
Language modeling

● Natural language is a sequence of 
sequences

● Some sentences are more likely than others:
o “How are you ?” has a high probability
o “How banana you ? “ has a low probability

[Slide: Wojciech Zaremba]



Results Training

Neural Network Language Models

Bengio, Y., Schwenk, H., Sencal, J. S., Morin, F., & Gauvain, J. L. (2006).

Neural probabilistic language models. In Innovations in Machine Learning (pp.

137-186). Springer Berlin Heidelberg.
31 / 68[Slide: Antoine Border & Jason Weston, EMNLP Tutorial 2014 ]



Results Training

Recurrent Neural Network Language Models

Key idea: input to predict next word is current word plus context fed-back
from previous word (i.e. remembers the past with recurrent connection).

Recurrent neural network based language model. Mikolov et al., Interspeech, ’10.
33 / 68
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Recurrent neural networks - schema 

My

name

is

name

is

Wojciech

[Slide: Wojciech Zaremba]



• The intuition is that we unfold the RNN in time

• We obtain deep neural network with shared
weights U and W

Tomas Mikolov, COLING 2014

Backpropagation through time

99

[Slide: Thomas Mikolov, COLING 2014 ]



• We train the unfolded RNN using normal
backpropagation + SGD

• In practice, we limit the number of
unfolding steps to 5 – 10

• It is computationally more efficient to
propagate gradients after few training
examples (batch mode)

Tomas Mikolov, COLING 2014

Backpropagation through time

100

[Slide: Thomas Mikolov, COLING 2014 ]



Results Training

NNLMS vs. RNNS: Penn Treebank Results (Mikolov)

Recent uses of NNLMs and RNNs to improve machine translation:
Fast and Robust NN Joint Models for Machine Translation, Devlin et al, ACL ’14.

Also Kalchbrenner ’13, Sutskever et al., ’14., Cho et al., ’14. .

34 / 68
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Language modelling – RNN samples

the meaning of life is that only if an end would 
be of the whole supplier. widespread rules are 
regarded as the companies of refuses to 
deliver. in balance of the nation’s information 
and loan growth associated with the carrier 
thrifts are in the process of slowing the seed 
and commercial paper.

[Slide: Wojciech Zaremba]



More depth gives more power

[Slide: Wojciech Zaremba]



LSTM - Long Short Term Memory

● Ad-hoc way of modelling 
long dependencies

● Many alternative ways of 
modelling it

● Next hidden state is 
modification of previous 
hidden state (so 
information doesn’t decay 
too fast).

[Hochreiter and Schmidhuber, Neural Computation 1997]

[Slide: Wojciech Zaremba]

For simple explanation, see [Recurrent Neural Network Regularization, 
Wojciech Zaremba, Ilya Sutskever, Oriol Vinyals, arXiv 1409.2329, 2014]



RNN-LSTMs for Machine Translation

Sequence to Sequence Learning with Neural Networks,
Ilya Sutskever, Oriol Vinyals, Quoc Le, NIPS 2014 

Learning Phrase Representations using RNN Encoder-Decoder for Statistical 
Machine Translation, Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, 
Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, Yoshua Bengio, EMNLP 
2014

[Sutskever et. al. (2014)]

[Slide: Wojciech Zaremba]



Visualizing Internal Representation

Sequence to Sequence Learning with Neural Networks,
Ilya Sutskever, Oriol Vinyals, Quoc Le, NIPS 2014 

t-SNE projection of network state at end of input sentence



Translation - examples
● FR: Les avionneurs se querellent au sujet de la largeur des sièges alors que 
de grosses commandes sont en jeu

● Google Translate: Aircraft manufacturers are quarreling about the seat width 
as large orders are at stake

● LSTM: Aircraft manufacturers are concerned about the width of seats while 
large orders are at stake

● Ground Truth: Jet makers feud over seat width with big orders at stake

[Sequence to Sequence Learning with Neural Networks,
Ilya Sutskever, Oriol Vinyals, Quoc Le, NIPS 2014] 

[Slide: Wojciech Zaremba]



