

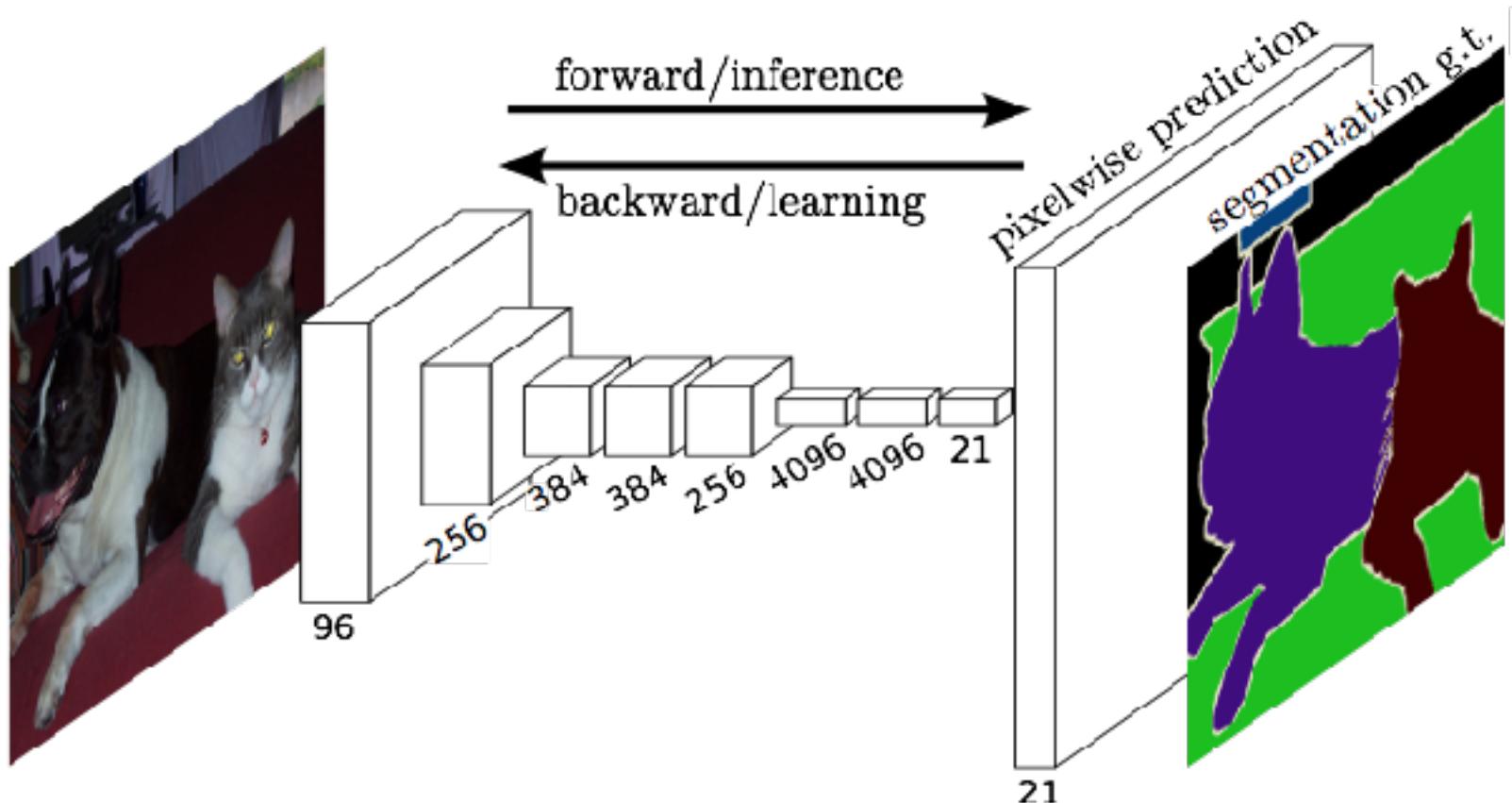
Semantic Segmentation
and
Image Processing

with Convnets

Overview

- Methods where output is also an image
 - Fully Convolutional Nets [Long et al., CVPR 2015]
 - Depth, normals and semantic labels from a single image [Eigen ICCV 2015]
- Image processing with Convnets
 - Image colorization [Zhang et al. ECCV 2016]

A Fuller Understanding of Fully Convolutional Networks



Evan Shelhamer* Jonathan Long* Trevor Darrell

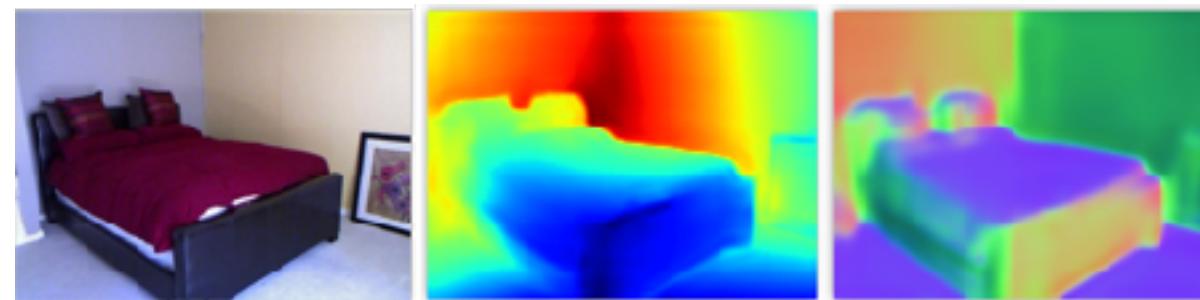
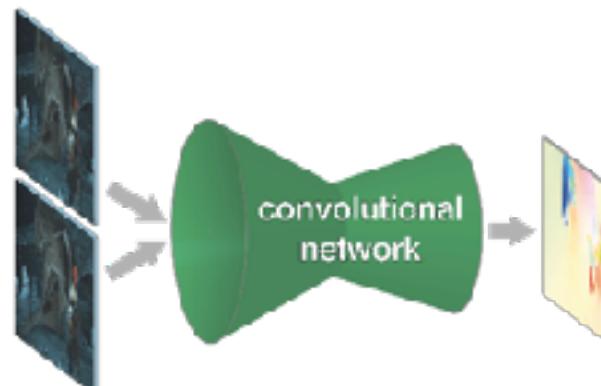
UC Berkeley in CVPR'15, PAMI'16

pixels in, pixels out

colorization
Zhang et al. 2016

monocular depth + normals Eigen & Fergus 2015

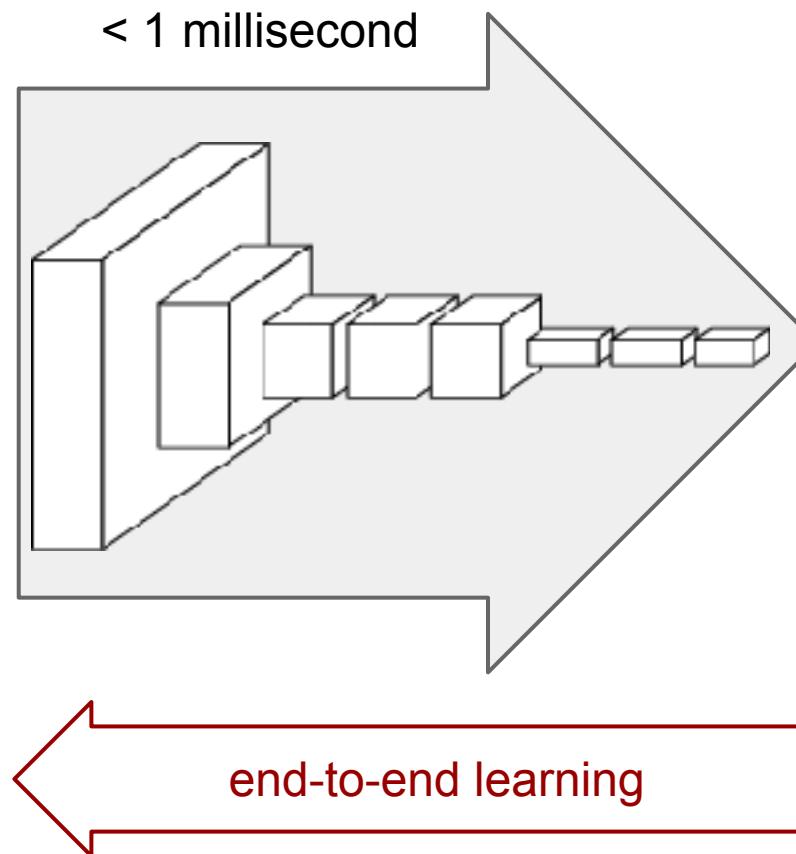
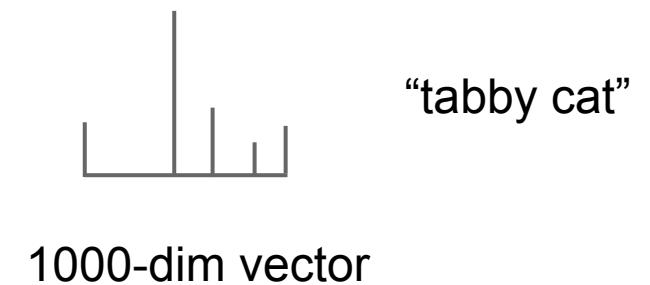
semantic
segmentation



optical flow Fischer et al. 2015

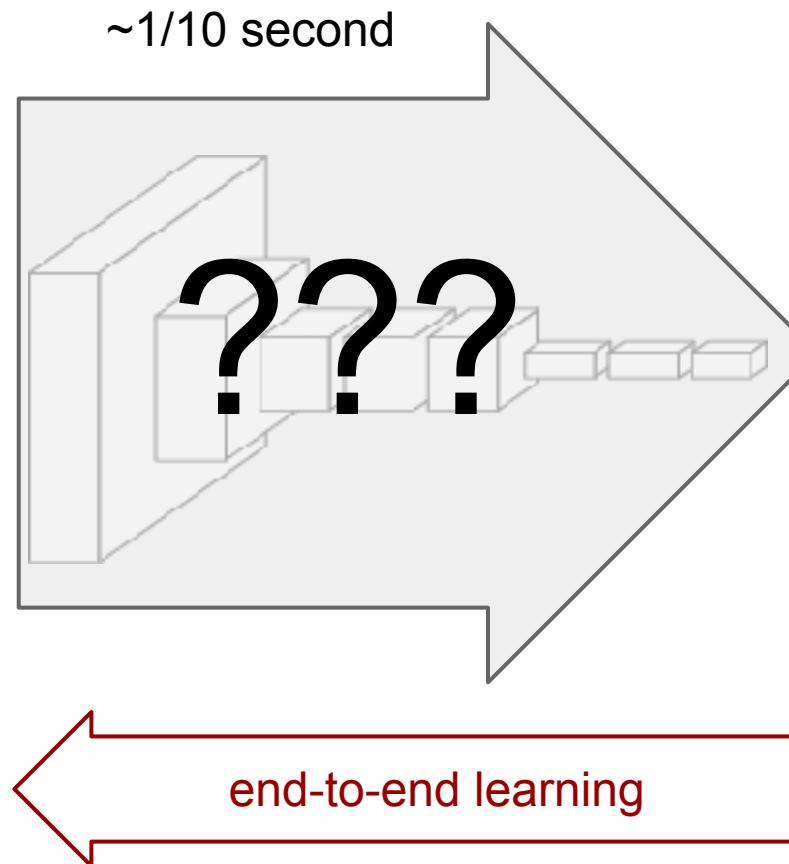
boundary prediction Xie & Tu 2015 4

convnets perform classification



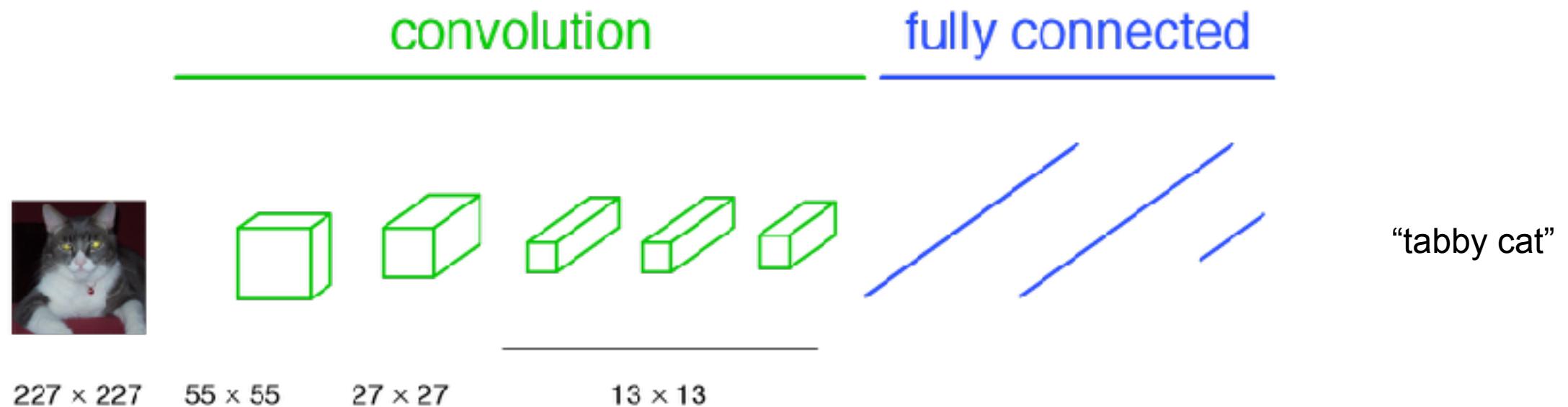
1000-dim vector

lots of pixels, little time?

