ConvNet for spatial structure

* But we still struggle with some type of
dependencies

— out-of-order access
— long-term dependency

— unordered set



Ex) Question & Answering on story

Qs D

out-of-order

A

Cat 0>

CSam drops the apple thered

Q: Where was the apple after the garden?



Overview

* We propose a neural network model with
external memory



* It is based on “Memory Networks” by
[Weston, Chopra & Bordes ICLLR 2015]
— Hard attention
— requires explicit supervision of attention during
training
— Only feasible for simple tasks
— Severely limits application of the model



MemN2N architecture

supervision
Output<—" P

Controller
module

Memory vector

Internal state
(unordered)

vector



Memory Module
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Memory Vectors

E.g.) constructing memory vectors with Bag-of-Words (BoW)
1.  Embed each word

2. Sum embedding vectors

“Sam drops apple”



e R

Question & Answering

Memory Module ]i
[ Weighted Sum ] 0.1mq + 0.7my + ()I.ng R —»2
1\ E i N O
- O
[ . S
[ Dot product + softmax ]( E E ﬁl (2
I | X
mi, ma, mB} o

1: Sam moved ' 2: Sam went | 3: Sam drops |
' . tokitchen | | apple there :
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Input story
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Related Work (I)

Hard attention Memory Network [Weston et al. ICLLR 2015]

I\/Iemory Module

______________________________________________

Supervision N
on attention ‘\ k > mk
. A :
[ ArgMax ]
T 1
[ Dot Product ] <€ : U
0

— e e e e e e e e e e e e e e o e e e e e e e e e e =



Related Work (1I)

RNNsearch [Bahdanau et al. 2015]
— Encoder-decoder RNN with attention
— Our model can be considered as an attention model with multiple
hops
Recent works on external memory
— Stack memory for RNNs [Joulin & Mikolov. 2015]
— Neural Turing Machine [Graves et al. 2014]

Early works on neural network and memory
— [Steinbuch & Piske. 1963]; [Taylor. 1959]
— [Das et al. 1992]; [Mozer et al. 1993]

Concurrent works
— Dynamic Memory Networks [Kumar et al. 2015]
— Attentive reader [Hermann et al. 2015]
— Stack, Queue [Grefenstette et al. 2015]



Experiment on bAbI Q&A data

* Data: 20 bADI tasks [Weston et al. arXiv: 1502.05698, 2015]
* Answer questions after reading short story

* Small vocabulary, simple language

* Ditferent tasks require different reasoning

* Training data size 1K or 10K for each task

Sam walks into the kitchen. Brian 1s a lion.

Sam picks up an apple. Julius is a lion.

Sam walks i1nto the bedroom. Julius 1s white.

Sam drops the apple. Bernhard is green.

Q: Where is the apple? Q: What color is Brian?
A. Bedroom A. White




Performance on bADbI test set

Weston et al. Strongly supervised

LSTM 20
® 1k training data
MemN2N BoW ® 10k training data
MemN2N Best 10

#Failed tasks out of 20 (smaller is better)




Examples of Attention Weights

* ) test cases:

Story (2: 2 supporting facts) Hop 1 Hop2 | Hop 3
John dropped the milk. 0.06 0.00 0.00
John took the milk there. 0.88 1.00 0.00
Sandra went back to the bathroom. 0.00 0.00 0.00
John moved to the hallway. 0.00 0.00 1.00
Mary went back to the bedroom. 0.00 0.00 0.00
Where is the milk? Answer: hallway Prediction: hallway

Story (16: basic induction) Hop1 | Hop 2 | Hop 3
Brian is a frog. 0.00 0.98 0.00
Lily is gray. 0.07 0.00 0.00
Brian is yellow. 0.07 0.00 1.00
Julius is green. 0.06 0.00 0.00
Greg is a frog. 0.76 0.02 0.00
What color is Greg? Answer: yellow Prediction: yellow




Experiment on Language modeling

e Data
— Penn Treebank: 1M words 10K vocab
— Text8 (Wikipedia): 16M words 40K vocab

e Model

— Controller module: linear + non-linearity

— Fach word as a memory vector next

Yann | says | your | model | must be

time

_____________________________________________________________________________________



Test perplexity

127

122

117

112

Penn-Treebank

Text8 (Wikipedia)

190

—MemN2N —MemN2N
---LSTM > 180 Y
% 170
2 160
O | ccececccccccaoe
S 150
[%2]
8 140
2 3 4 5 6 7 2 3 4 5 6 7

Memory hops Memory hops



Attention during memory hops

Oldest word Most recent word

/ Penn Treebank f

hops

weight

20 40 60 80 100
memory position



Extension to writable memory

* EBEvery memory location is readable and writable
* In each hop, perform both read and write

* Write module adds to the current memory

* N inputs and N outputs and N memory slots

Outputs
{y1.92, .-, yzv}/

t

Decoder

supervision

Write module

Add to memory

l

A

—

{ml, mao, ..., mN}
Memory vectors

Encoder

t

{561, L2y uny SCN}
Inputs

Controller
module

Same attention
mechanism



Learning to sort in memory

* Train MemN2N to sort given numbers
* Input: 10 random numbers

* Output: sorted version ot input

Writ thialfisitedstldb?
Reads 10, 12 rites somethfagl fldy?)