Image Captioning: Vision + NLP

Many recent works on this:
• Baidu/UCLA: Explain Images with Multimodal Recurrent Neural Networks
• Toronto: Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models
• Berkeley: Long-term Recurrent Convolutional Networks for Visual Recognition and Description
• Google: Show and Tell: A Neural Image Caption Generator
• Stanford: Deep Visual-Semantic Alignments for Generating Image Description
• UML/UT:  Translating Videos to Natural Language Using Deep Recurrent Neural Networks
• Microsoft/CMU:  Learning a Recurrent Visual Representation for Image Caption Generation
• Microsoft:  From Captions to Visual Concepts and Back

From Captions to Visual Concepts and Back

Hao Fang⇤ Saurabh Gupta⇤ Forrest Iandola⇤ Rupesh K. Srivastava⇤
Li Deng Piotr Dollár† Jianfeng Gao Xiaodong He

Margaret Mitchell John C. Platt‡ C. Lawrence Zitnick Geoffrey Zweig

Microsoft Research

Abstract

This paper presents a novel approach for automatically
generating image descriptions: visual detectors, language
models, and multimodal similarity models learnt directly
from a dataset of image captions. We use multiple instance
learning to train visual detectors for words that commonly
occur in captions, including many different parts of speech
such as nouns, verbs, and adjectives. The word detector
outputs serve as conditional inputs to a maximum-entropy
language model. The language model learns from a set of
over 400,000 image descriptions to capture the statistics
of word usage. We capture global semantics by re-ranking
caption candidates using sentence-level features and a deep
multimodal similarity model. Our system is state-of-the-art
on the official Microsoft COCO benchmark, producing a
BLEU-4 score of 29.1%. When human judges compare the
system captions to ones written by other people on our held-
out test set, the system captions have equal or better quality
34% of the time.

1. Introduction
When does a machine “understand” an image? One def-

inition is when it can generate a novel caption that summa-
rizes the salient content within an image. This content may
include objects that are present, their attributes, or their re-
lations with each other. Determining the salient content re-
quires not only knowing the contents of an image, but also
deducing which aspects of the scene may be interesting or
novel through commonsense knowledge [51, 5, 8].

This paper describes a novel approach for generating im-
age captions from samples. We train our caption generator

⇤H. Fang, S. Gupta, F. Iandola and R. K. Srivastava contributed equally
to this work while doing internships at Microsoft Research. Current af-
filiations are H. Fang: University of Washington; S. Gupta and F. Iandola:
University of California at Berkeley; R. K. Srivastava: IDSIA, USI-SUPSI.

†P. Dollár is currently at Facebook AI Research.
‡J. Platt is currently at Google.

Figure 1. An illustrative example of our pipeline.

from a dataset of images and corresponding image descrip-
tions. Previous approaches to generating image captions re-
lied on object, attribute, and relation detectors learned from
separate hand-labeled training data [47, 22].

The direct use of captions in training has three distinct
advantages. First, captions only contain information that is
inherently salient. For example, a dog detector trained from
images with captions containing the word dog will be bi-
ased towards detecting dogs that are salient and not those
that are in the background. Image descriptions also contain
variety of word types, including nouns, verbs, and adjec-
tives. As a result, we can learn detectors for a wide vari-
ety of concepts. While some concepts, such as riding or
beautiful, may be difficult to learn in the abstract, these
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• Generate short text descriptions of 
image, given just picture.

• Use Convnet to extract image features

• RNN or LSTM model takes image
features as input, generates text



Image Captioning Examples

From Captions to Visual Concepts and Back, Hao Fang∗ Saurabh Gupta∗ Forrest Iandola∗ Rupesh K. Srivastava∗, Li Deng Piotr
Dollar, Jianfeng Gao Xiaodong He, Margaret Mitchell John C. Platt, C. Lawrence Zitnick, Geoffrey Zweig, CVPR 2015.