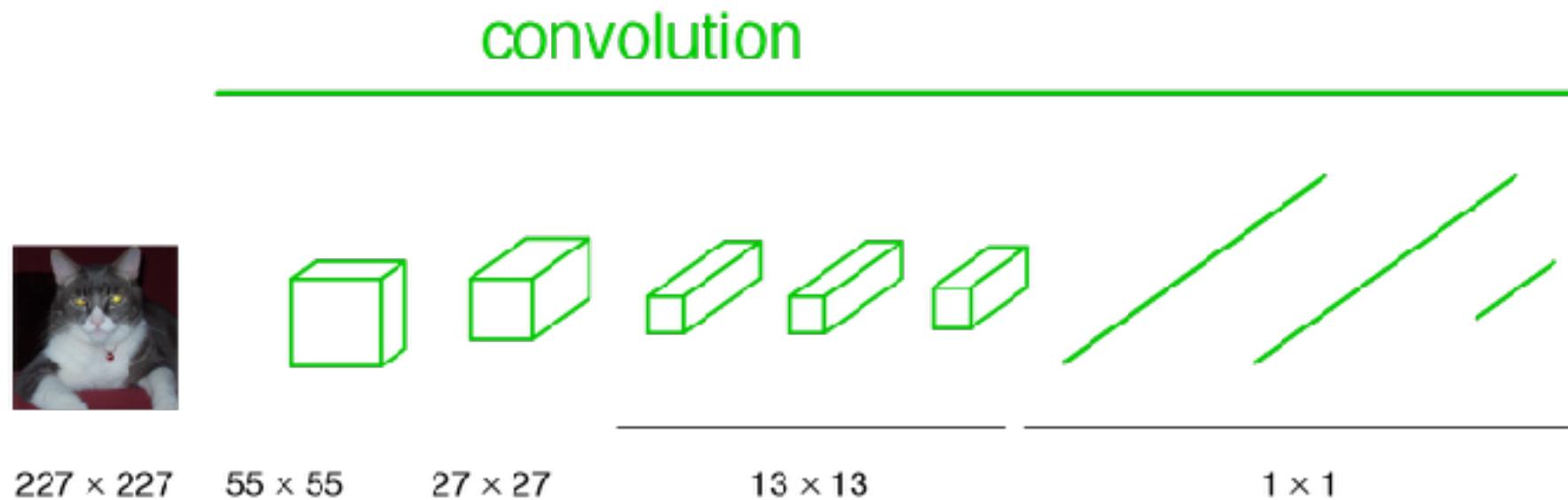


end-to-end learning

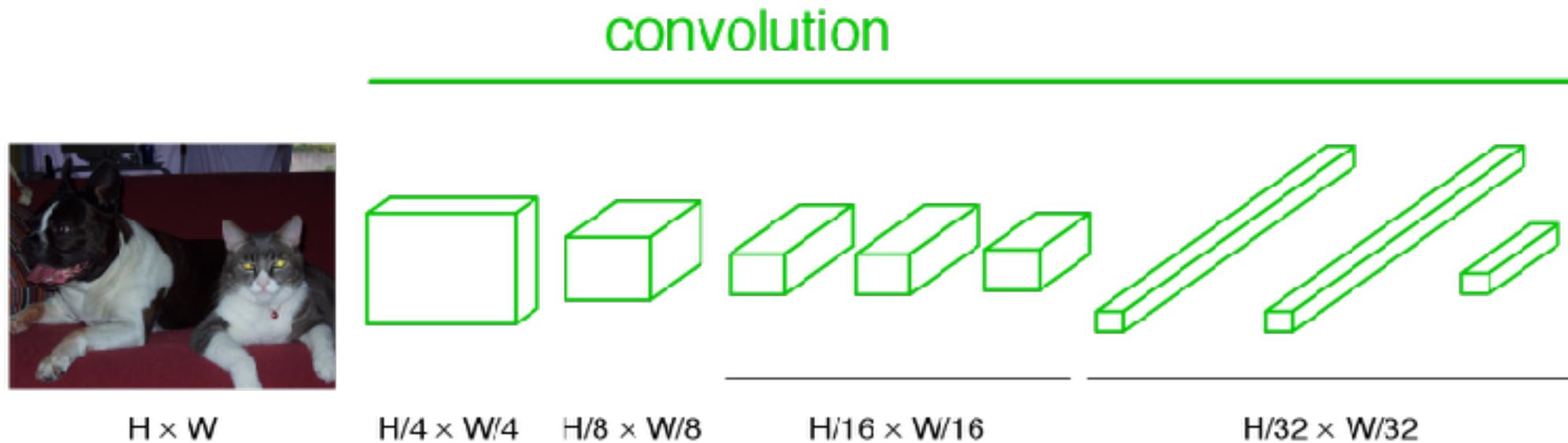
a classification network



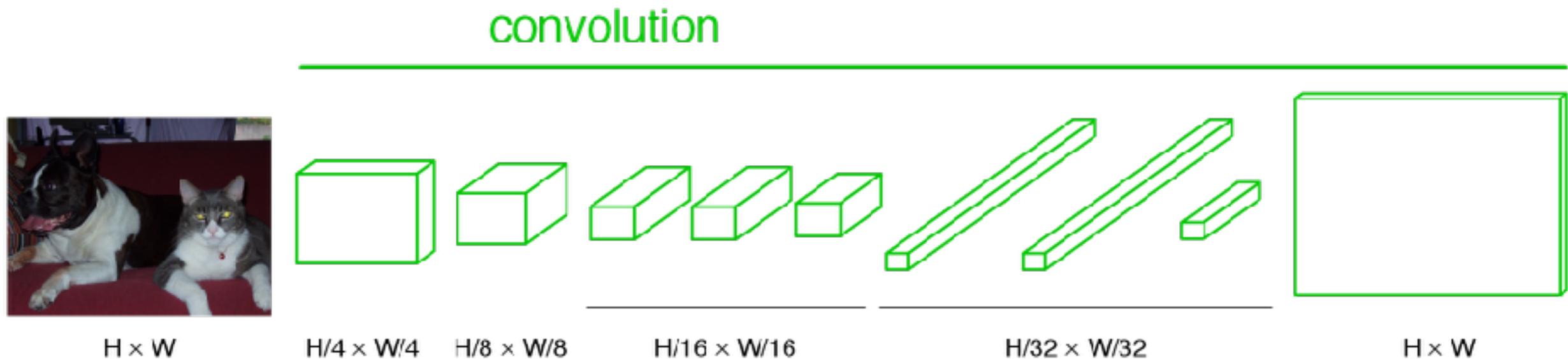
becoming fully convolutional



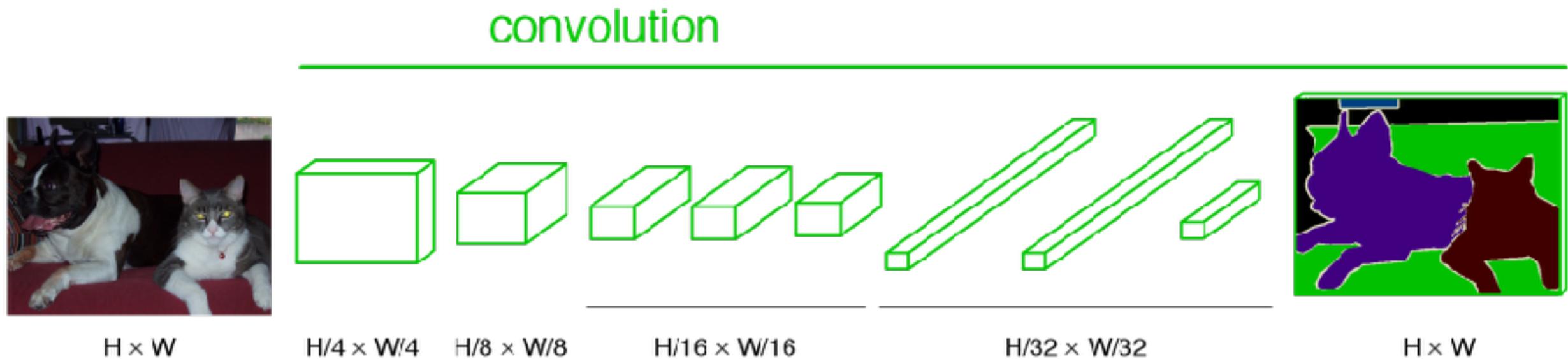
becoming fully convolutional



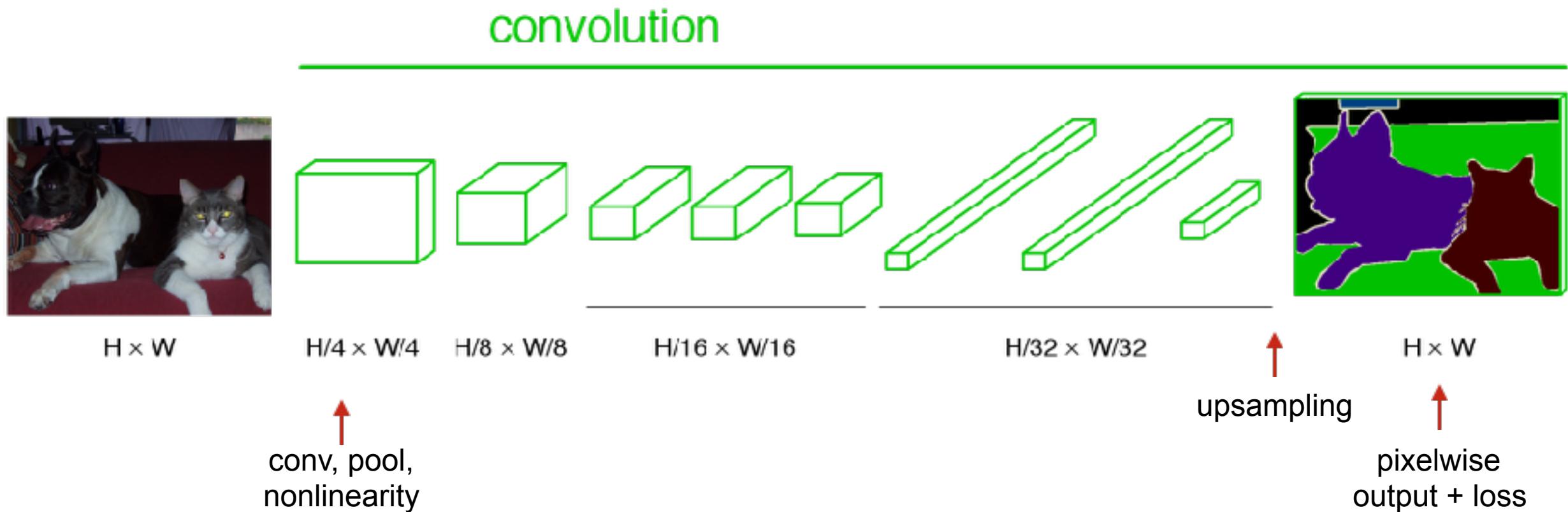
upsampling output



end-to-end, pixels-to-pixels network



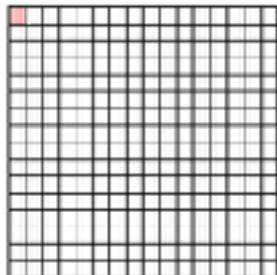
end-to-end, pixels-to-pixels network



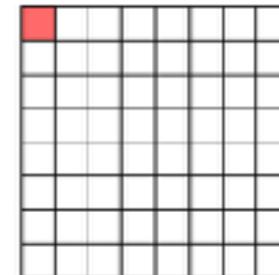
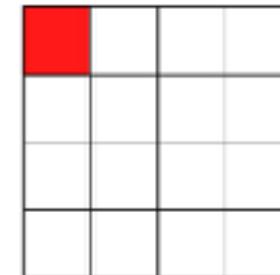
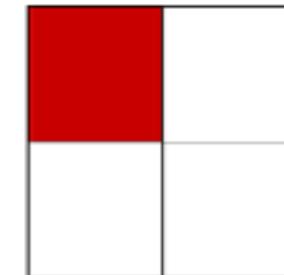
spectrum of deep features

combine where (local, shallow) with what (global, deep)

image



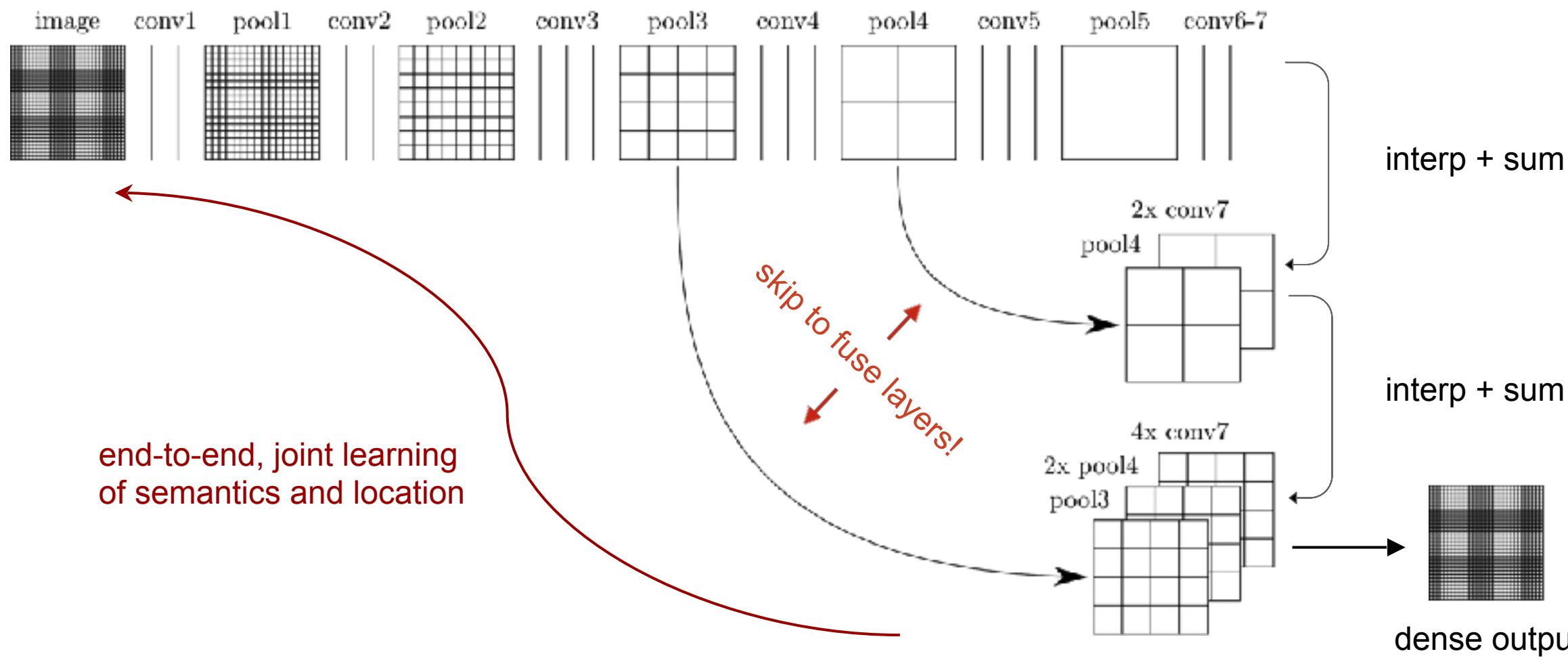
intermediate layers



fuse features into deep jet

(cf. Hariharan et al. CVPR15 “hypercolumn”)

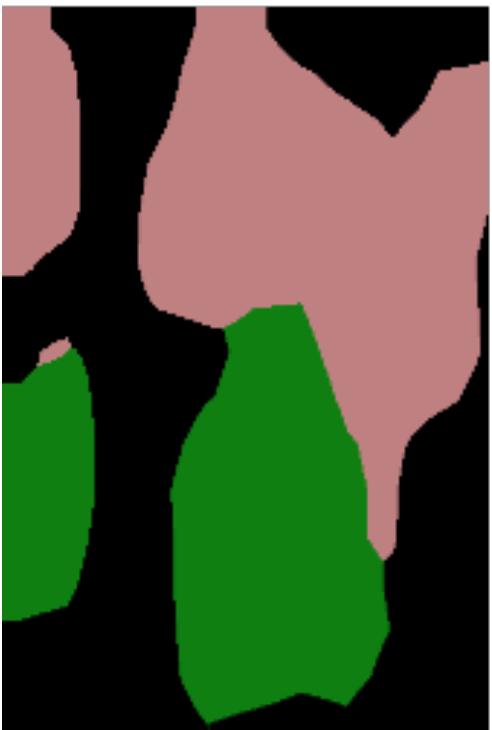
skip layers



skip layer refinement

input image

stride 32



stride 16

stride 8

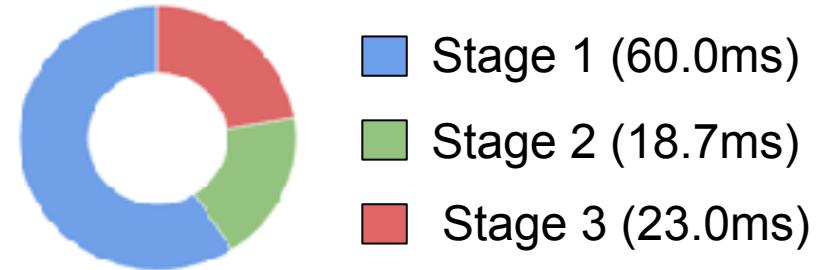
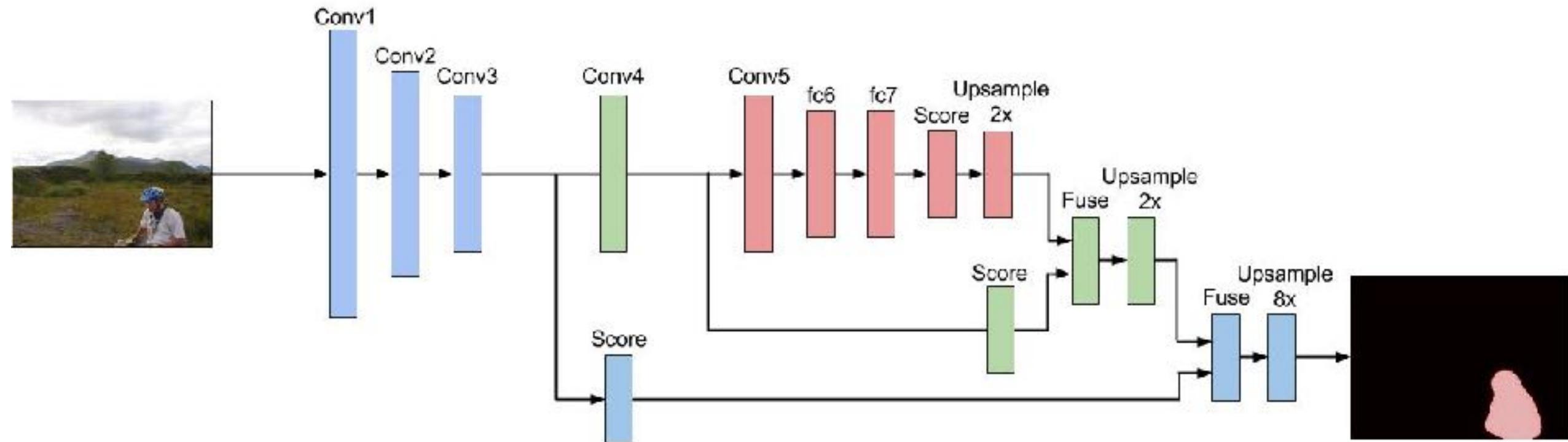
ground truth

no skips

1 skip

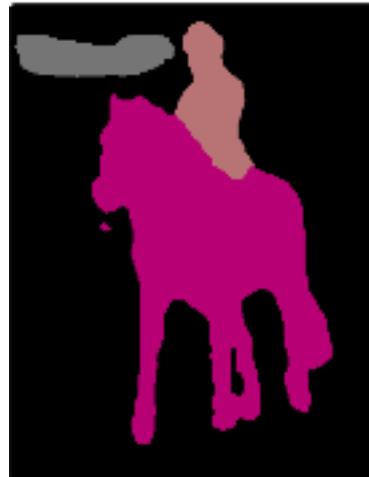
2 skips

skip FCN computation

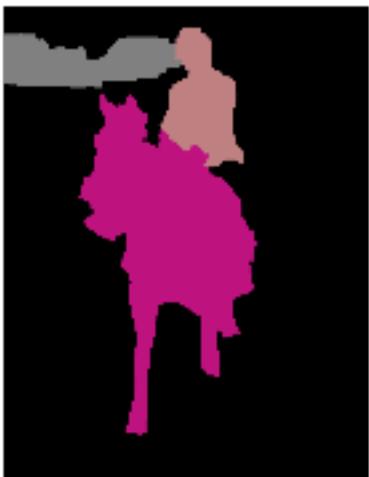


A multi-stream network that fuses features/predictions across layers

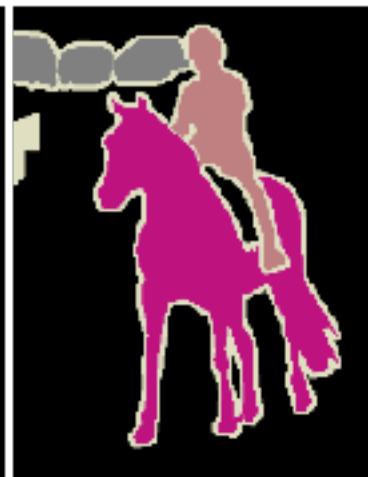
FCN



SDS*



Truth

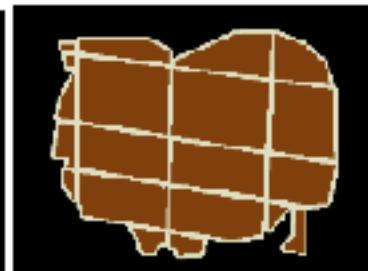
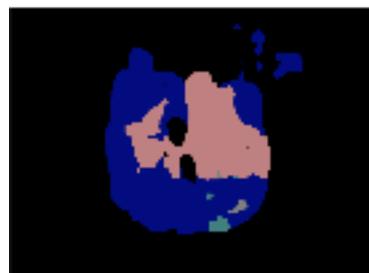
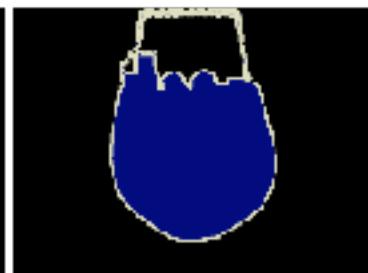


Input

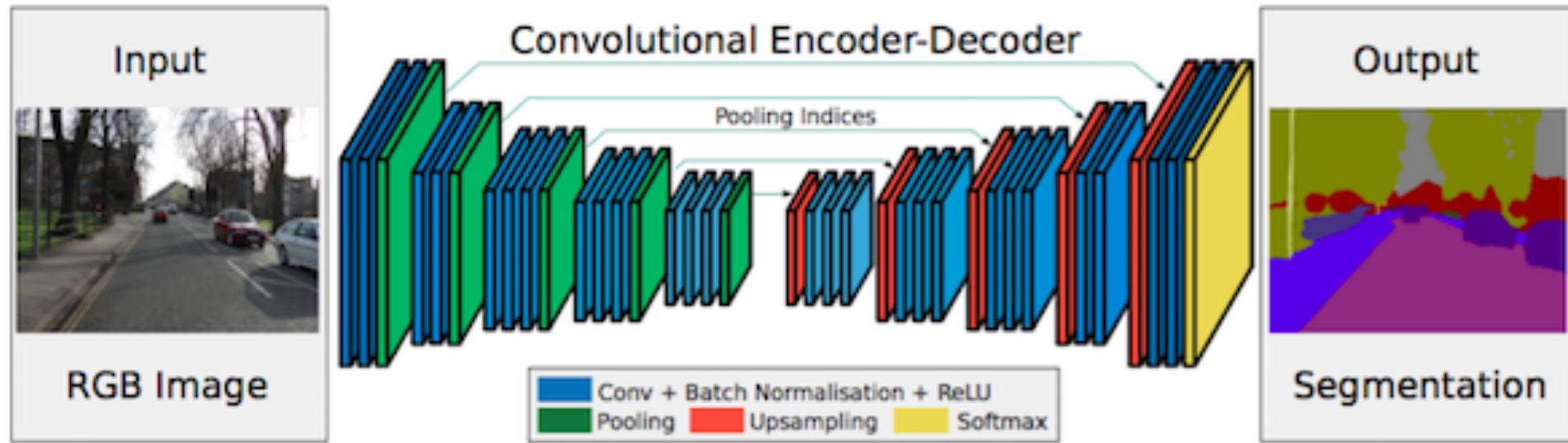
Relative to prior state-of-the-art SDS:

30% relative improvement for mean IoU

286× faster

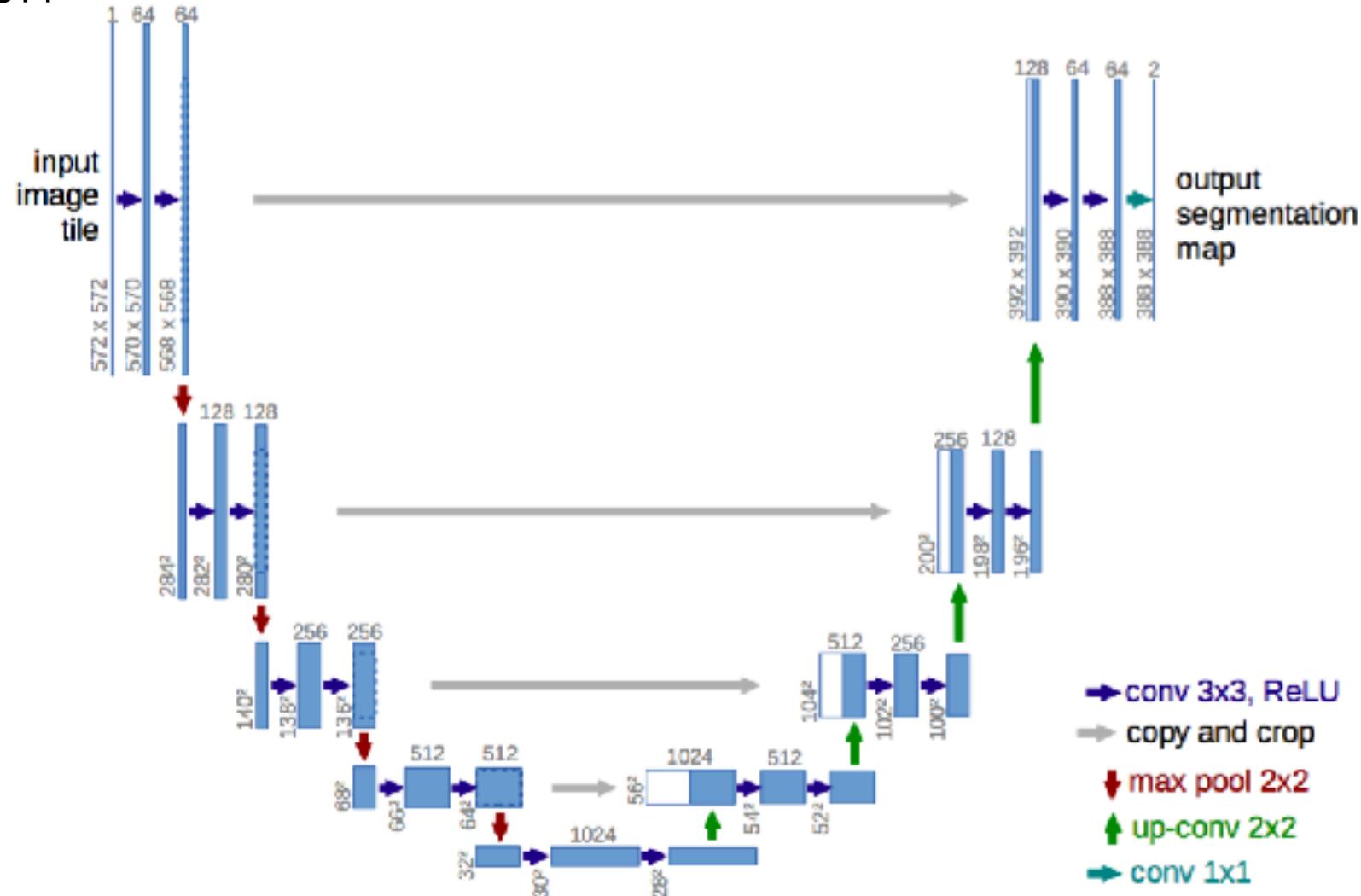


SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation



Max pooling indices transferred to decoder to improve output resolution

UNet: Convolutional Networks for Biomedical Image Segmentation



Segmentation of a 512x512 image takes less than a second on a recent GPU

Further Resources

<http://blog.qure.ai/notes/semantic-segmentation-deep-learning-review>

Overview

- Methods where output is now an image
 - Fully Convolutional Nets [Long et al., CVPR 2015]
 - Depth, normals and semantic labels from a single image [Eigen ICCV 2015]
- Image processing with Convnets
 - Image colorization [Zhang et al. ECCV 2016]

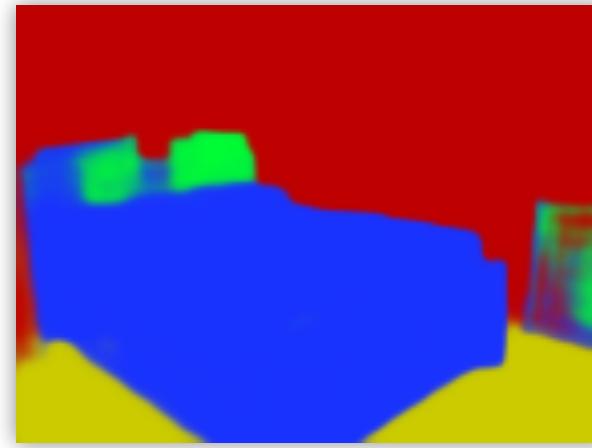
Beyond Object Classification with Convolutional Networks

David Eigen (NYU -> Clarifai)

Rob Fergus (Facebook / NYU)