Read attention

Write attention

Memory 12 97 25 98 77 23 35 29 10 56 10 12 23 25 29 35 56 77 97 99

\ / v J \ v J
memory decoded (darker = higher confidence)
Input numbers Reserved for output

After 3 hops



Conclusion

* Proposed a neural net model with external
memory

— Soft attention over memory locations
— End-to-end training with backpropagation
* Good results on a toy QA tasks
* Comparable to LSTM on language modeling

* Versatile model: also apply to writing and games

Code http://github.com/facebook/MemNN




Outline

Implicit Internal memory

— Recurrent Neural Nets (RNNs)

— Long-Short Term Memory (LSTMs)
Explicit External memory

— StackRNN

— Memory Networks

— Neural Turing Machine
Attention models

— MT, Speech, Image, Pointer Network
Discrete Memory

— Learning algorithms using 1-D tape, 2-D grid



Neural Turing Machine
(Graves et al., 2014)

* Learns how to write to the memory

* Soft addressing = backpropagation training

* Location addressing: small continuous shift of attention

* Complex addressing mechanism: need to sharpen after convolution
* Controller can be LSTM-RNN or feed-forward neural network

* Applied to learn algorithms such as sort, associative recall and copy.
* Hard addressing with reinforcement learning (Zaremba et al., 2015)

External Input External Output
Previous
T R Ly O R E e e T R L LT TRT  EELLLCRIP RS : State
§ 3 e |
: — g Wi—1
: ’ Controller 3 |
// \ s
‘ Controller
’ Read Heads ‘ Write Heads § Outputs > C
: — — ontent
; | kt Addressing > : Wf
I 1 3 B — Wf Interpolation BS i
3 | gtt‘ | i Convolutional [W¢
3 o Shift >
Memory 3 | s — > Sharpening | »w;
N




Neural Turing Machine — Copy task

* NTM

Targets

Outputs

Inputs Outputs

Adds

Location ——»

Time —— Time ——

Write Weightings Read Weightings



Neural Turing Machine — Copy task

* NTM




Neural Turing Machine - Experiments

Task #Heads Controller Size Memory Size Learning Rate #Parameters
Copy 1 100 128 x 20 104 17,162
Repeat Copy 1 100 128 x 20 104 16,712
Associative 4 256 128 x 20 10—4 146, 845
N-Grams 1 100 128 x 20 3 x107° 14, 656
Priority Sort 8 512 128 x 20 3x107° 508, 305

Table 1: NTM with Feedforward Controller Experimental Settings
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RNNsearch: Attention 1n Machine
Translation (Bahdanau et al., 2015)

e RNN based encoder and decoder model

* Decoder can look at past encoder states using soft attention

* Attention mechanism is implement by a small neural network

— It takes the current decoder state and a past encoder state and outputs a
score. Then the all scores are fed to softmax to get attention weights

* Applied to machine translation. Significant improvement in translation
of longer sentences

g 5 . Significant improvement on long sentences
o O 3 a 5
g %’w c o o g 8 8 qg: é § g 30 T T T T
ERfSsSsddxznceX v
. LI
Attention accord
. sur
weights a o
. zone 8
durlng économique ;
. européenne : :
English to . = ' : N N
té M 10} — RNNsearch-50 S RIRREEERE b I RRTTER ~iedes e
French s BN @ | RNNsearch-30 | TN AR
. en | - — _ . . e ]
rnachme soot 5 RNNenc-50 | ; | SR
1 . 1992 - RNNenC—30 :
r n n 0 Il Il L Il 1
translatio 0 10 20 30 40 50 60

<end>
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Image caption generation with attention

(Xu et al., 2015)

Encoder: lower convolutional layer of a deep ConvINet (because need spatial
information)

Decoder: LSTM RNN with soft spatial attention

— Decoder state and encoder state at single location are fed to small NN to get score
at that location

Network attends to the object when it is generating a word for it
Also hard attention 1s tried with reinforcement learning

B =
I et
P
1 .
2 . 2
ity PR

A woman is throwing a frisbee in a park.

A stop sign is on a road with a
mountain in the background.

e

A little girl sitting on a bed with A group of people sitting on a boat A giraffe standing in a forest with
a teddy bear. in the water. trees in the background.



Video description generation

(Yao et al., 2015)

+Local+Global: A man and a woman are talking on the

Ref: A man and a woman ride a motorcycle
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+Local+Global: Someone is frying a fish in a

Ref: A woman is frying food

) L. Yao, A. Torabi, K. Cho, N. Ballas, C. Pal, H. Larochelle, and
(bOttom' ground truth) A. Courville, “Describing videos by exploiting temporal structure,”
arXiv: 1502.08029, 2015.



Location-aware attention for speech

(Chorowski et al., 2015)

e RNN based encoder-decoder model with attention
(similar to RNNsearch)

* Location based addressing: previous attention weights are
used as feature for the current attention (good when
subsequent attention locations are highly correlated)

* Improvement with sharpening and smoothing of
memory addressing

FDHCO _SX209: Michael colored the bedroom wall with crayons.
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Pointer Network: attention as an output

(Vinyals et al., 2015)

RNN based encoder-decoder model for discrete optimization
problems

Decoder can attend to previous encoder states (similar to
RNNsearch, content based soft attention by a small NN)

Rather than fixed output classes, attention weights determine
output

Input to the most attended encoder state becomes an output
—> can output any sequence of inputs

Ground Truth: tour length is 3.518 Predictions: tour length is 3.523