Memory in Neural Networks

Rob Fergus

New York University 
Facebook AI Research



Introduction

• Many tasks require some kind of  memory
• But traditional neural networks are not good at 

remembering things, especially when input is 
large but only part of  it is relevant

• Recently, there has been lot of  interest in 
incorporating memory and attention to neural 
networks
– Memory Networks, Neural Turing Machine,…



Outline

• Implicit Internal memory
– Recurrent Neural Nets (RNNs)
– Long-Short Term Memory (LSTMs)

• Explicit External memory
– StackRNN
– Memory Networks
– Neural Turing Machine 

• Attention models
– MT, Speech, Image, Pointer Network

• Discrete Memory
– Learning algorithms using 1-D tape, 2-D grid
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Implicit Internal Memory

• Internal state of  the model can be used for memory
– Recurrent Neural Networks (RNNs)

• Computation and memory is mixed
– Complex computation requires many layers of  non-linearity
– But some information is lost with each non-linearity
– Problems with vanishing/exploding gradients & catastrophic 

forgetting

tanh+ht-1 ht

xt

linear



Ways to Prevent Forgetting in RNNs
• Split state into fast and slow changing parts:  structurally 

constrained recurrent nets (e.g. Mikolov et al., 2014)
– Fast changing part is good for computation
– Slow changing part is good for storing information

• Gated units for internal state
– Control when to forget/write using gates
– Long-short term memory (LSTM) (see Graves, 2013)
– Simpler Gated Recurrent Unit (GRU) (Cho et al., 2014)

• Other problems
– Memory capacity is fixed and limited by the dimension of  state 

vector (computation is O(N2) where N is memory capacity) 
– Vulnerable to distractions in inputs
– Restricted to sequential inputs
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External Global Memory
• Separate memory from computation 

– Add separate memory module for storage
– Memory contains list/set of  items

• Main module can read and write to the memory
• Advantage: long-term, scalable, flexible

Memory 
module

Main 
module

read

write

input

output



Selective Addressing is Key for Memory

• Often, you only want to interact with few items in 
memory at once
– Memory needs some addressing mechanism

• Memory addressing types
– Soft or hard addressing

• Soft addressing can be trained by backpropagation
• Hard addressing is not differentiable (e.g. has to be trained with 

reinforcement learning or additional training signal for where to 
attend)

– Context and Location based addressing
• When input is ordered in some way, location based addressing is 

useful
• Location addressing is same as context if  location is embedded in the 

context (e.g. MemN2N)



Stack RNNs (Joulin & Mikolov, 2015)

• Simple RNN extended with a stack that the 
neural net learns to control

• The idea itself  is very old (from 80’s – 90’s)

• Very simple and learns complex toy patterns 
with much less supervision & scales to more 
complex tasks

Tomas Mikolov, FAIR, 2016



• Add structured memory to RNN:
– Trainable [read/write]
– Unbounded

• Continuous actions: 
PUSH / POP / NO-OP

• Multiple stacks

• Examples of  memory structures: 
stacks, lists, queues, tapes, grids, … 

• Learns algorithms from examples

Stack RNN

Tomas Mikolov, FAIR, 2016



Stack RNN - Algorithmic Patterns

• Examples of  simple algorithmic patterns generated by 
short programs (grammars)

• The goal is to learn these patterns in an unsupervised 
manner just by observing the example sequences

Tomas Mikolov, FAIR, 2016



Stack RNN - Example

• Sequence: a6b12

current next prediction proba(next) action stack1[top] stack2[top]
b a a 0.99 POP POP -1 0.53
a a a 0.99 PUSH POP 0.01 0.97
a a a 0.95 PUSH PUSH 0.18 0.99
a a a 0.93 PUSH PUSH 0.32 0.98
a a a 0.91 PUSH PUSH 0.40 0.97
a a a 0.90 PUSH PUSH 0.46 0.97
a b a 0.10 PUSH PUSH 0.52 0.97
b b b 0.99 PUSH PUSH 0.57 0.97
b b b 1.00 POP PUSH 0.52 0.56
b b b 1.00 POP PUSH 0.46 0.01
b b b 1.00 POP PUSH 0.40 0.00
b b b 1.00 POP PUSH 0.32 0.00
b b b 1.00 POP PUSH 0.18 0.00
b b b 0.99 POP PUSH 0.01 0.00
b b b 0.99 POP POP -1 0.00
b b b 0.99 POP POP -1 0.00
b b b 0.99 POP POP -1 0.00
b b b 0.99 POP POP -1 0.01
b a a 0.99 POP POP -1 0.56

Table 3: Example of the Stack RNN with 20 hidden units and 2 stacks on a sequence a

n
b

2n with
n = 6. �1 means that the stack is empty. The depth k is set to 1 for clarity. We see that the first
stack pushes an element every time it sees a and pop when it sees b. The second stack pushes when
it sees a. When it sees b , it pushes if the first stack is not empty and pop otherwise. This shows how
the two stacks interact to correctly predict the deterministic part of the sequence (shown in bold).