Motivation

Input Image

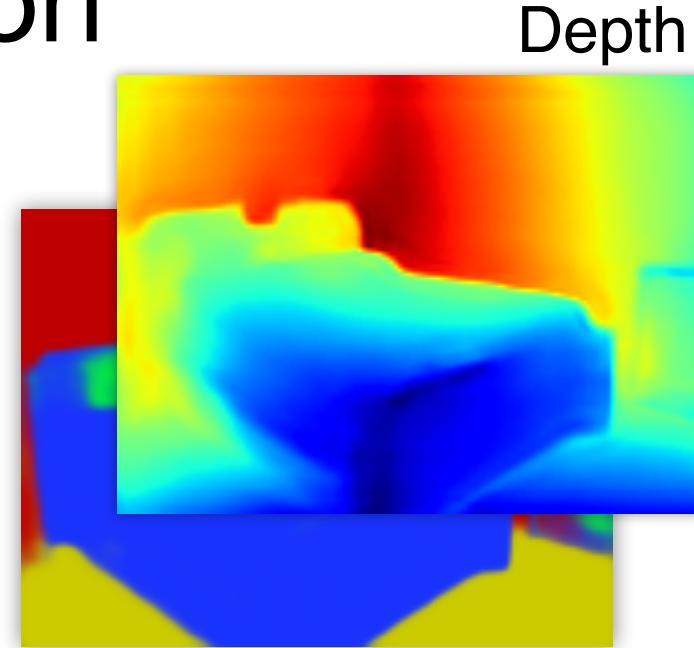


Semantic Map

- Understand input scene
 - Semantic
 - Geometric

Motivation

Input Image

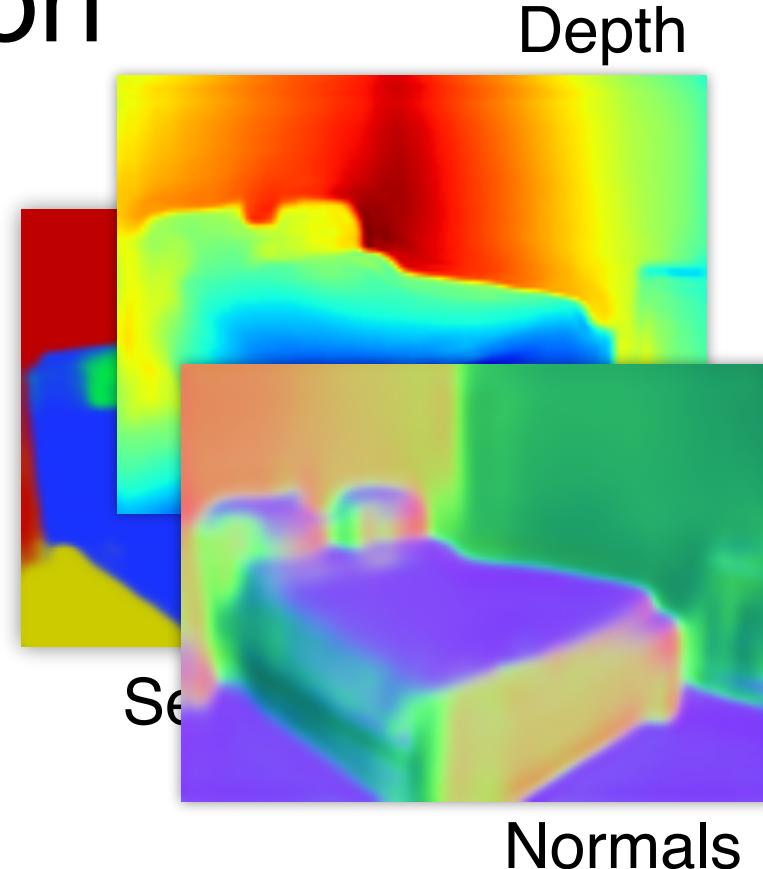


Depth
Semantic Map

- Understand input scene
 - Semantic
 - Geometric

Motivation

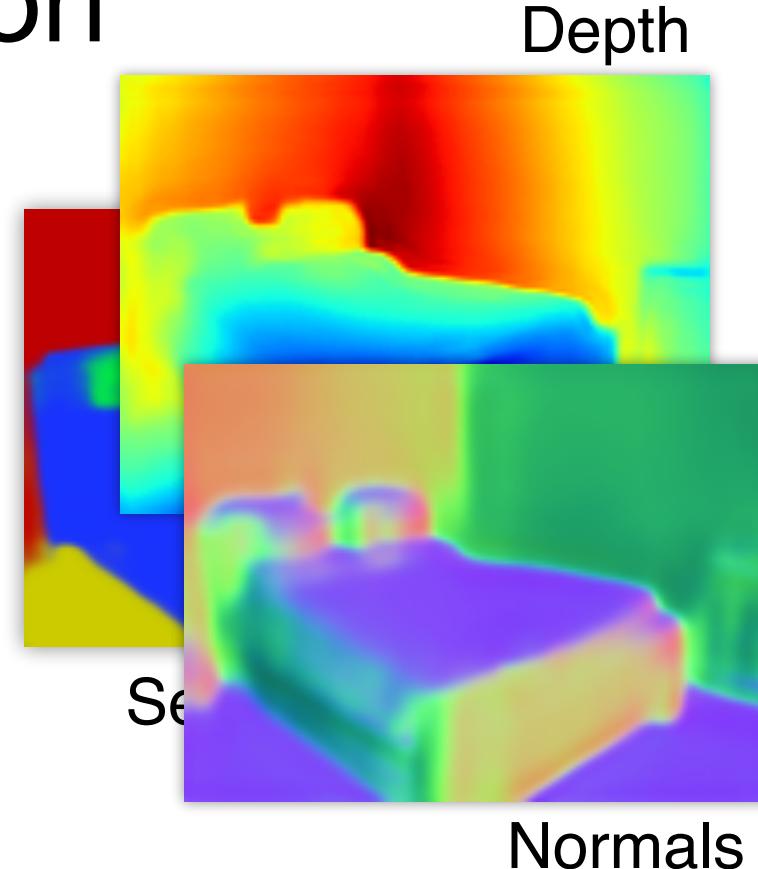
Input Image



- Understand input scene
 - Semantic
 - Geometric

Motivation

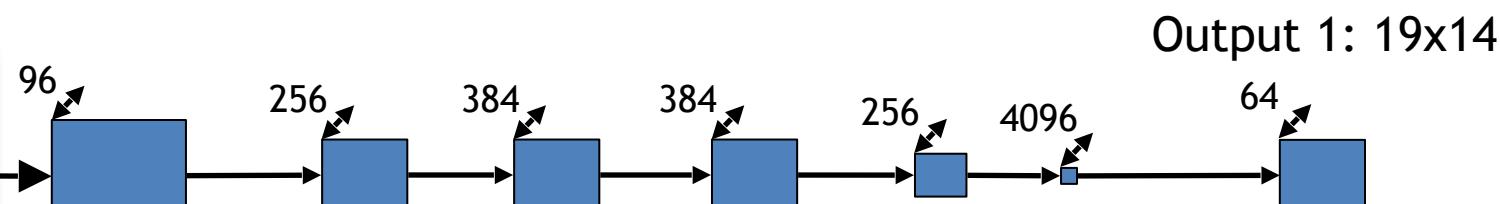
Input Image



- **Predict Pixel Maps from a Single Image**

Architecture

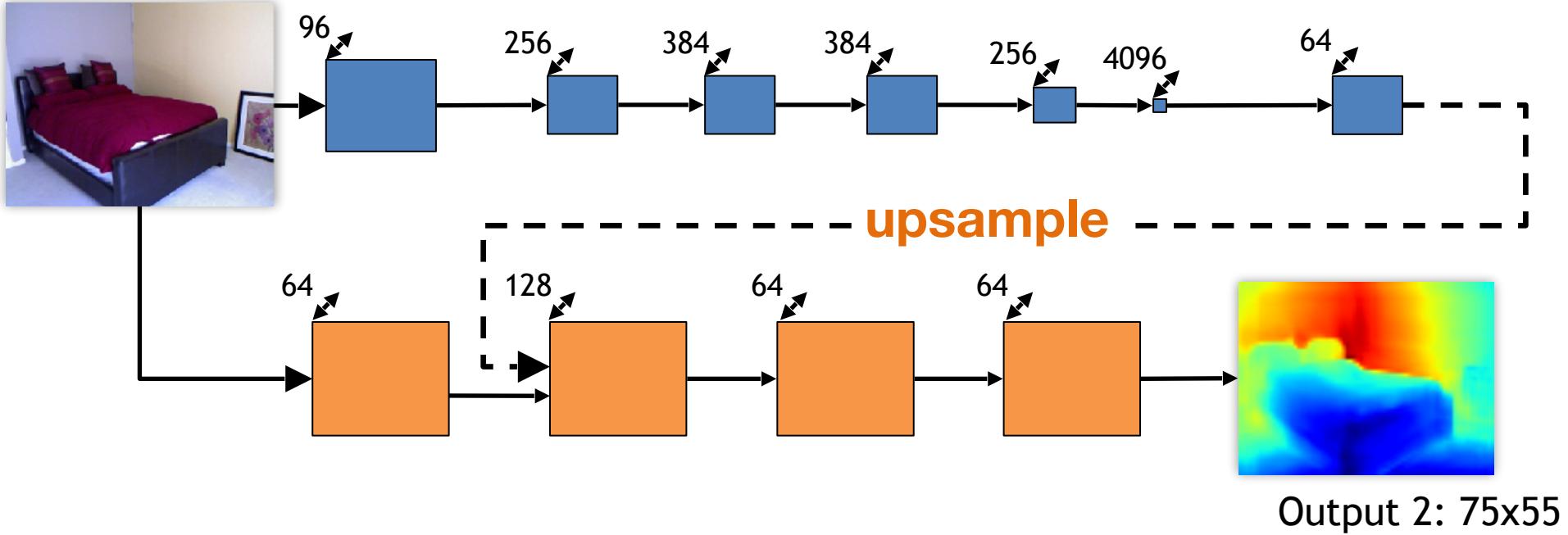
Input: 320x240



Output 1: 19x14

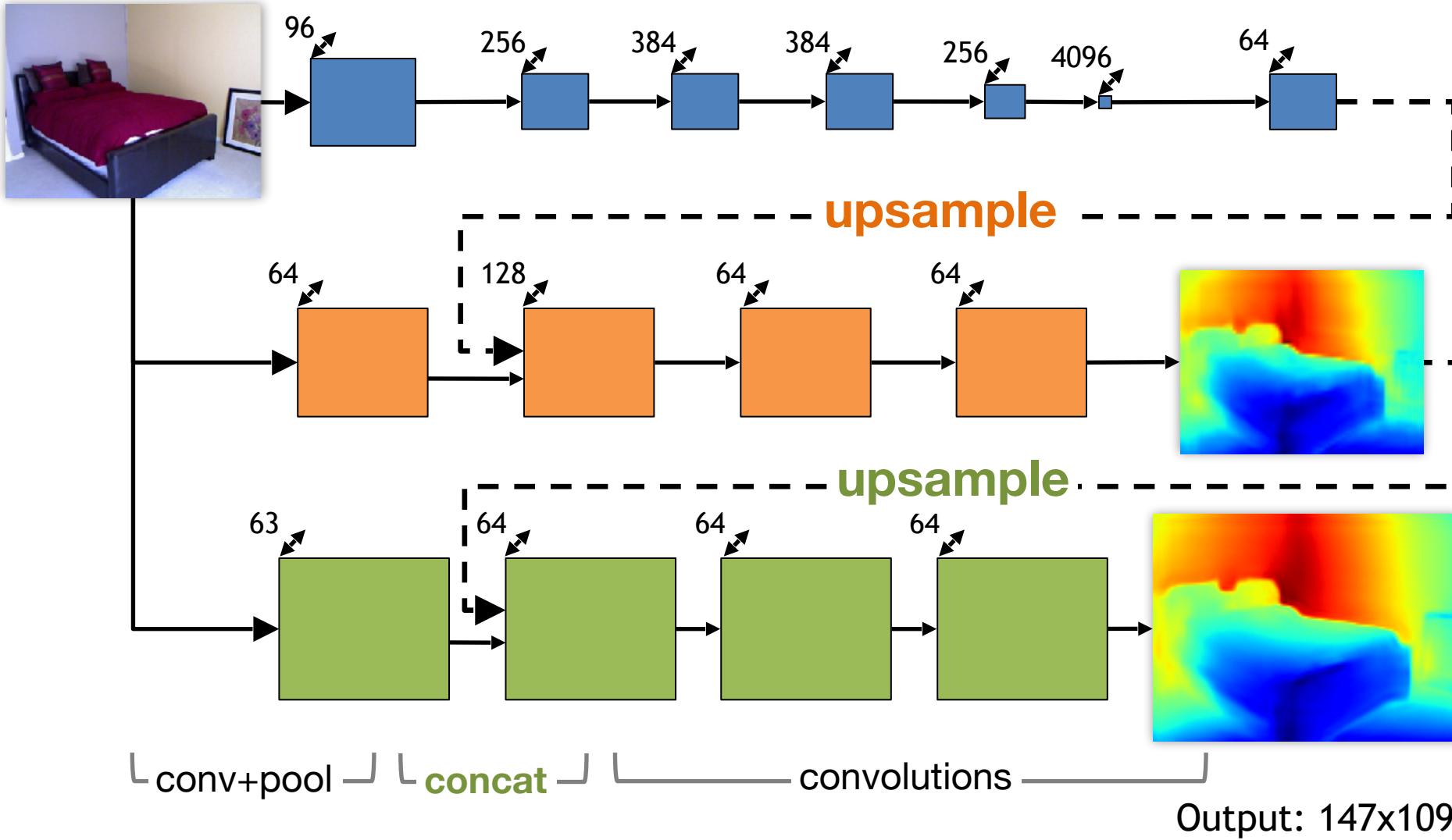
Architecture

Input: 320x240



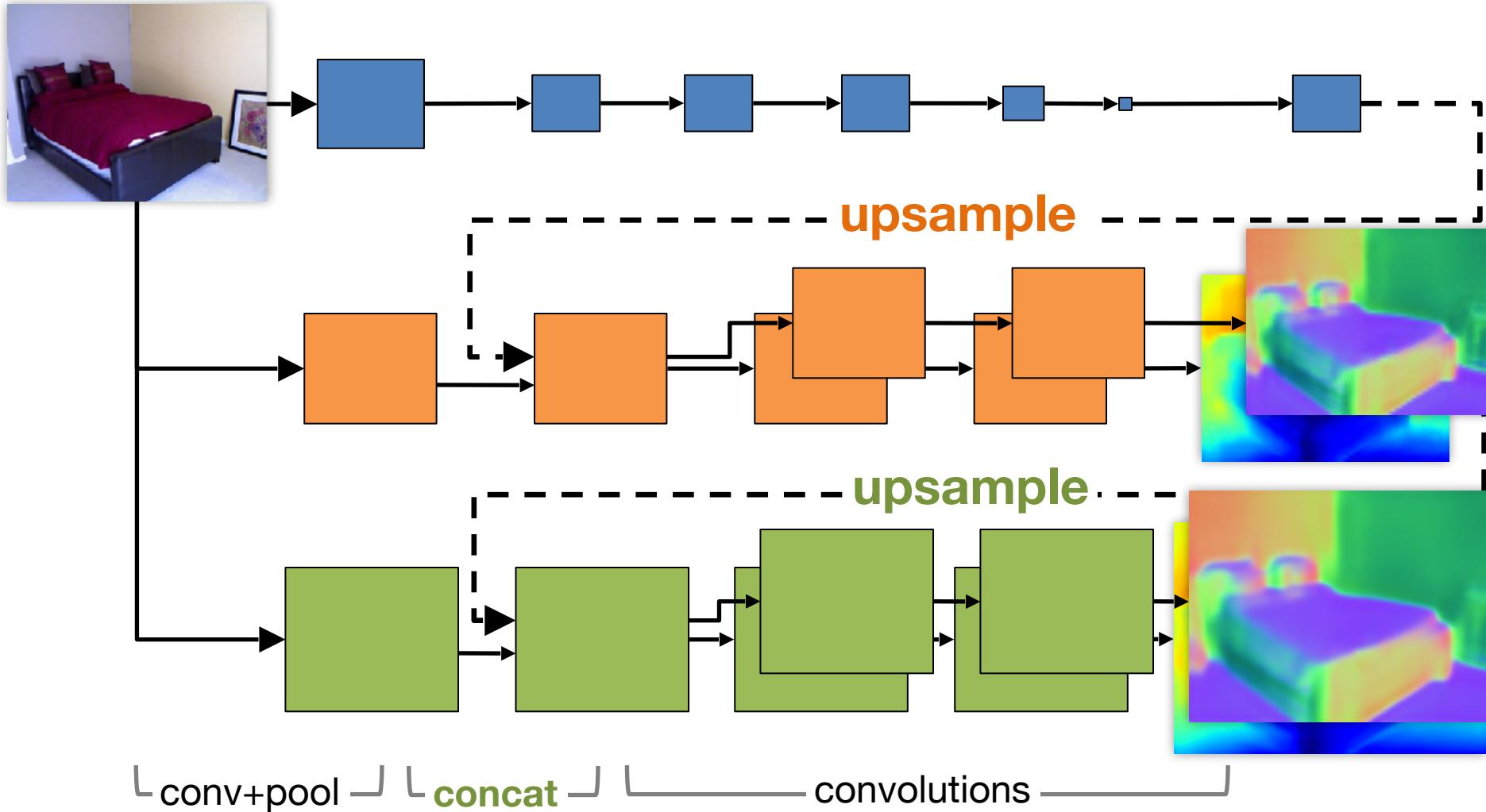
Architecture

Input: 320x240



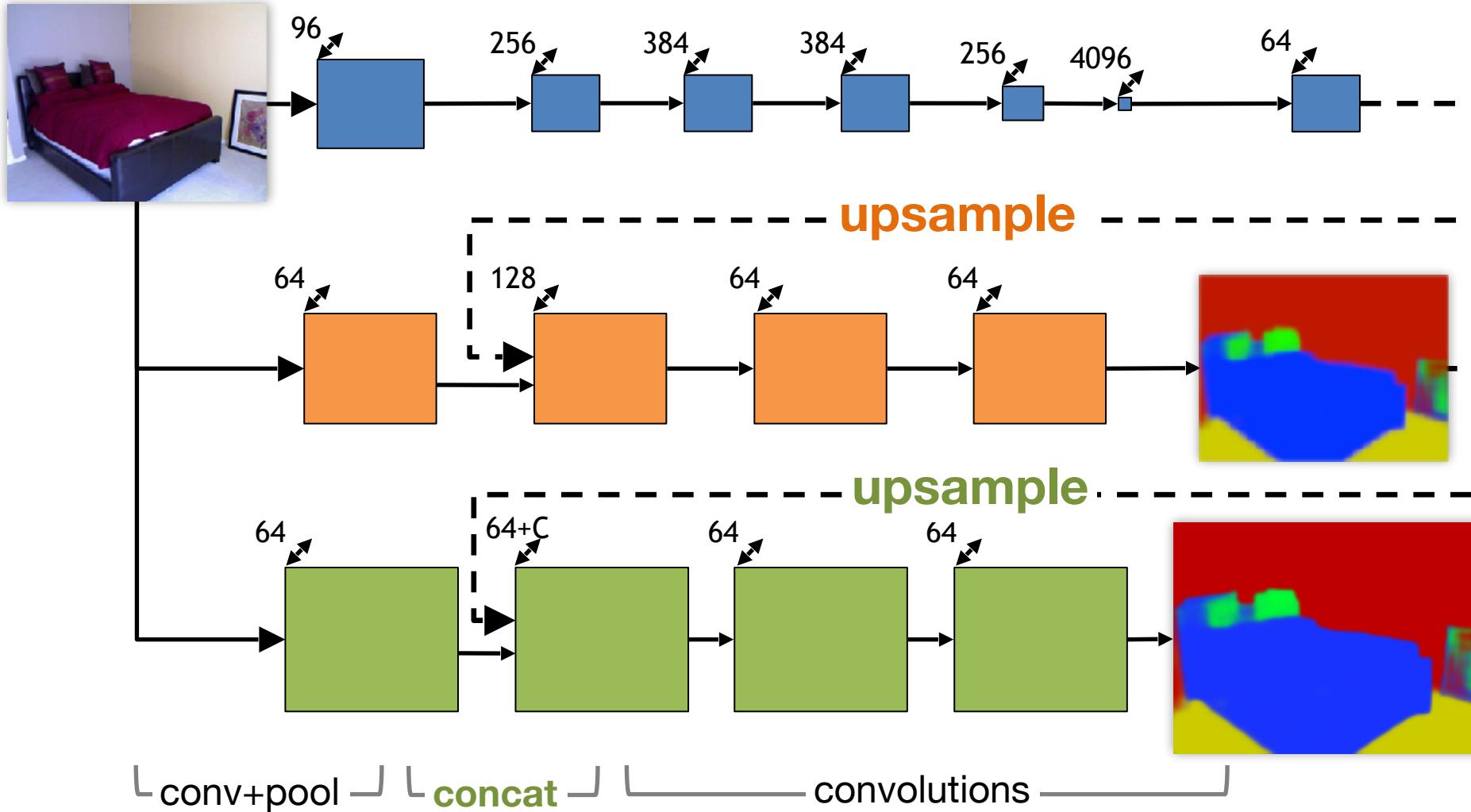
Architecture

Input: 320x240



Architecture

Input: 320x240



Losses

Depth: $d = D - D^*$ $D = \log$ predicted depth, $D^* = \log$ true depth

$$L_{depth}(D, D^*) = \frac{1}{n} \sum_i d_i^2 - \frac{1}{2n^2} \left(\sum_i d_i \right)^2 + \frac{1}{n} \sum_i [(\nabla_x d_i)^2 + (\nabla_y d_i)^2]$$

Norm

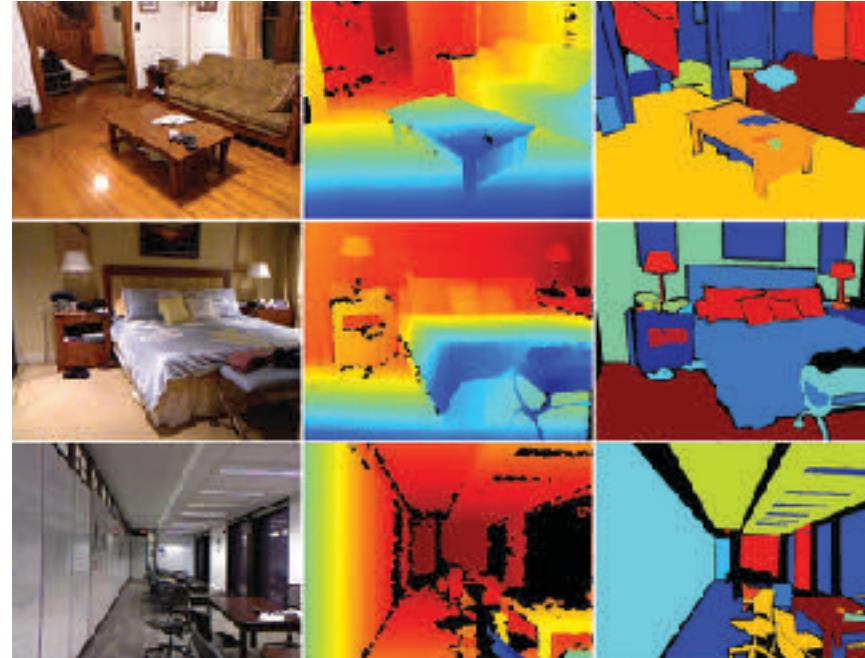
Label

Training

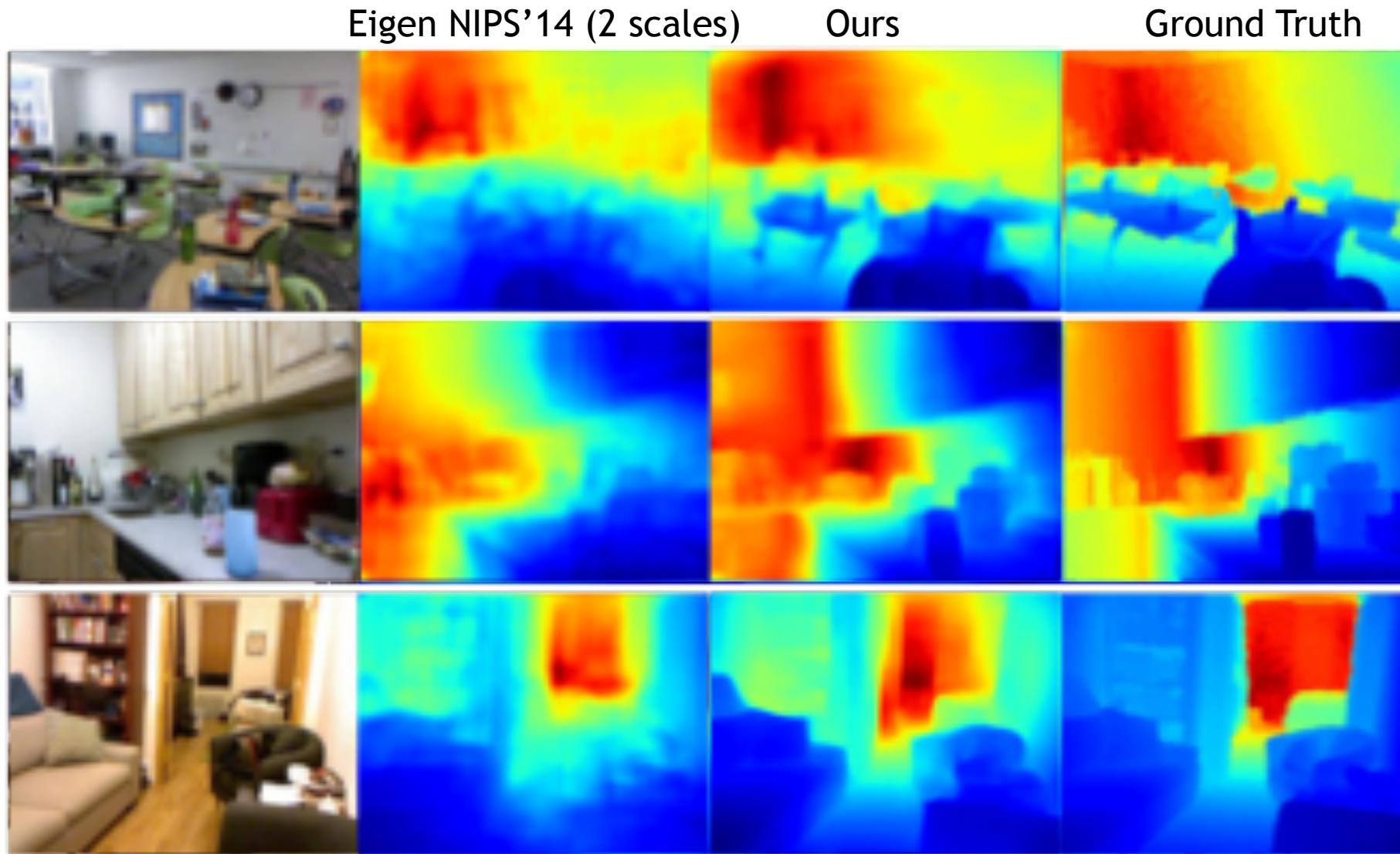
- Pre-train Alexnet/VGGnet scale 1 with Imagenet
- Scale 2 & 3 random initialization
- Joint train layers 1 & 2 for each task
 - Loss on output of layer 2
- Fix layers 1 & 2, train layer 3
- For depth & normals task, share scale 1
 - But separate scale 2 & 3's
 - 1.6x speedup

Evaluation

- NYU Depth dataset
 - RGB, Depth and per-pixel labels
 - Indoor scenes
- Supervised training of models
- Compare to range of other methods
 - Also on SIFTFlow and PASCAL VOC'11

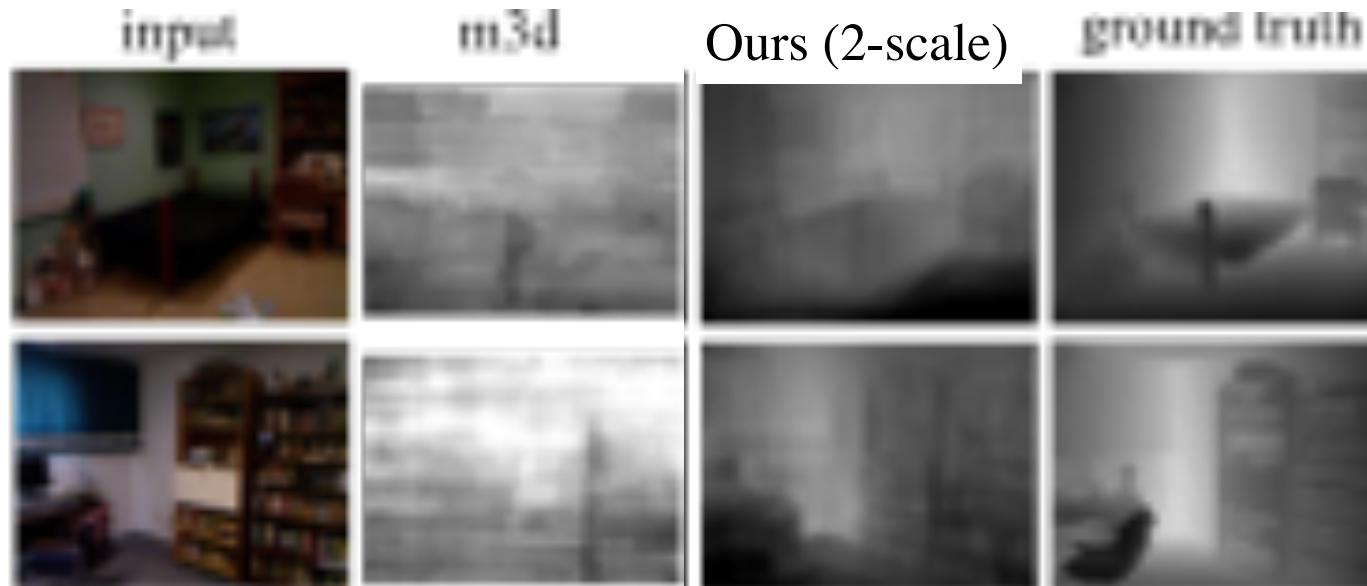


Depths Comparison



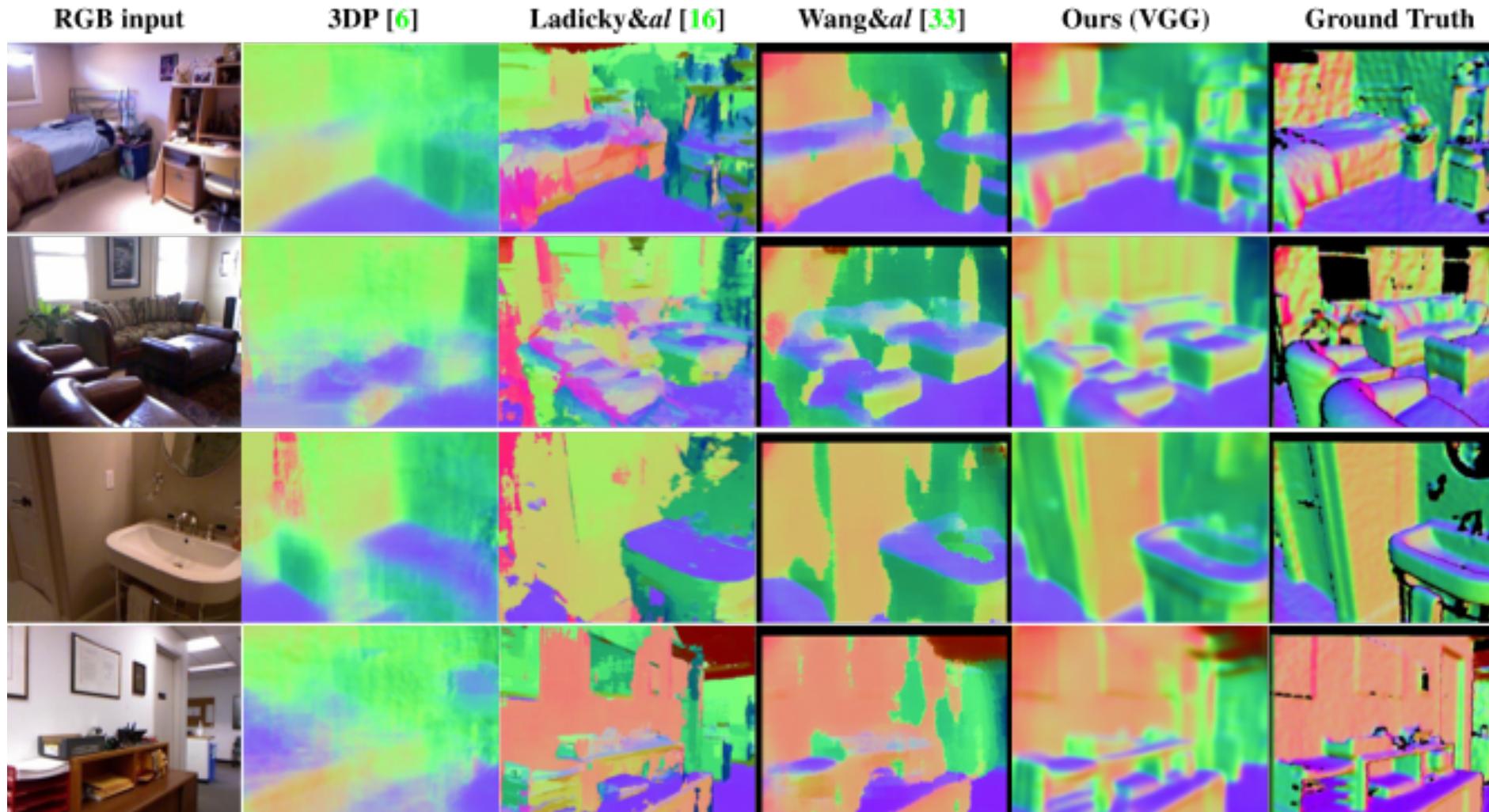
Depth Comparison

- m3d = Make3D [Saxena & Ng 2006]



Depth Prediction							
	Ladicky[20]	Karsch[14]	Baig [1]	Liu [18]	Eigen[4]	Ours(A)	Ours(VGG)
$\delta < 1.25$	0.542	—	0.597	0.614	0.614	0.697	0.769
$\delta < 1.25^2$	0.829	—	—	0.883	0.888	0.912	0.950
$\delta < 1.25^3$	0.940	—	—	0.971	0.972	0.977	0.988
abs rel	—	0.350	0.259	0.230	0.214	0.198	0.158
sqr rel	—	—	—	—	0.204	0.180	0.121
RMS(lin)	—	1.2	0.839	0.824	0.877	0.753	0.641
RMS(log)	—	—	—	—	0.283	0.255	0.214
sc-inv.	—	—	0.242	—	0.219	0.202	0.171