Memorization Binary addition

Figure 2: Comparison of RNN, LSTM, List RNN and Stack RNN on memorization and the perfor-
mance of Stack RNN on binary addition. The accuracy is in the proportion of correctly predicted
sequences generated with a given n. We use 100 hidden units and 10 stacks.

the training and validation set are composed of sequences generated with n up to N < 20 while
the test set is composed of sequences generated with n up to 60. During training, we incrementally
increase the parameter n every few epochs until it reaches some N . At test time, we measure the
performance by counting the number of correctly predicted sequences. A sequence is considered as
correctly predicted if we correctly predict its deterministic part, shown in bold in Table 1. On these
toy examples, the recurrent matrix R defined in Eq. (1) is set to 0 to isolate the mechanisms that
Stack and list can capture.

Counting. Results on patterns generated by “counting” algorithms are shown in Table 2. We report
the percentage of sequence lengths for which a method is able to correctly predict sequences of
that length. List RNN and Stack RNN have 40 hidden units and either 5 lists or 10 stacks. For
these tasks, the NO-OP operation is not used. Table 2 shows that RNNs are unable to generalize to
longer sequences, and they only correctly predict sequences seen during training. LSTM is able to
generalize to longer sequences which shows that it is able to count since the hidden units in an LSTM
can be linear [17]. With a finer hyper-parameter search, the LSTM should be able to achieve 100%

on all of these tasks. Despite the absence of linear units, these models are also able to generalize.
For anbmc

n+m, rounding is required to obtain the best performance.
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Algorithmic Patterns - Counting

• Performance on simple counting tasks
• RNN with sigmoidal activation function cannot 

count
• Stack-RNN and LSTM can count

Tomas Mikolov, FAIR, 2016



Algorithmic Patterns - Sequences 

• Sequence memorization and binary addition are 
out-of-scope of  LSTM

• Expandable memory of  stacks allows to learn the 
solution

Tomas Mikolov, FAIR, 2016



Stack RNN - Binary Addition

• No supervision in training, just prediction
• Learns to: store digits, when to produce output, carry 

Tomas Mikolov, FAIR, 2016



Stack RNNs: summary
The good:
• Turing-complete model of  computation (with >=2 stacks)
• Learns some algorithmic patterns
• Has long term memory
• Works for some problems that break RNNs and LSTMs
• Reproducible: https://github.com/facebook/Stack-RNN

The bad:
• The long term memory is used only to store partial computation (ie. 

learned skills are not stored there yet)
• Does not seem to be a good model for incremental learning due to 

computational inefficiency of  the model
• Stacks do not seem to be a very general choice for the topology of  the 

memory

Tomas Mikolov, FAIR, 2016



Outline

• Implicit Internal memory
– Recurrent Neural Nets (RNNs)
– Long-Short Term Memory (LSTMs)

• Explicit External memory
– StackRNN
– Memory Networks
– Neural Turing Machine 

• Attention models
– MT, Speech, Image, Pointer Network
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End-To-End
Memory Networks

Sainbayar Sukhbaatar1, Arthur Szlam2, 
Jason Weston2 and Rob Fergus2

1New York University      2Facebook AI Research



• Good models exist for some data structures
– RNN for temporal structure
– ConvNet for spatial structure

• But we still struggle with some type of  
dependencies
– out-of-order access
– long-term dependency
– unordered set

Motivation



Ex) Question & Answering on story

Sam moved to the garden.
Mary left the milk.
John left the football.
Daniel moved to the garden.
Sam went to the kitchen.
Sandra moved to the hallway.
Mary moved to the hallway.
Mary left the milk.
Sam drops the apple there.

Q: Where was the apple after the garden? 

out-of-order



Overview

• We propose a neural network model with 
external memory
– Reads from memory with soft attention
– Performs multiple lookups (hops) on memory
– End-to-end training with backpropagation

• End-to-end Memory Network (MemN2N)



• It is based on “Memory Networks” by 
[Weston, Chopra & Bordes ICLR 2015]
– Hard attention
– requires explicit supervision of  attention during 

training
– Only feasible for simple tasks
– Severely limits application of  the model

• MemN2N is soft attention version
• Only need supervision on the final output 



Memory 
Module

Controller 
module

Input

MemN2N architecture
Output

supervision

Memory vectors
(unordered)

Internal state
vector



Memory Module

Dot Product

Softmax

Weighted Sum

To controller
(added to 
controller state)

Addressing signal
(controller 
state vector)

Memory vectors

Attention weights
/ Soft address



Memory Vectors
E.g.) constructing memory vectors with Bag-of-Words (BoW)
1. Embed each word 
2. Sum embedding vectors

E.g.) temporal structure: special words for time and include them in BoW

Memory VectorEmbedding Vectors

Time embedding

\text{1: ``Sam drops apple''}\rightarrow v_\text{{\color{Red} Sam}} + v_\text{{\color{Red} drops}} + v_



Question

Where is Sam?

Input story

Memory Module

C
ontroller

kitchenAnswer

Dot product + softmax

Weighted Sum

Question & Answering

2: Sam went 
to kitchen

1: Sam moved
to garden

3: Sam drops
apple there



Related Work (I)

Dot Product

ArgMax

Supervision
on attention

Hard attention Memory Network [Weston et al. ICLR 2015]

Memory Module



Related Work (II)
• RNNsearch [Bahdanau et al. 2015] 

– Encoder-decoder RNN with attention
– Our model can be considered as an attention model with multiple 

hops
• Recent works on external memory

– Stack memory for RNNs [Joulin & Mikolov. 2015]
– Neural Turing Machine [Graves et al. 2014]

• Early works on neural network and memory
– [Steinbuch & Piske. 1963]; [Taylor. 1959]
– [Das et al. 1992]; [Mozer et al. 1993]

• Concurrent works
– Dynamic Memory Networks [Kumar et al. 2015]
– Attentive reader [Hermann et al. 2015]
– Stack, Queue [Grefenstette et al. 2015]



Experiment on bAbI Q&A data

• Data: 20 bAbI tasks [Weston et al. arXiv: 1502.05698, 2015]

• Answer questions after reading short story
• Small vocabulary, simple language
• Different tasks require different reasoning
• Training data size 1K or 10K for each task 

our model is somewhat simpler, not requiring operations like sharpening. Furthermore, we apply
our memory model to textual reasoning tasks, which qualitatively differ from the more abstract
operations of sorting and recall tackled by the NTM.

Our model is also related to Bahdanau et al. [2]. In that work, a bidirectional RNN based encoder
and gated RNN based decoder were used for machine translation. The decoder uses an attention
model that finds which hidden states from the encoding are most useful for outputting the next
translated word; the attention model uses a small neural network that takes as input a concatenation
of the current hidden state of the decoder and each of the encoders hidden states. A similar attention
model is also used in Xu et al. [23] for generating image captions. Our “memory” is analogous to
their attention mechanism, although [2] is only over a single sentence rather than many, as in our
case. Furthermore, our model makes several hops on the memory before making an output; we will
see below that this is important for good performance. There are also differences in the architecture
of the small network used to score the memories compared to our scoring approach; we use a simple
linear layer, whereas they use a more sophisticated gated architecture.

We also apply our model to language modeling, an extensively studied task. Goodman [6] showed
simple but effective approaches which combine n-grams with a cache. Bengio et al. [3] ignited
interest in using neural network based models for the task, with RNNs [14] and LSTMs [10, 19]
showing clear performance gains over traditional methods. Indeed, the current state-of-the-art is
held by variants of these models, for example very large LSTMs with Dropout [24] or RNNs with
diagonal constraints on the weight matrix [15]. With appropriate weight tying, our model can be
regarded as a modified form of RNN, where the recurrence is indexed by lookups to the word
sequence rather than indexed by the sequence itself.