Surface Normals



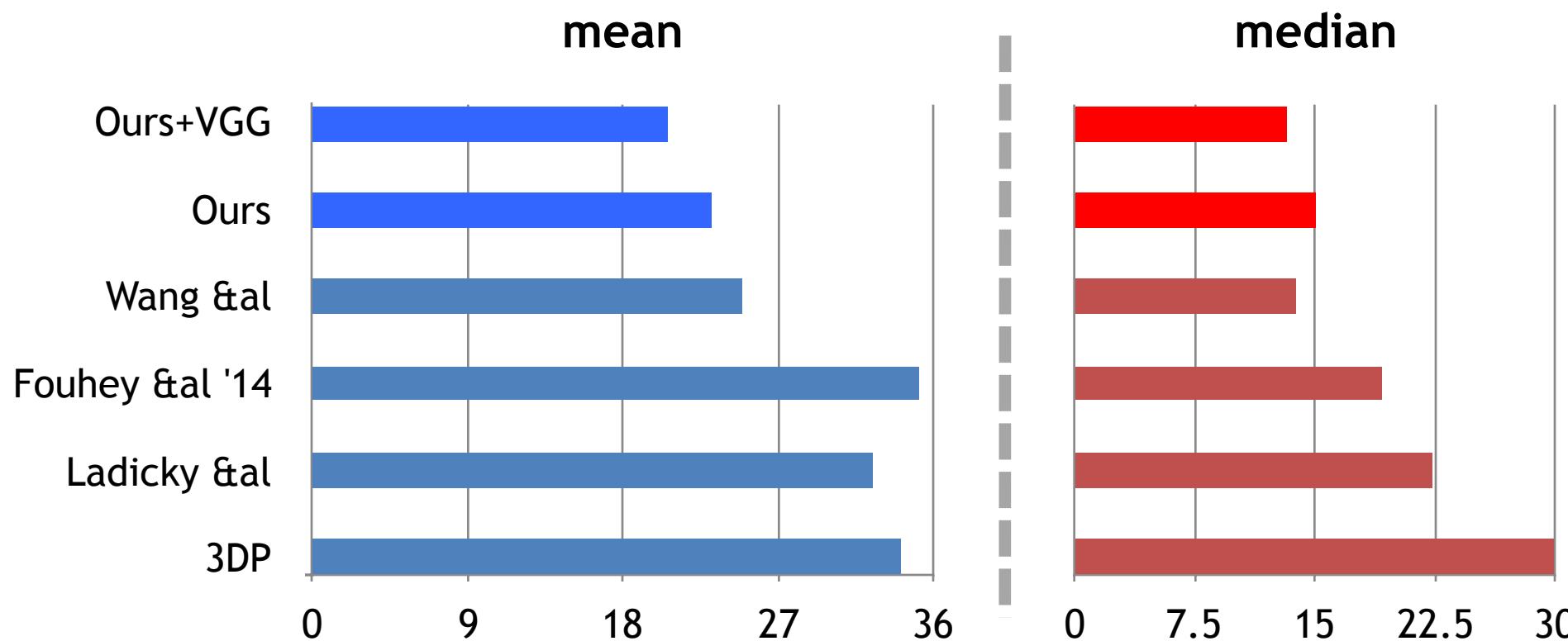
Surface Normals

Surface Normal Estimation (GT [6])					
	Angle Distance		Within t° Deg.		
	Mean	Median	11.25°	22.5°	30°
3DP [6]	34.2	30.0	18.5	38.6	50.0
Ladicky & al [16]	32.5	22.3	27.4	50.2	60.1
Fouhey & al [7]	35.1	19.2	37.6	53.3	58.9
Wang & al [33]	26.6	15.3	40.1	61.4	69.0
Ours (AlexNet)	23.1	15.1	39.4	63.6	72.7
Ours (VGG)	20.5	13.2	44.0	68.5	77.2

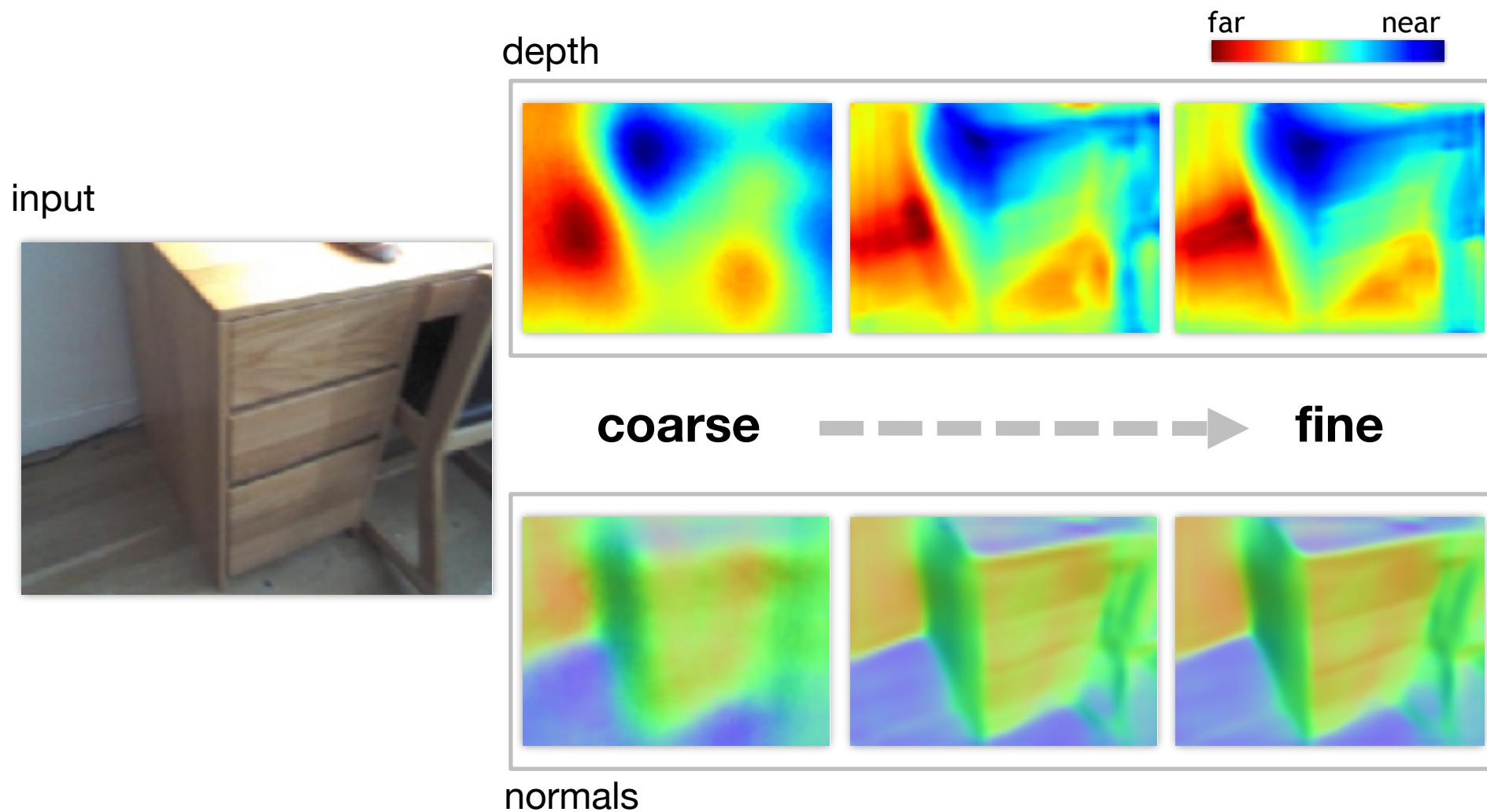
Surface Normal Estimation (GT [27])					
	Angle Distance		Within t° Deg.		
	Mean	Median	11.25°	22.5°	30°
3DP [6]	37.7	34.1	14.0	32.7	44.1
Ladicky & al [16]	35.5	25.5	24.0	45.6	55.9
Wang & al [33]	28.8	17.9	35.2	57.1	65.5
Ours (AlexNet)	25.9	18.2	33.2	57.5	67.7
Ours (VGG)	22.2	15.3	38.6	64.0	73.9

Results: Normals

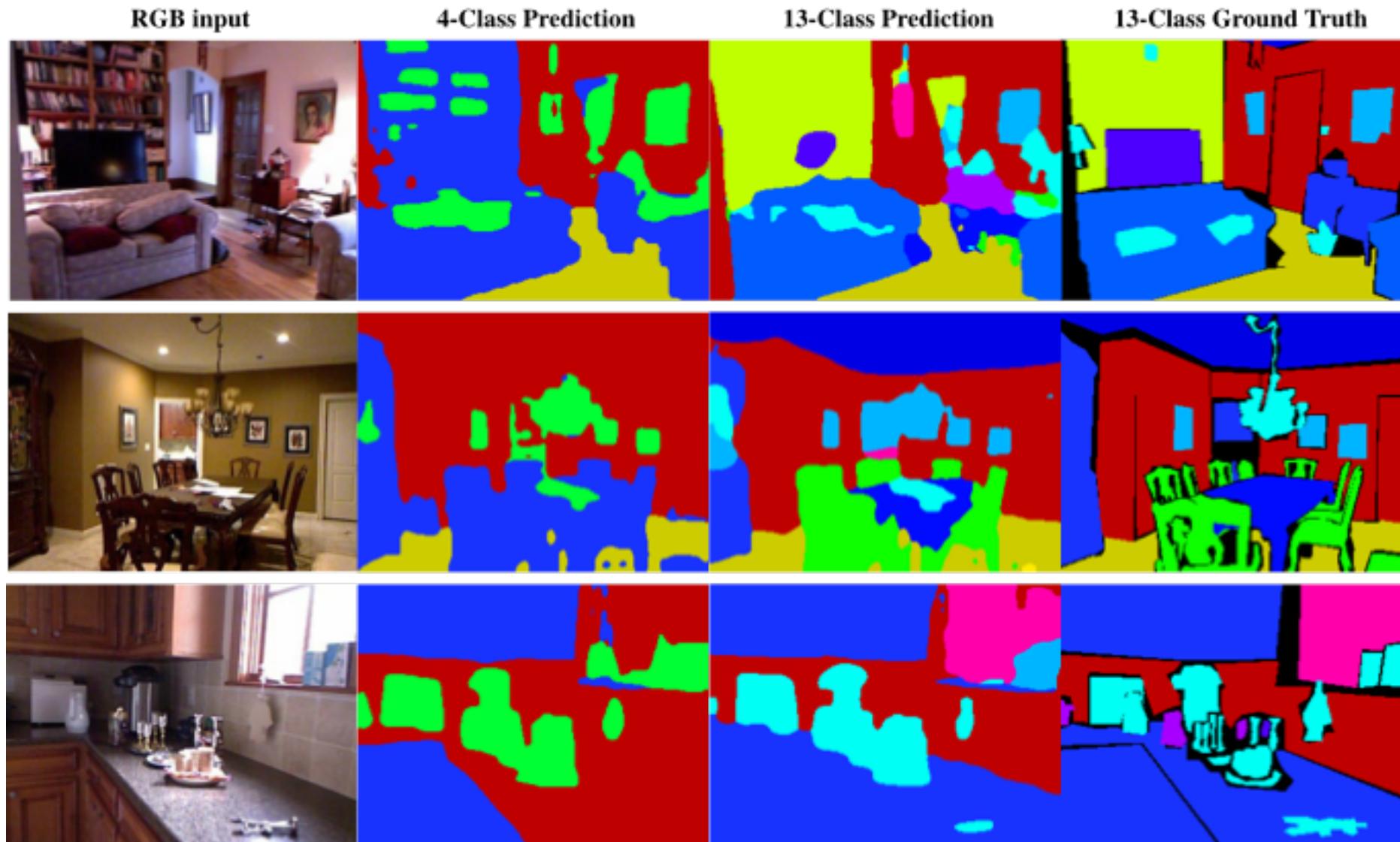
Angle from Ground Truth



Output from each scale

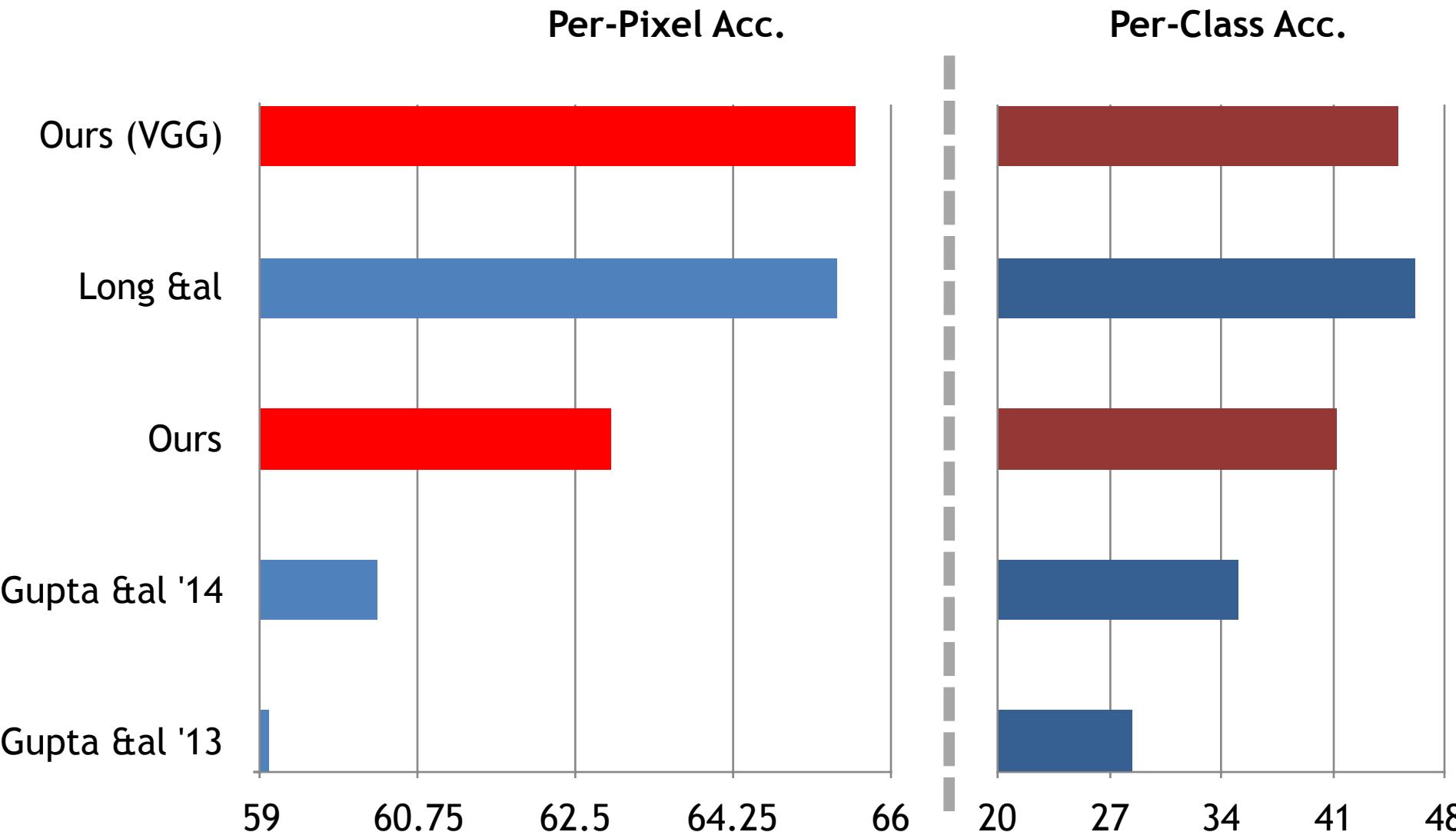


Semantic Labels: NYUD



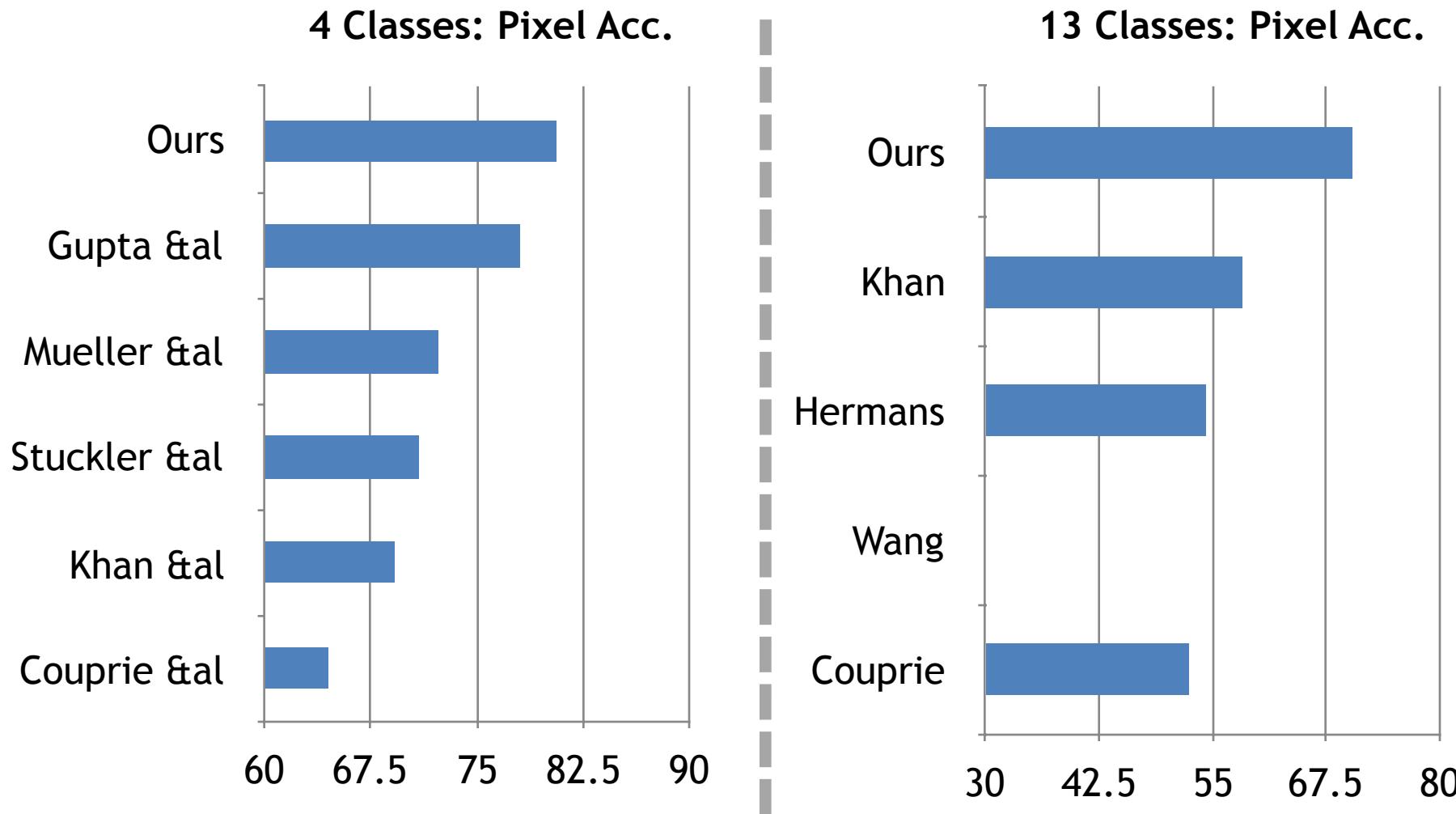
Results: NYUD 40 Classes

- Use RGB + ground truth depth & normals as inputs



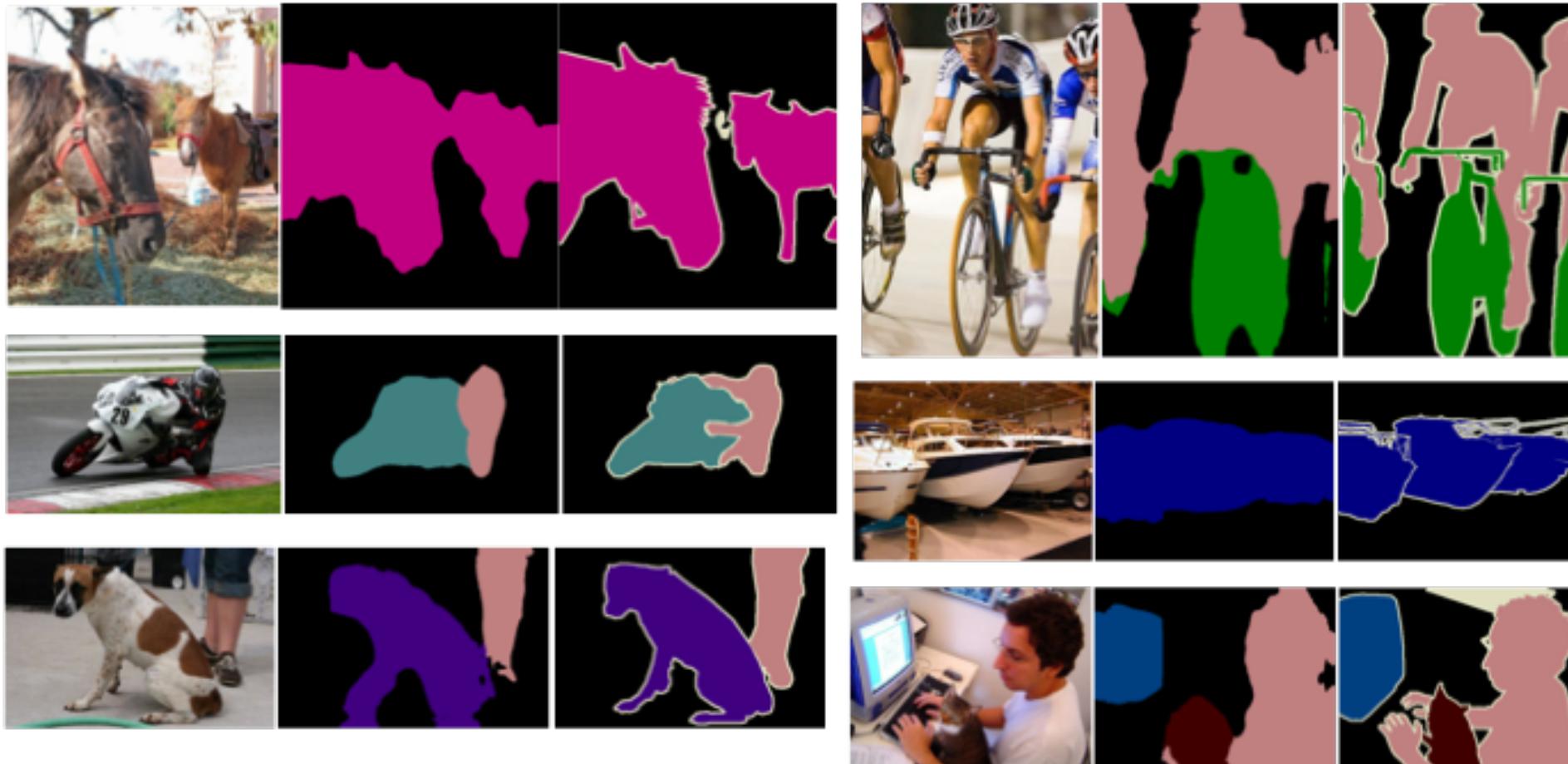
Results: NYUD Labels

- Use RGB + ground truth depth & normals as inputs



Semantic Labels: Pascal VOC'11

Pascal VOC Semantic Segmentation				
	Pix. Acc.	Per-Cls Acc.	Freq. Jaccard	Av. Jaccard
Long &al [19]	90.3	75.9	83.2	62.7
Ours (VGG)	90.3	72.4	82.9	62.2