4 Synthetic Question and Answering Experiments
We perform experiments on the synthetic QA tasks defined in [21]. A given QA task consists of
a set of statements, followed by a question whose answer is typically a single word (in a few tasks,
answers are a set of words). The answer is available to the model at training time, but must be
predicted at test time. There are a total of 20 different types of tasks that probe different forms of
reasoning and deduction. Here are samples of three of the tasks:
Sam walks into the kitchen. Brian is a lion. Mary journeyed to the den.
Sam picks up an apple. Julius is a lion. Mary went back to the kitchen.
Sam walks into the bedroom. Julius is white. John journeyed to the bedroom.
Sam drops the apple. Bernhard is green. Mary discarded the milk.
Q: Where is the apple? Q: What color is Brian? Q: Where was the milk before the den?
A. Bedroom A. White A. Hallway

Note that for each question, only some subset of the statements contain information needed for
the answer, and the others are essentially irrelevant distractors (e.g. the first sentence in the first
example). In the Memory Networks of Weston et al. [21], this supporting subset was explicitly
indicated to the model during training and the key difference between that work and this one is that
this information is no longer provided. Hence, the model must deduce for itself at training and test
time which sentences are relevant and which are not.

Formally, for one of the 20 QA tasks, we are given example problems, each having a set of I
sentences {xi} where I  320; a question sentence q and answer a. The examples are randomly
split into disjoint train and test sets each containing 1000 examples. Let the jth word of sentence
i be xij , represented by a one-hot vector of length V (where the vocabulary is of size V = 177,
reflecting the simplistic nature of the QA language). The same representation is used for the
question q and answer a. Two versions of the data are used, one that has 1000 training problems
per task and a second larger one with 10,000 per task.

4.1 Model Details
Unless otherwise stated, all experiments used a K = 3 hops model with the adjacent weight sharing
scheme. For all tasks that output lists (i.e. the answers are multiple words), we take each possible
combination of possible outputs and record them as a separate answer vocabulary word.

Sentence Representation: In our experiments we explore two different representations for
the sentences. The first is the bag-of-words (BoW) representation that takes the sentence
xi = {xi1, xi2, ..., xin}, embeds each word and sums the resulting vectors: e.g mi =

P
j Axij and

4
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Examples of  Attention Weights

• 2 test cases:

Story (1: 1 supporting fact) Support Hop 1 Hop 2 Hop 3 Story (2: 2 supporting facts) Support Hop 1 Hop 2 Hop 3
Daniel went to the bathroom. 0.00 0.00 0.03 John dropped the milk. 0.06 0.00 0.00
Mary travelled to the hallway. 0.00 0.00 0.00 John took the milk there. yes 0.88 1.00 0.00
John went to the bedroom. 0.37 0.02 0.00 Sandra went back to the bathroom. 0.00 0.00 0.00
John travelled to the bathroom. yes 0.60 0.98 0.96 John moved to the hallway. yes 0.00 0.00 1.00
Mary went to the office. 0.01 0.00 0.00 Mary went back to the bedroom. 0.00 0.00 0.00

Story (16: basic induction) Support Hop 1 Hop 2 Hop 3 Story (18: size reasoning) Support Hop 1 Hop 2 Hop 3
Brian is a frog. yes 0.00 0.98 0.00 The suitcase is bigger than the chest. yes 0.00 0.88 0.00
Lily is gray. 0.07 0.00 0.00 The box is bigger than the chocolate. 0.04 0.05 0.10
Brian is yellow. yes 0.07 0.00 1.00 The chest is bigger than the chocolate. yes 0.17 0.07 0.90
Julius is green. 0.06 0.00 0.00 The chest fits inside the container. 0.00 0.00 0.00
Greg is a frog. yes 0.76 0.02 0.00 The chest fits inside the box. 0.00 0.00 0.00

Where is John?   Answer: bathroom    Prediction: bathroom Where is the milk?   Answer: hallway    Prediction: hallway

What color is Greg?  Answer: yellow    Prediction: yellow Does the suitcase fit in the chocolate?   Answer: no    Prediction: no

Figure 2: Example predictions on the QA tasks of [21]. We show the labeled supporting facts
(support) from the dataset which MemN2N does not use during training, and the probabilities p of
each hop used by the model during inference. MemN2N successfully learns to focus on the correct
supporting sentences.