Contribution from different scales

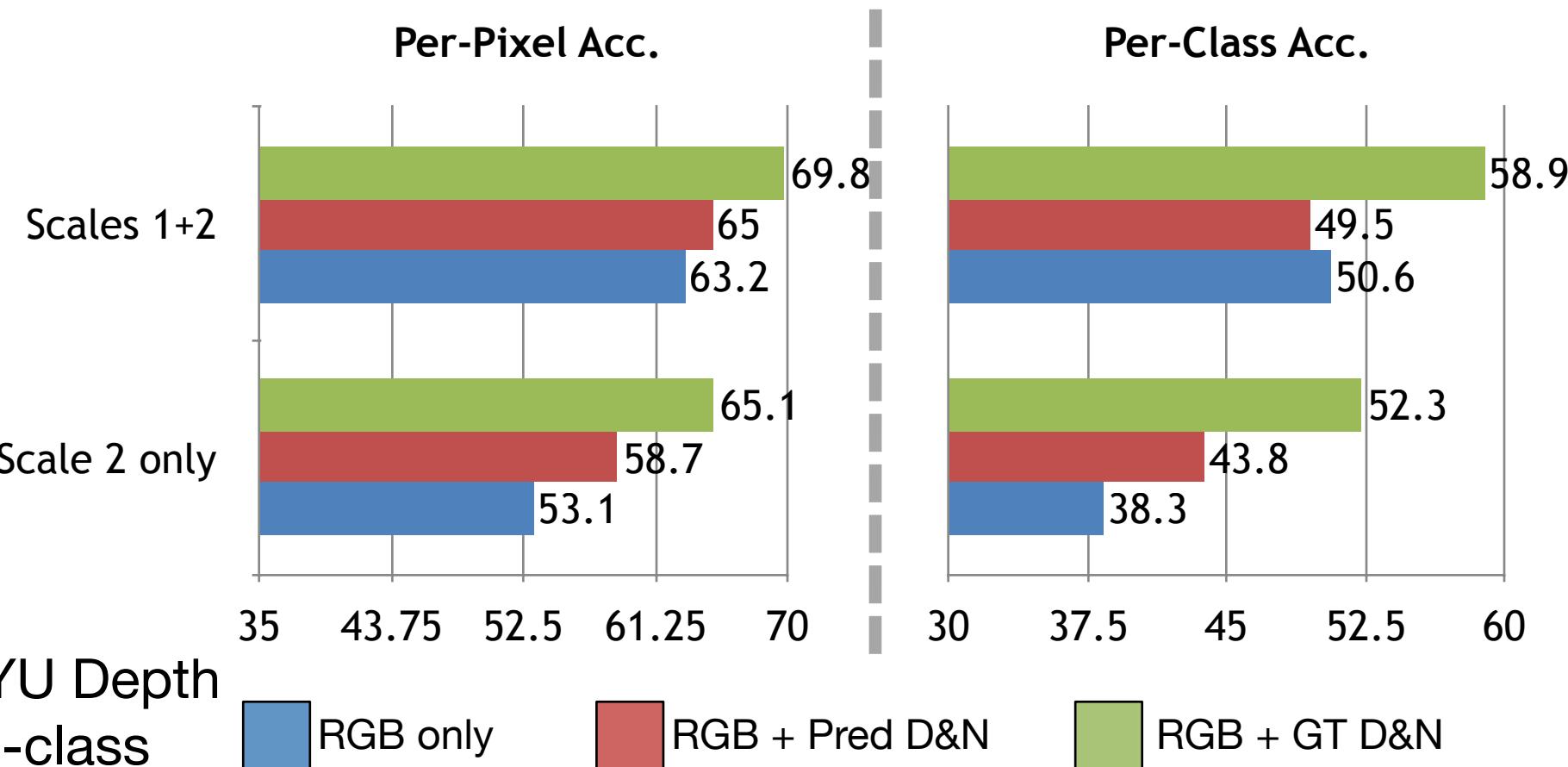
- On NYU Depth

Contributions of Scales						
	Depth	Normals	4-Class		13-Class	
	Pixelwise Error lower is better		Pixelwise Accuracy higher is better			
	RGB+D+N	RGB	RGB+D+N	RGB	RGB+D+N	RGB
Scale 1 only	0.218	29.7	71.5	71.5	58.1	58.1
Scale 2 only	0.290	31.8	77.4	67.2	65.1	53.1
Scales 1 + 2	0.216	26.1	80.1	74.4	69.8	63.2
Scales 1 + 2 + 3	0.198	25.9	80.6	75.3	70.5	64.0

- Depth & normals: scale 1 most important
- Semantic labels: scale 2 most important
(if D & N are available)

Using Predicted Depths

- Use predicted depth/normal as input?



Summary

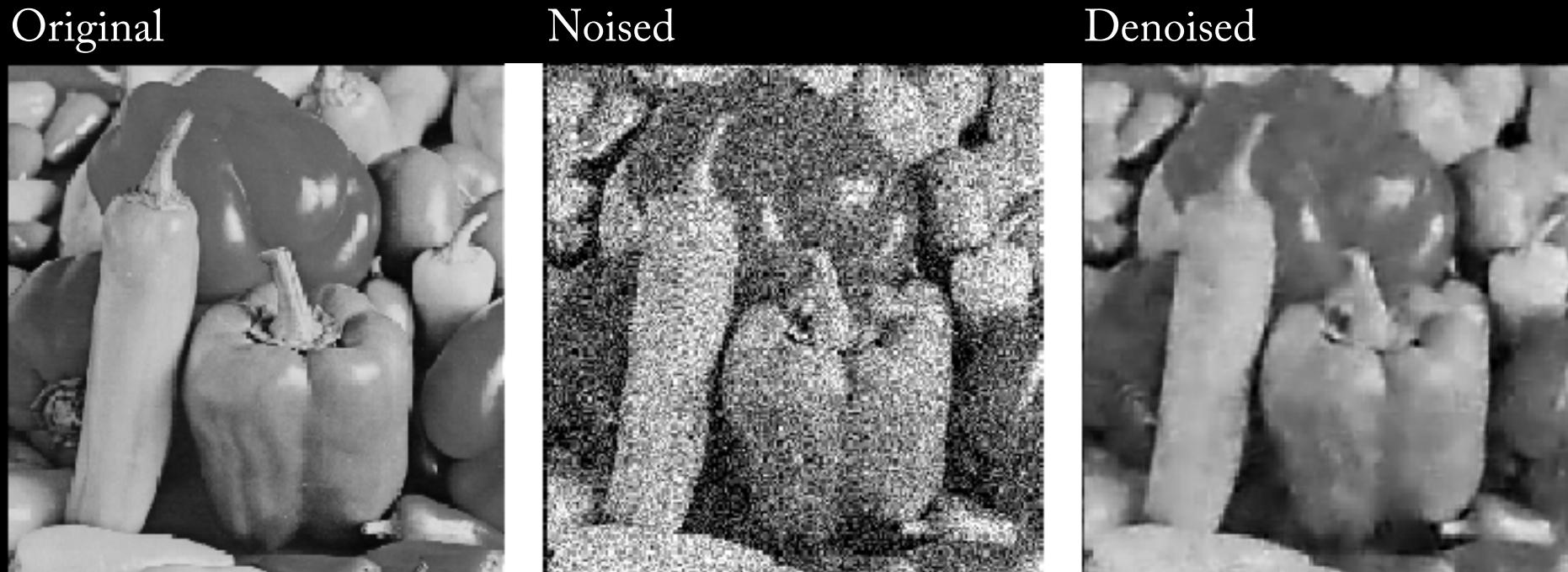
- Relatively simple multi-scale model gives good results for depth, normals & labels
- Coarse interpretation of scene important for understanding depth/normals
- See ICCV 2015 paper: “Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture”, D. Eigen and R. Fergus, arXiv 1411.4734
- Code available

Overview

- Methods where output is also an image
 - Fully Convolutional Nets [Long et al., CVPR 2015]
 - Depth, normals and semantic labels from a single image [Eigen ICCV 2015]
- **Image processing with Convnets**
 - Image colorization [Zhang et al. ECCV 2016]

Denoising with ConvNets

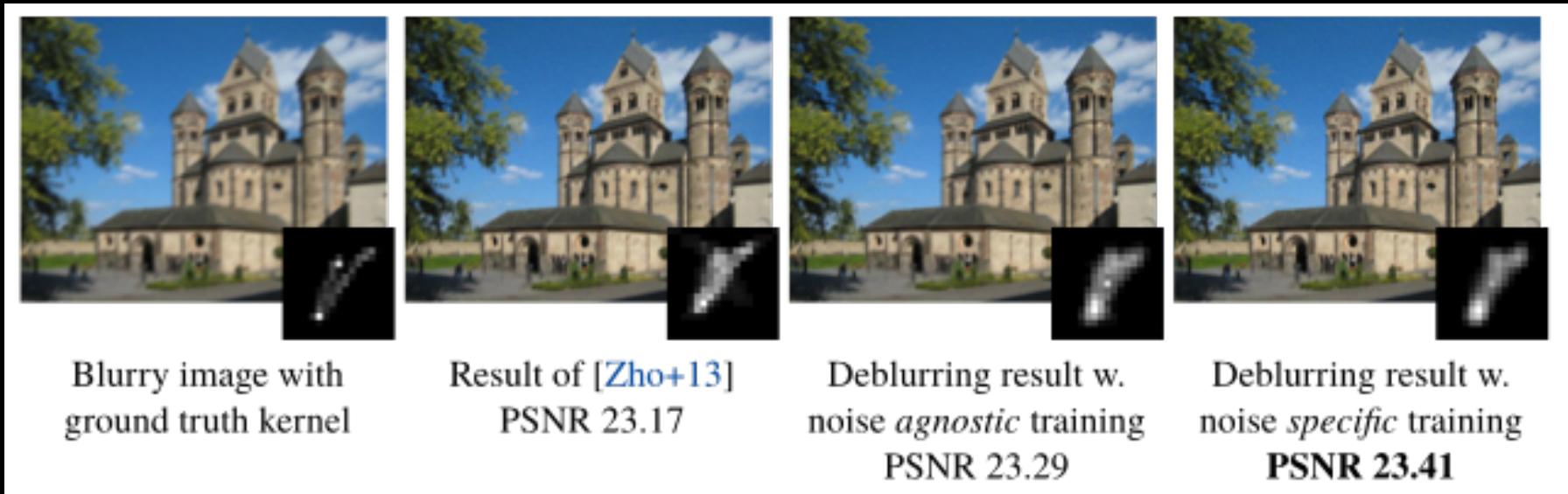
- Burger et al. “Can plain NNs compete with BM3D?” CVPR 2012



Deblurring with Convnets

.....

- Blind deconvolution
 - Learning to Deblur, Schuler et al., arXiv 1406.7444, 2014



Inpainting with Convnets

- Image Denoising and Inpainting with Deep Neural Networks, Xie et al. NIPS 2012.
- Mask-specific inpainting with deep neural networks, Köhler et al., Pattern Recognition 2014

nd Sirius form a nearly equilateral triangle. These stars, in the Ship, and Phaet, in the Dove, form a figure known as the Egyptian "X." From earliest times Sirius has been known as the Dog of Orion. It is 324 times brighter than the average sixth-magnitude star, and is the nearest star to the earth of all the stars in this latitude, its distance being 8.7 light years. At this distance the Sun would appear a little brighter than the Pole Star. [Illustration CANIS MAJOR] ARGO NAVIS (ahr'-go nā'-vēs) ARGO. (Face South.) LOCATION. Argo is situated in Canis Major. If a line joining Betelgeuse and Sirius is prolonged 18° southeast, it will point out Noss, a second magnitude star in the rudder of the Ship. It is in the southeast corner of the Egyptian "X." The star of a deep yellow or orange hue. It has three little stars above it, two of which form a pretty pair. The star *F* companion, which is a test for an opera-glass. The *F* is a double for an opera-glass. Note the blue star class *M*. The star *Makar* forms a small triangle with two stars near it. The Egyptians believed that this star that bore Osiris was also over the Delta. The constellations contains two noted objects invisible in this latitude, Canopus, the second largest star, and the remarkable variable star *E*. [Illustration STELLIS] MONOCEROS (mō-nōs'-ē-rōs) (Face South.) The Monoceros is to be found between Canis Major and Minor. Three of its stars of the fourth magnitude form a straight line northeast and southwest, about 9° east of Betelgeuse, and about the same distance south of Aldebaran. The region around the star of *Alpha*, 17 is particularly rich when viewed with an opera-glass. There is also a field of three variable stars, and a cluster of about nine stars about 7° apart in the tail of the Unicorn. The latter stars to Procyon. These stars are

Original
‘14

Schmid CVPR’10

Köhler et al.

Removing Local Corruption

- Restoring An Image Taken Through a Window Covered with Dirt or Rain, Eigen et al., ICCV 2013.

Removing Local Corruption

**Restoring An Image Taken
Through a Window Covered with
Dirt or Rain**

Rain Sequence
Each frame processed independently

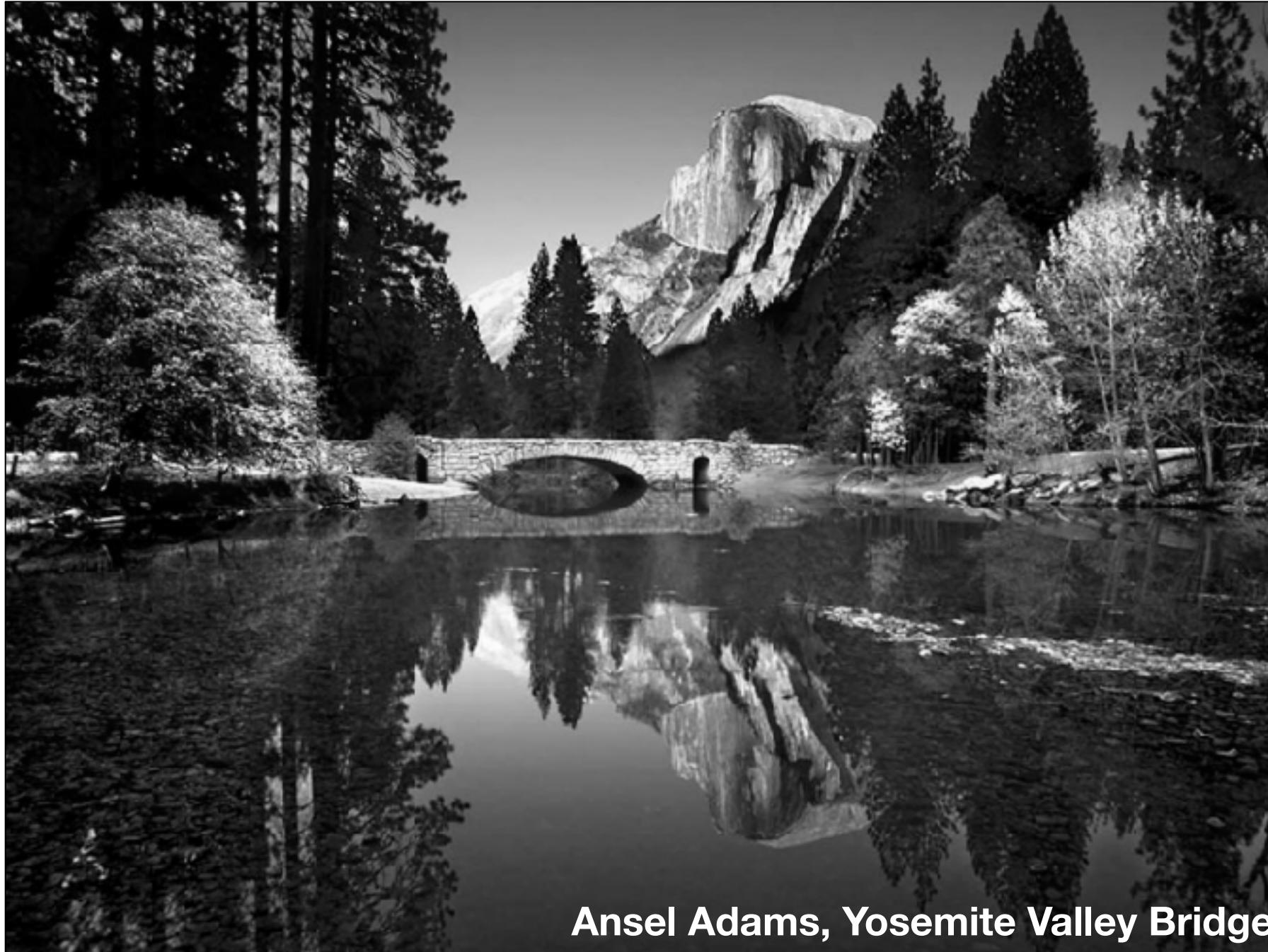
David Eigen, Dilip Krishnan and Rob Fergus
ICCV 2013

Overview

- Methods where output is now also an image
 - Fully Convolutional Nets [Long et al., CVPR 2015]
 - Depth, normals and semantic labels from a single image [Eigen ICCV 2015]
- Image processing with Convnets
 - Image colorization [Zhang et al. ECCV 2016]

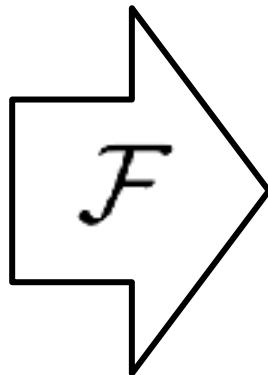
Colorful Image Colorization

Richard Zhang, Phillip Isola, Alexei (Alyosha) Efros
richzhang.github.io/colorization



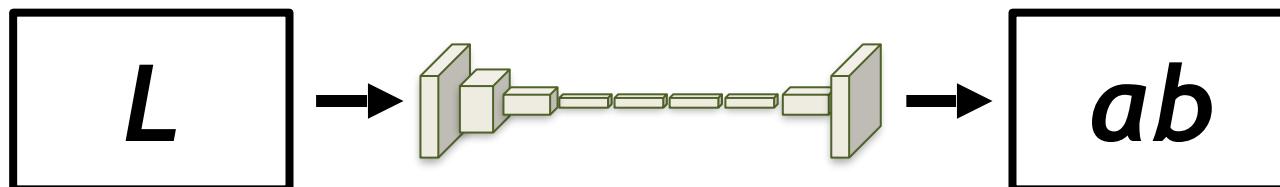
Ansel Adams, Yosemite Valley Bridge

Ansel Adams, Yosemite Valley Bridge - Our
Result



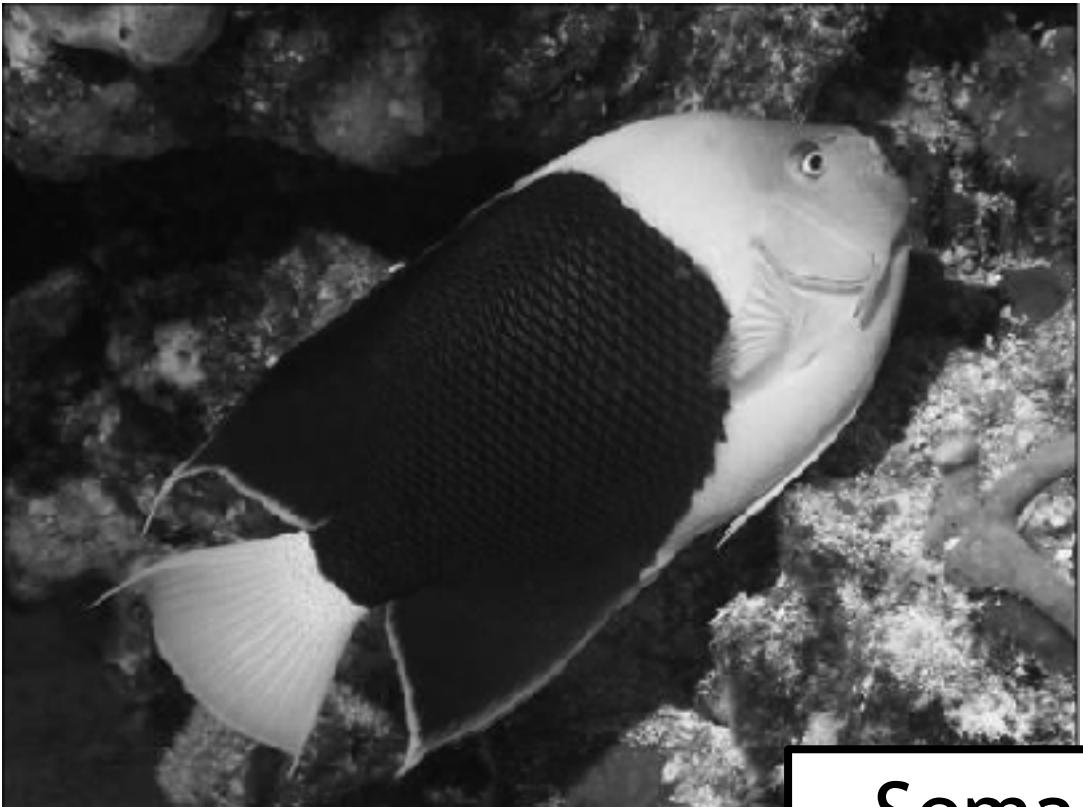
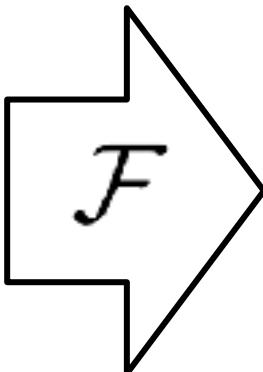
Grayscale image: L channel

$$\mathbf{X} \in \mathbb{R}^{H \times W \times 1}$$



Color information: ab channel

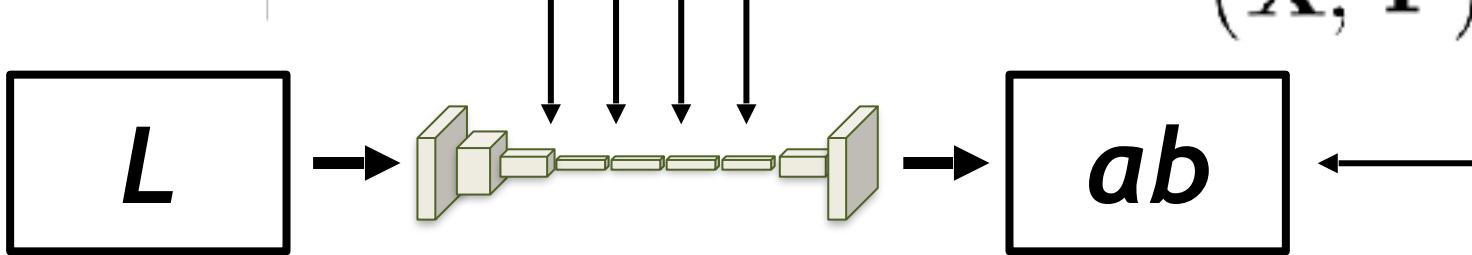
$$\hat{\mathbf{Y}} \in \mathbb{R}^{H \times W \times 2}$$



Grayscale image: L
 $\mathbf{X} \in \mathbb{R}^{H \times W \times 1}$

Semantics? Higher-level abstraction?

concatenate (L, ab)
 $(\mathbf{X}, \hat{\mathbf{Y}})$



“Free”
supervisory
signal

Inherent Ambiguity

Grayscale

Inherent Ambiguity

Our Output

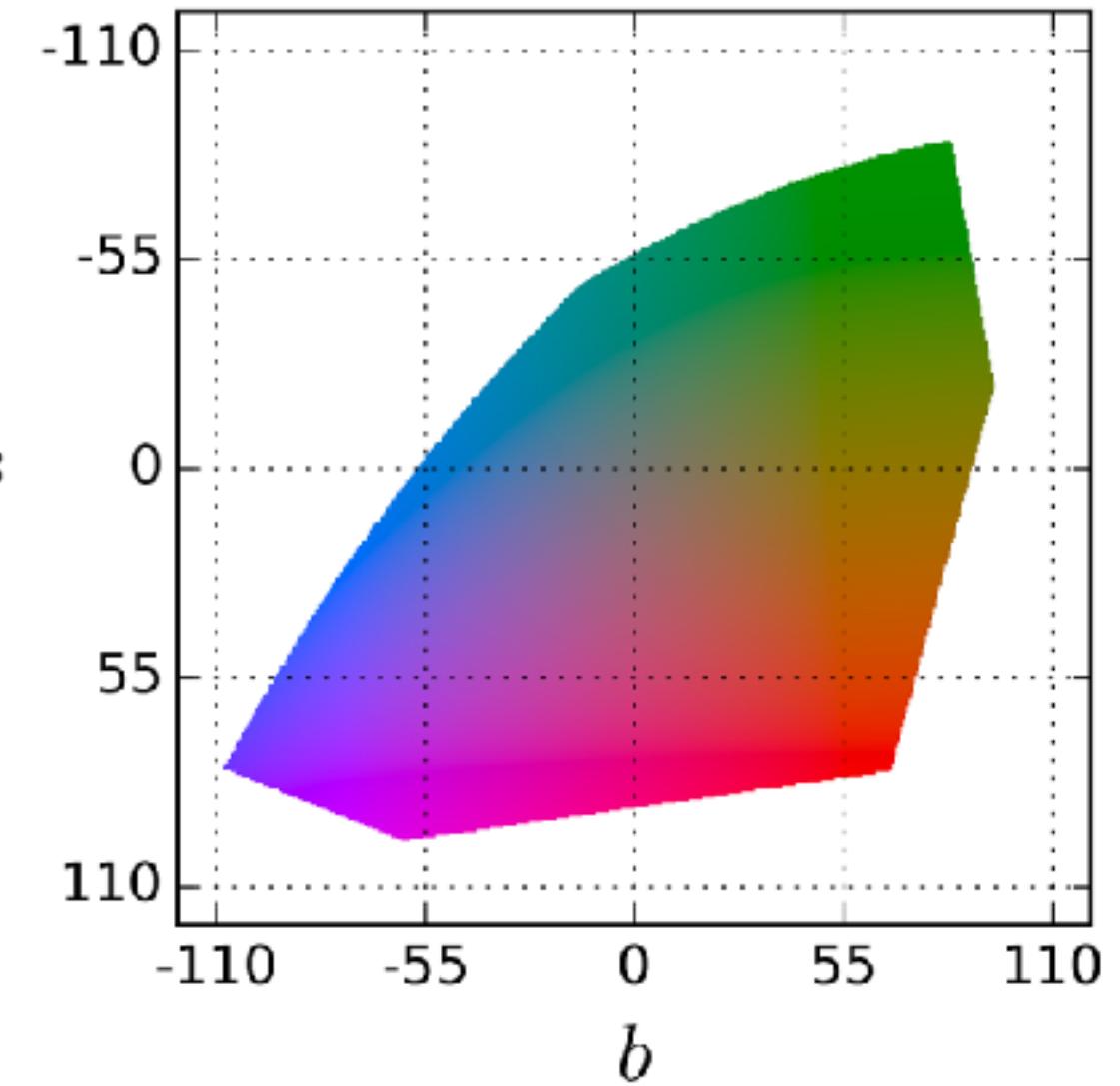
Ground Truth

Better Loss Function

Colors in *ab* space
(continuous)

- Regression with L2 loss

$$\text{inac}_{L2}(\hat{\mathbf{Y}}, \mathbf{Y}) = \frac{1}{2} \sum_{h,w} \|\mathbf{Y}_{h,w} - \hat{\mathbf{Y}}_{h,w}\|_2^2$$



Better Loss Function

Colors in *ab* space
(discrete)

- Regression with L2 loss inadequate

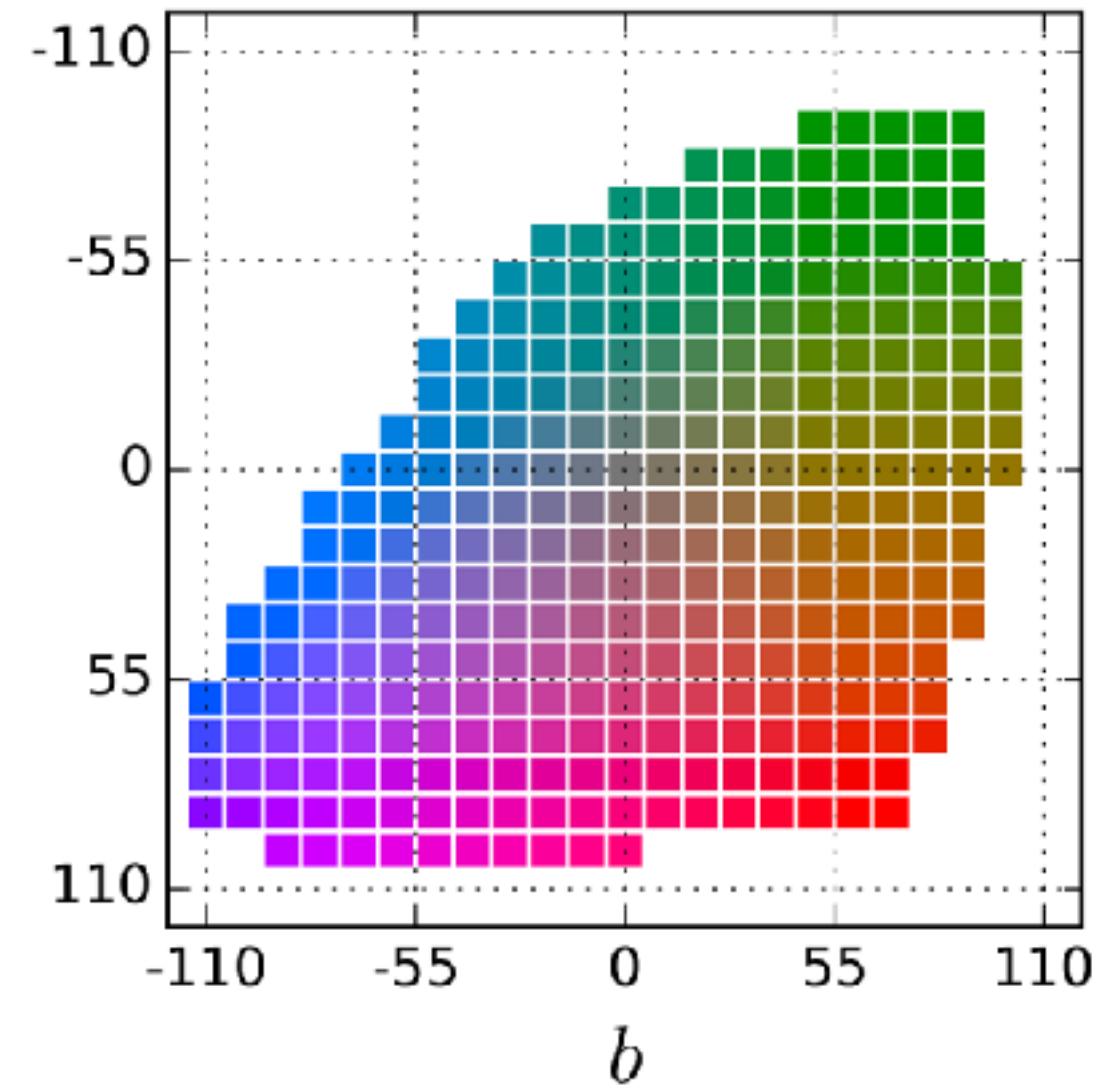
$$L_2(\hat{\mathbf{Y}}, \mathbf{Y}) = \frac{1}{2} \sum_{h,w} \|\mathbf{Y}_{h,w} - \hat{\mathbf{Y}}_{h,w}\|_2^2$$

- Use **multinomial classification**

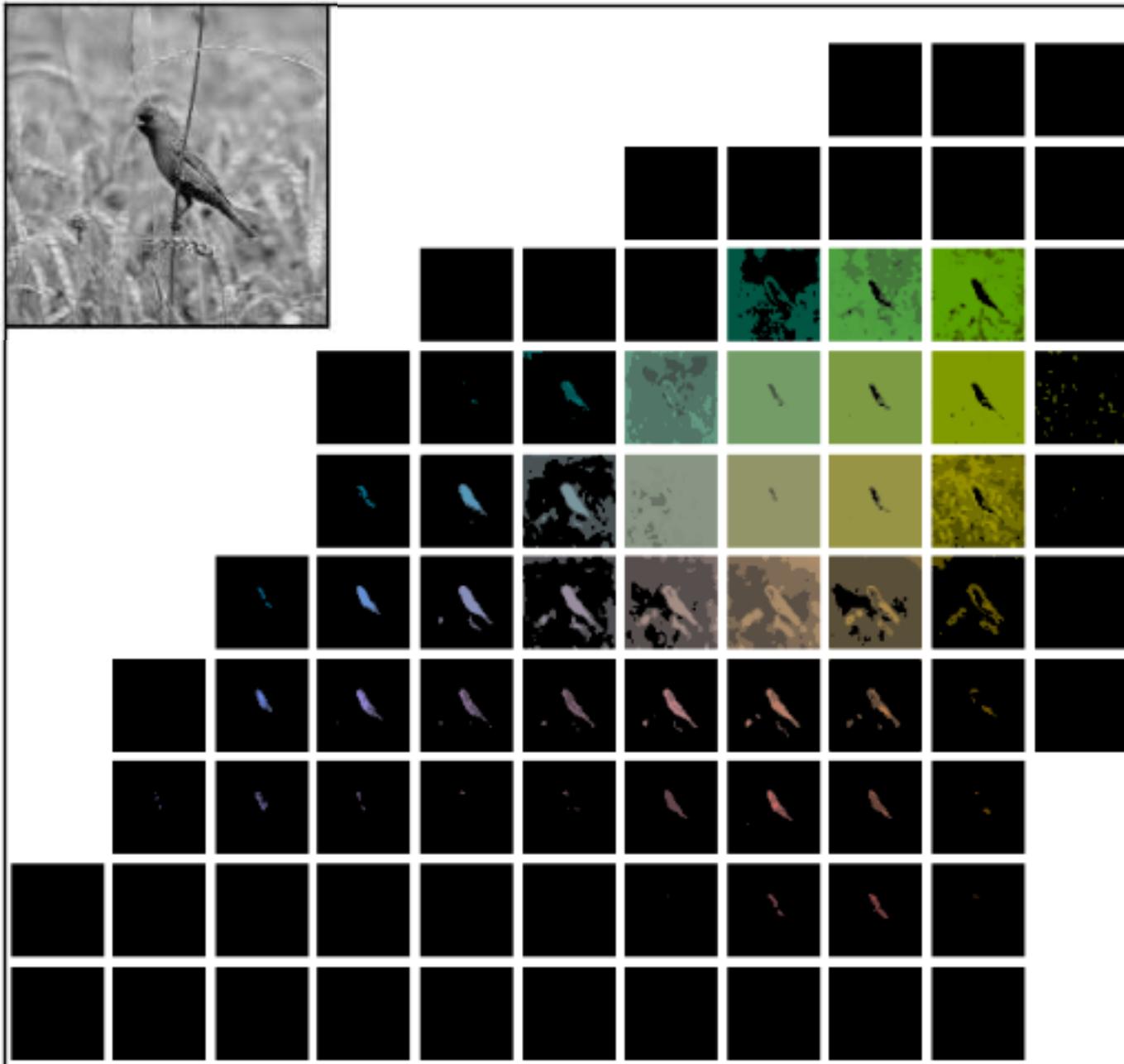
$$L(\hat{\mathbf{Z}}, \mathbf{Z}) = -\frac{1}{HW} \sum_{h,w} \sum_q \mathbf{Z}_{h,w,q} \log(\hat{\mathbf{Z}}_{h,w,q})$$

- Class rebalancing to encourage

$$L(\hat{\mathbf{Z}}, \mathbf{Z}) = -\frac{1}{HW} \sum_{h,w} v(\mathbf{Z}_{h,w}) \sum_q \mathbf{Z}_{h,w,q} \log(\hat{\mathbf{Z}}_{h,w,q})$$



a



b

Better Loss Function

\log_{10} probability

- Regression with L2 loss inadequate

$$L_2(\hat{\mathbf{Y}}, \mathbf{Y}) = \frac{1}{2} \sum_{h,w} \|\mathbf{Y}_{h,w} - \hat{\mathbf{Y}}_{h,w}\|_2^2$$

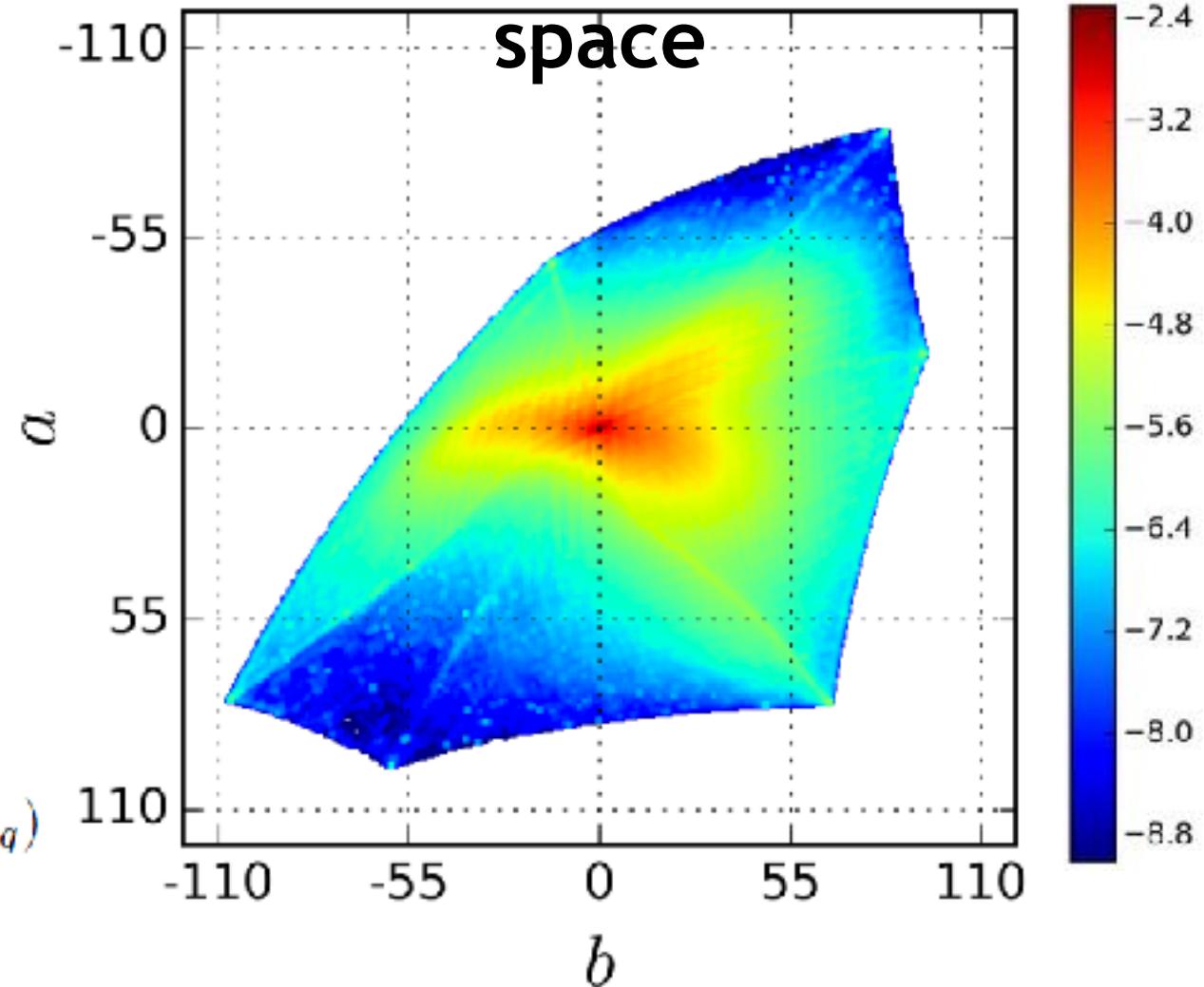
- Use multinomial classification

$$L(\hat{\mathbf{Z}}, \mathbf{Z}) = -\frac{1}{HW} \sum_{h,w} \sum_q \mathbf{Z}_{h,w,q} \log(\hat{\mathbf{Z}}_{h,w,q})$$