Penn Treebank Text8
# of # of memory Valid. Test # of # of memory Valid. Test

Model hidden hops size perp. perp. hidden hops size perp. perp.
RNN [15] 300 - - 133 129 500 - - - 184
LSTM [15] 100 - - 120 115 500 - - 122 154
SCRN [15] 100 - - 120 115 500 - - - 161
MemN2N 150 2 100 128 121 500 2 100 152 187

150 3 100 129 122 500 3 100 142 178
150 4 100 127 120 500 4 100 129 162
150 5 100 127 118 500 5 100 123 154
150 6 100 122 115 500 6 100 124 155
150 7 100 120 114 500 7 100 118 147
150 6 25 125 118 500 6 25 131 163
150 6 50 121 114 500 6 50 132 166
150 6 75 122 114 500 6 75 126 158
150 6 100 122 115 500 6 100 124 155
150 6 125 120 112 500 6 125 125 157
150 6 150 121 114 500 6 150 123 154
150 7 200 118 111 - - - - -

Table 2: The perplexity on the test sets of Penn Treebank and Text8 corpora. Note that increasing
the number of memory hops improves performance.

Figure 3: Average activation weight of memory positions during 6 memory hops. White color
indicates where the model is attending during the kth hop. For clarity, each row is normalized to
have maximum value of 1. A model is trained on (left) Penn Treebank and (right) Text8 dataset.

5 Language Modeling Experiments
The goal in language modeling is to predict the next word in a text sequence given the previous
words x. We now explain how our model can easily be applied to this task.

We now operate on word level, as opposed to the sentence level. Thus the previous N words in the
sequence (including the current) are embedded into memory separately. Each memory cell holds
only a single word, so there is no need for the BoW or linear mapping representations used in the
QA tasks. We employ the temporal embedding approach of Section 4.1.

Since there is no longer any question, q in Fig. 1 is fixed to a constant vector 0.1 (without
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John went to the bedroom. 0.37 0.02 0.00 Sandra went back to the bathroom. 0.00 0.00 0.00
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Mary went to the office. 0.01 0.00 0.00 Mary went back to the bedroom. 0.00 0.00 0.00

Story (16: basic induction) Support Hop 1 Hop 2 Hop 3 Story (18: size reasoning) Support Hop 1 Hop 2 Hop 3
Brian is a frog. yes 0.00 0.98 0.00 The suitcase is bigger than the chest. yes 0.00 0.88 0.00
Lily is gray. 0.07 0.00 0.00 The box is bigger than the chocolate. 0.04 0.05 0.10
Brian is yellow. yes 0.07 0.00 1.00 The chest is bigger than the chocolate. yes 0.17 0.07 0.90
Julius is green. 0.06 0.00 0.00 The chest fits inside the container. 0.00 0.00 0.00
Greg is a frog. yes 0.76 0.02 0.00 The chest fits inside the box. 0.00 0.00 0.00

Where is John?   Answer: bathroom    Prediction: bathroom Where is the milk?   Answer: hallway    Prediction: hallway

What color is Greg?  Answer: yellow    Prediction: yellow Does the suitcase fit in the chocolate?   Answer: no    Prediction: no

Figure 2: Example predictions on the QA tasks of [21]. We show the labeled supporting facts
(support) from the dataset which MemN2N does not use during training, and the probabilities p of
each hop used by the model during inference. MemN2N successfully learns to focus on the correct
supporting sentences.

Penn Treebank Text8
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Model hidden hops size perp. perp. hidden hops size perp. perp.
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LSTM [15] 100 - - 120 115 500 - - 122 154
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MemN2N 150 2 100 128 121 500 2 100 152 187

150 3 100 129 122 500 3 100 142 178
150 4 100 127 120 500 4 100 129 162
150 5 100 127 118 500 5 100 123 154
150 6 100 122 115 500 6 100 124 155
150 7 100 120 114 500 7 100 118 147
150 6 25 125 118 500 6 25 131 163
150 6 50 121 114 500 6 50 132 166
150 6 75 122 114 500 6 75 126 158
150 6 100 122 115 500 6 100 124 155
150 6 125 120 112 500 6 125 125 157
150 6 150 121 114 500 6 150 123 154
150 7 200 118 111 - - - - -

Table 2: The perplexity on the test sets of Penn Treebank and Text8 corpora. Note that increasing
the number of memory hops improves performance.

Figure 3: Average activation weight of memory positions during 6 memory hops. White color
indicates where the model is attending during the kth hop. For clarity, each row is normalized to
have maximum value of 1. A model is trained on (left) Penn Treebank and (right) Text8 dataset.
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Extension to writable memory

Add to memory

Attention

Outer Product

Read module

Controller
module

Write module

• Every memory location is readable and writable
• In each hop, perform both read and write
• Write module adds to the current memory
• N inputs and N outputs and N memory slots

supervision

Same attention 
mechanism

Decoder

Encoder

Inputs

Outputs

Memory vectors

Attention

Inner Product

Inner state



Read attention

Write attention

Memory

Learning to sort in memory

• Train MemN2N to sort given numbers
• Input: 10 random numbers
• Output: sorted version of  input

Input numbers Reserved for output

Initial memory content

memory decoded (darker = higher confidence)

Reads 10, 12
Only writes 10

After 2 hopsAfter 1 hop

Writes something (visited flag?)

After 3 hops



Conclusion

• Proposed a neural net model with external 
memory
– Soft attention over memory locations
– End-to-end training with backpropagation

• Good results on a toy QA tasks
• Comparable to LSTM on language modeling
• Versatile model: also apply to writing and games

Code http://github.com/facebook/MemNN



Outline

• Implicit Internal memory
– Recurrent Neural Nets (RNNs)
– Long-Short Term Memory (LSTMs)

• Explicit External memory
– StackRNN
– Memory Networks
– Neural Turing Machine 

• Attention models
– MT, Speech, Image, Pointer Network

• Discrete Memory
– Learning algorithms using 1-D tape, 2-D grid



Neural Turing Machine
(Graves et al., 2014)

• Learns how to write to the memory
• Soft addressing à backpropagation training
• Location addressing: small continuous shift of  attention
• Complex addressing mechanism: need to sharpen after convolution
• Controller can be LSTM-RNN or feed-forward neural network
• Applied to learn algorithms such as sort, associative recall and copy.
• Hard addressing with reinforcement learning (Zaremba et al., 2015)



Neural Turing Machine – Copy task

• NTM

Experiments'

•  1.'Copy'
– NTM'

Experiments'

•  1.'Copy'



Neural Turing Machine – Copy task

• NTM

LSTM

Experiments'

•  1.'Copy'
– LSTM'
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• Implicit Internal memory
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– Long-Short Term Memory (LSTMs)

• Explicit External memory
– StackRNN
– Memory Networks
– Neural Turing Machine 
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– MT, Speech, Image, Pointer Network

• Discrete Memory
– Learning algorithms using 1-D tape, 2-D grid



RNNsearch: Attention in Machine 
Translation (Bahdanau et al., 2015) 

• RNN based encoder and decoder model
• Decoder can look at past encoder states using soft attention
• Attention mechanism is implement by a small neural network

– It takes the current decoder state and a past encoder state and outputs a 
score. Then the all scores are fed to softmax to get attention weights

• Applied to machine translation. Significant improvement in translation 
of  longer sentences

Significant improvement on long sentences

Attention 
weights 
during 
English to 
French 
machine 
translation



Image caption generation with attention
(Xu et al., 2015)

• Encoder: lower convolutional layer of  a deep ConvNet (because need spatial 
information)

• Decoder: LSTM RNN with soft spatial attention
– Decoder state and encoder state at single location are fed to small NN to get score 

at that location  
• Network attends to the object when it is generating a word for it
• Also hard attention is tried with reinforcement learning



Video description generation
(Yao et al., 2015)

(bottom: ground truth)



Location-aware attention for speech 
(Chorowski et al., 2015)

• RNN based encoder-decoder model with attention 
(similar to RNNsearch)

• Location based addressing: previous attention weights are 
used as feature for the current attention (good when 
subsequent  attention locations are highly correlated)

• Improvement with sharpening and smoothing of  
memory addressing



Pointer Network: attention as an output
(Vinyals et al., 2015)

• RNN based encoder-decoder model for discrete optimization 
problems

• Decoder can attend to previous encoder states (similar to 
RNNsearch, content based soft attention by a small NN)

• Rather than fixed output classes, attention weights determine 
output

• Input to the most attended encoder state becomes an output 
à can output any sequence of  inputs