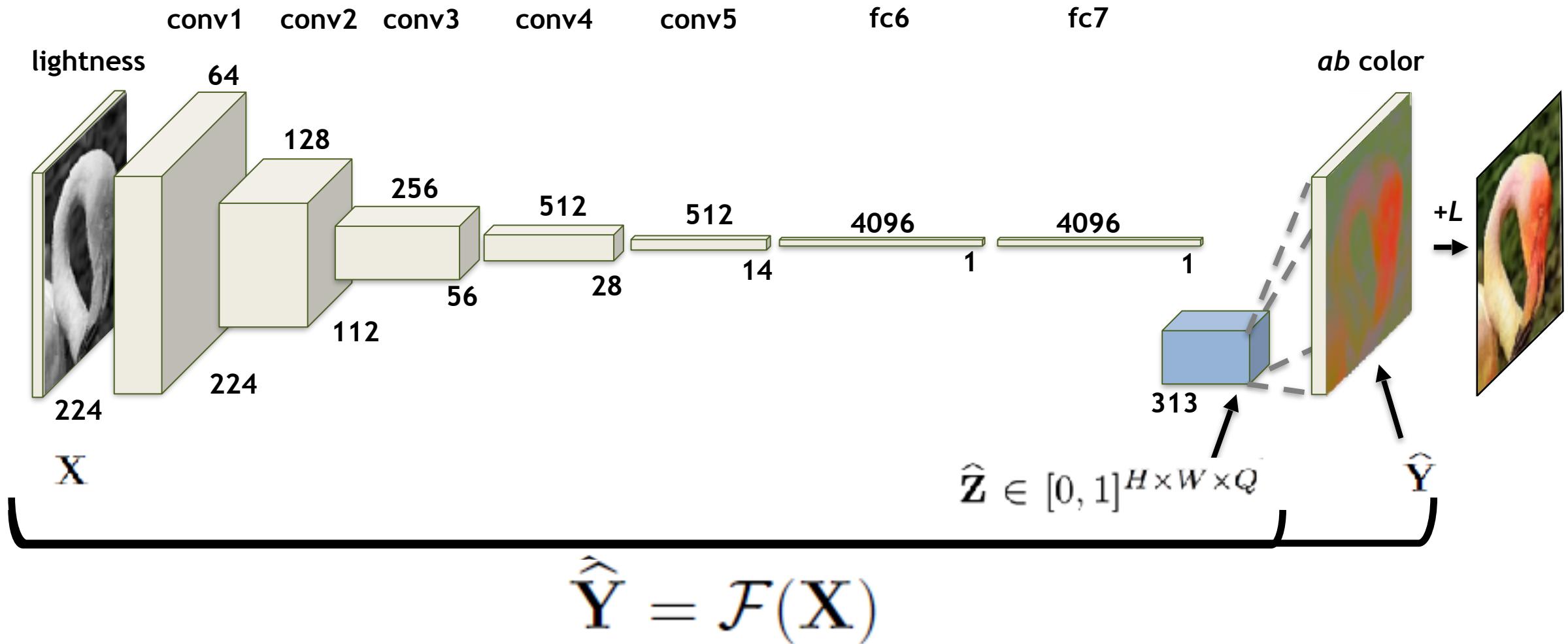
- Class rebalancing to encourage

$$L(\hat{\mathbf{Z}}, \mathbf{Z}) = -\frac{1}{HW} \sum_{h,w} v(\mathbf{Z}_{h,w}) \sum_q \mathbf{Z}_{h,w,q} \log(\hat{\mathbf{Z}}_{h,w,q})$$

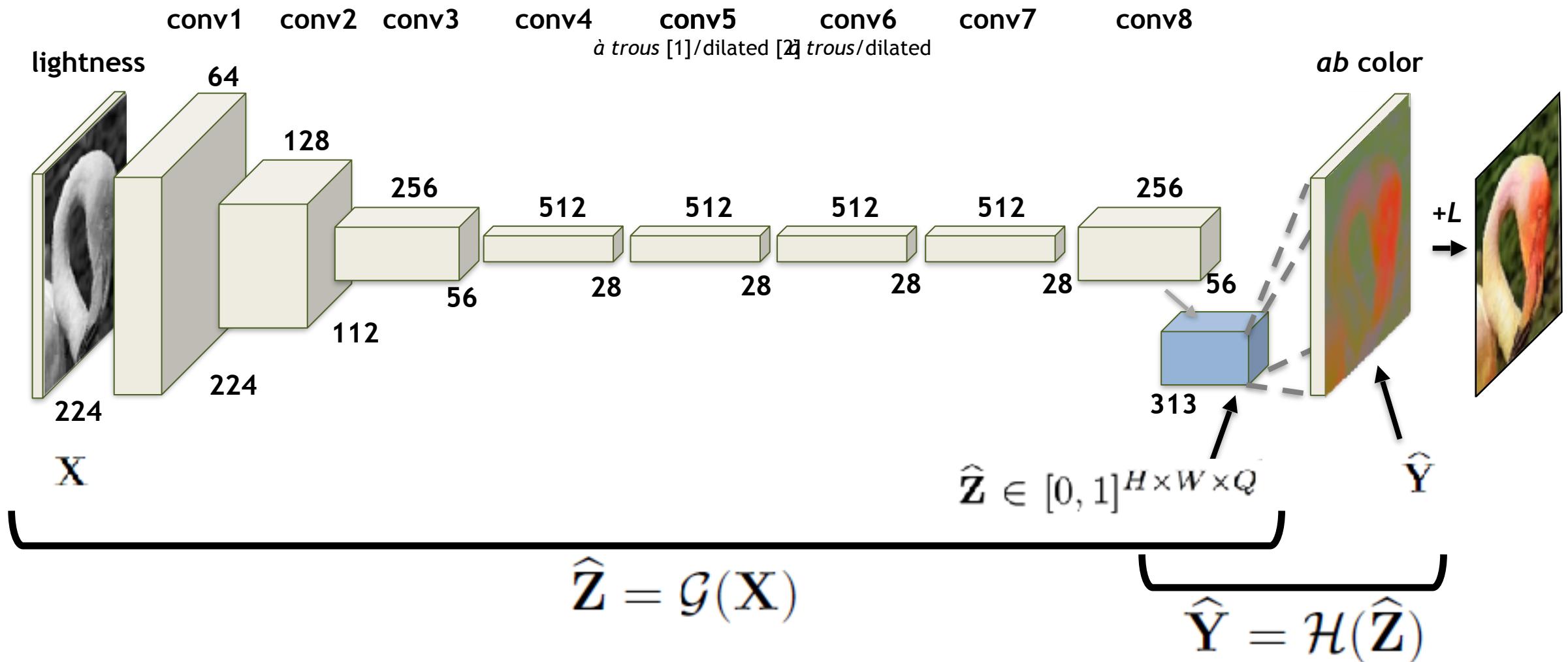
Histogram over ab space



Network Architecture



Network Architecture



[1] Chen *et al.* In arXiv, 2016.
[2] Yu and Koltun. In ICLR, 2016.

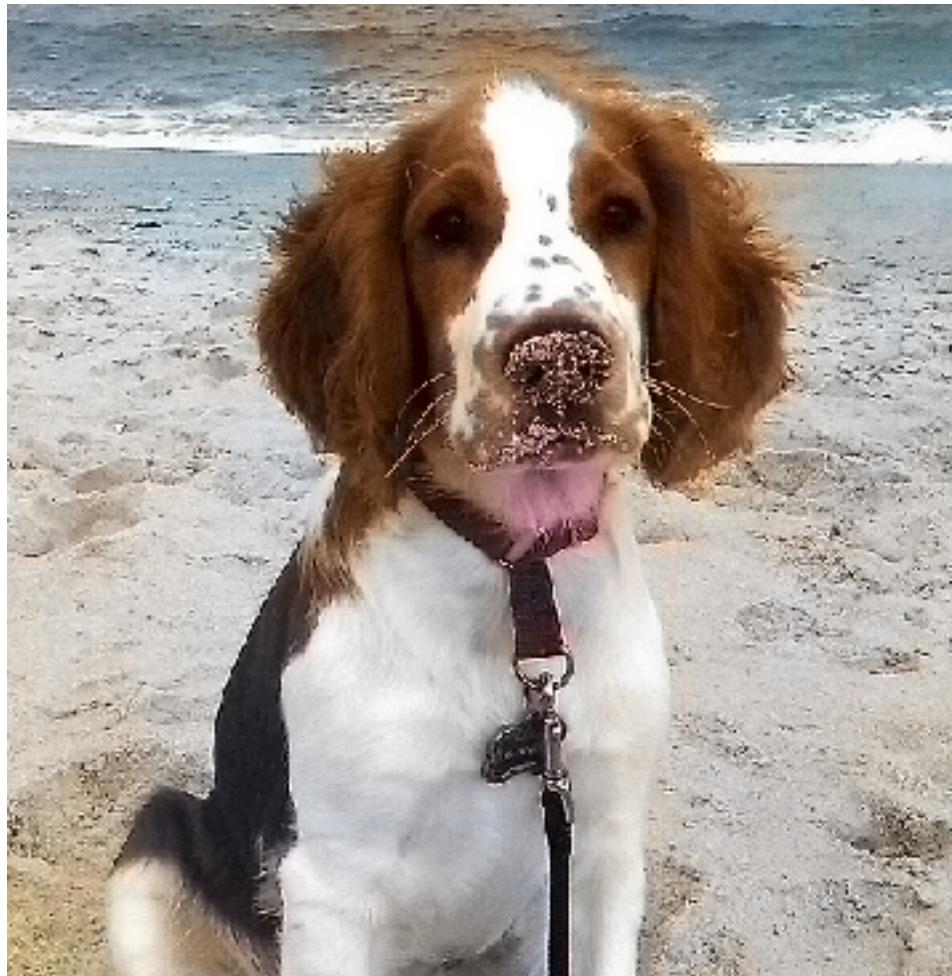
Ground Truth

L2 Regression

Class w/ Rebalancing

Failure Cases

Biases



Evaluation

Visual Quality

Quantitative

Evaluation

	Visual Quality	Representation Learning
Quantitative	Per-pixel accuracy Perceptual realism	Task generalization ImageNet classification
	Semantic interpretability	Task & dataset generalization PASCAL classification, detection, segmentation
Qualitative	Low-level stimuli Legacy grayscale photos	Hidden unit activations

Evaluation

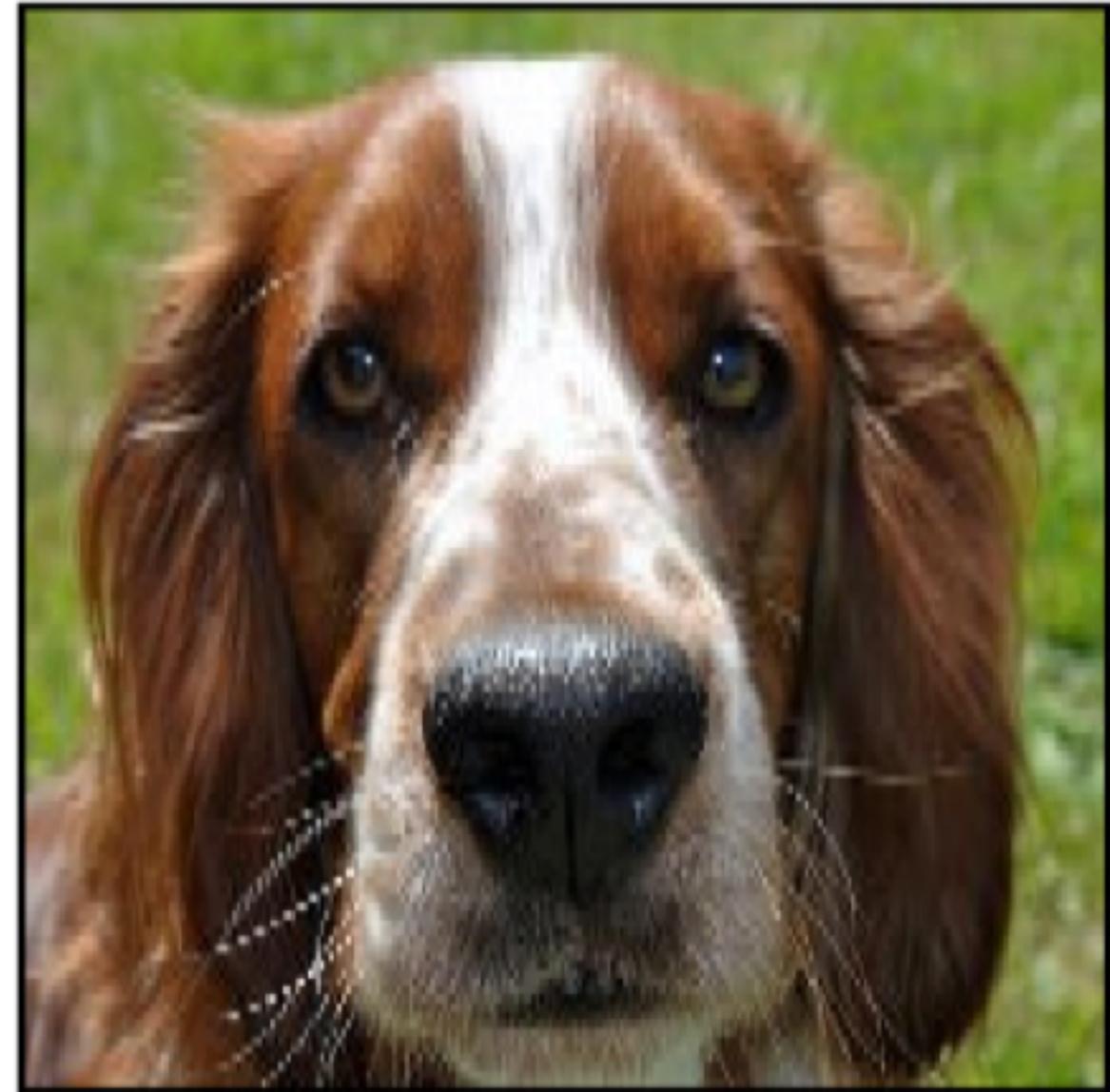
	Visual Quality	Representation Learning
Quantitative	Per-pixel accuracy Perceptual realism	Task generalization ImageNet classification
	Semantic interpretability Low-level stimuli	Task & dataset generalization PASCAL classification, detection, segmentation
Qualitative	Legacy grayscale photos	Hidden unit activations

Perceptual Realism / Amazon Mechanical Turk Test

clap if “fake”

clap if “fake”

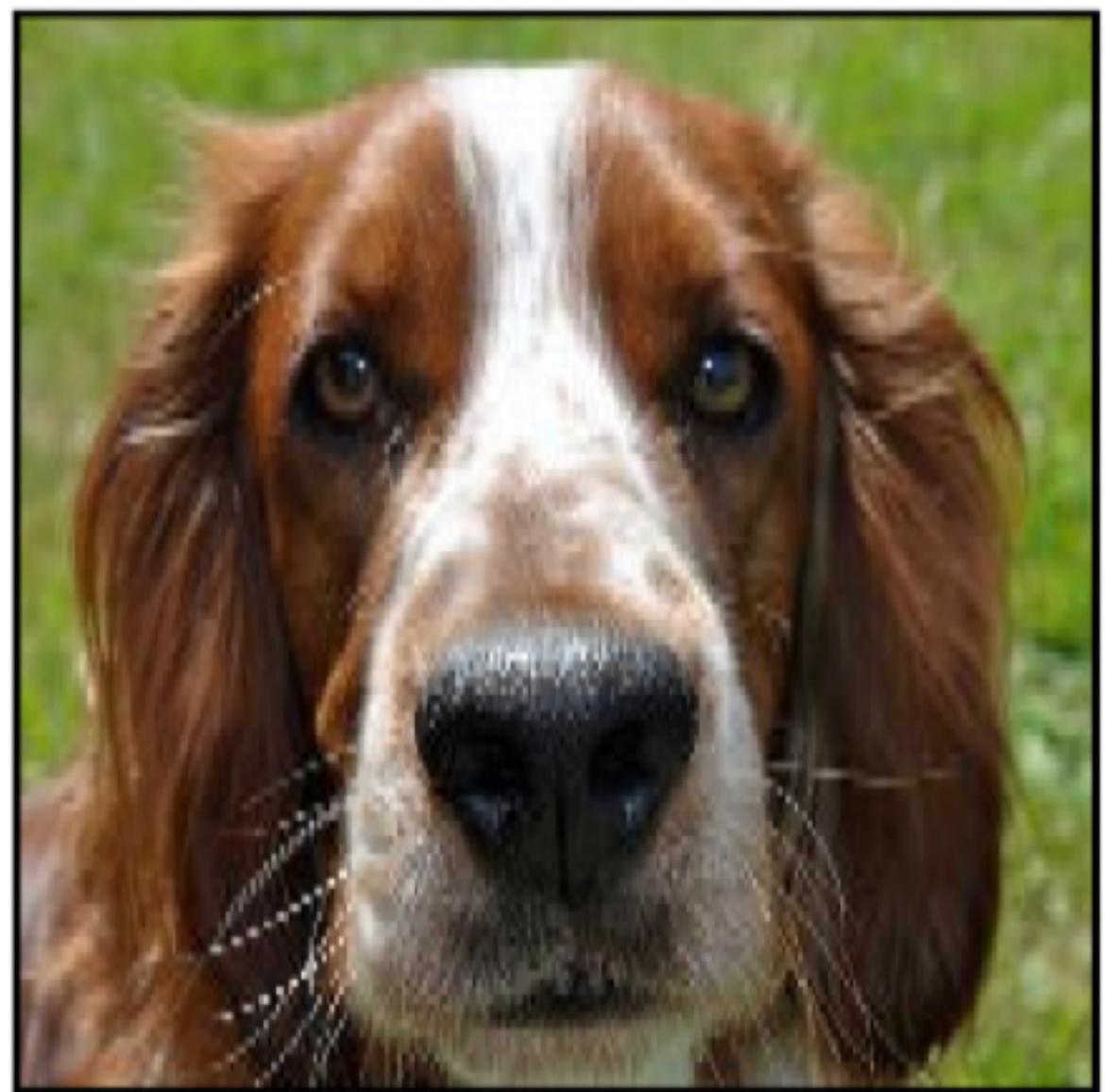
Fake, 0% fooled



clap if “fake”

clap if “fake”

Fake, 55% fooled



clap if “fake”

clap if “fake”

Fake, 58% fooled

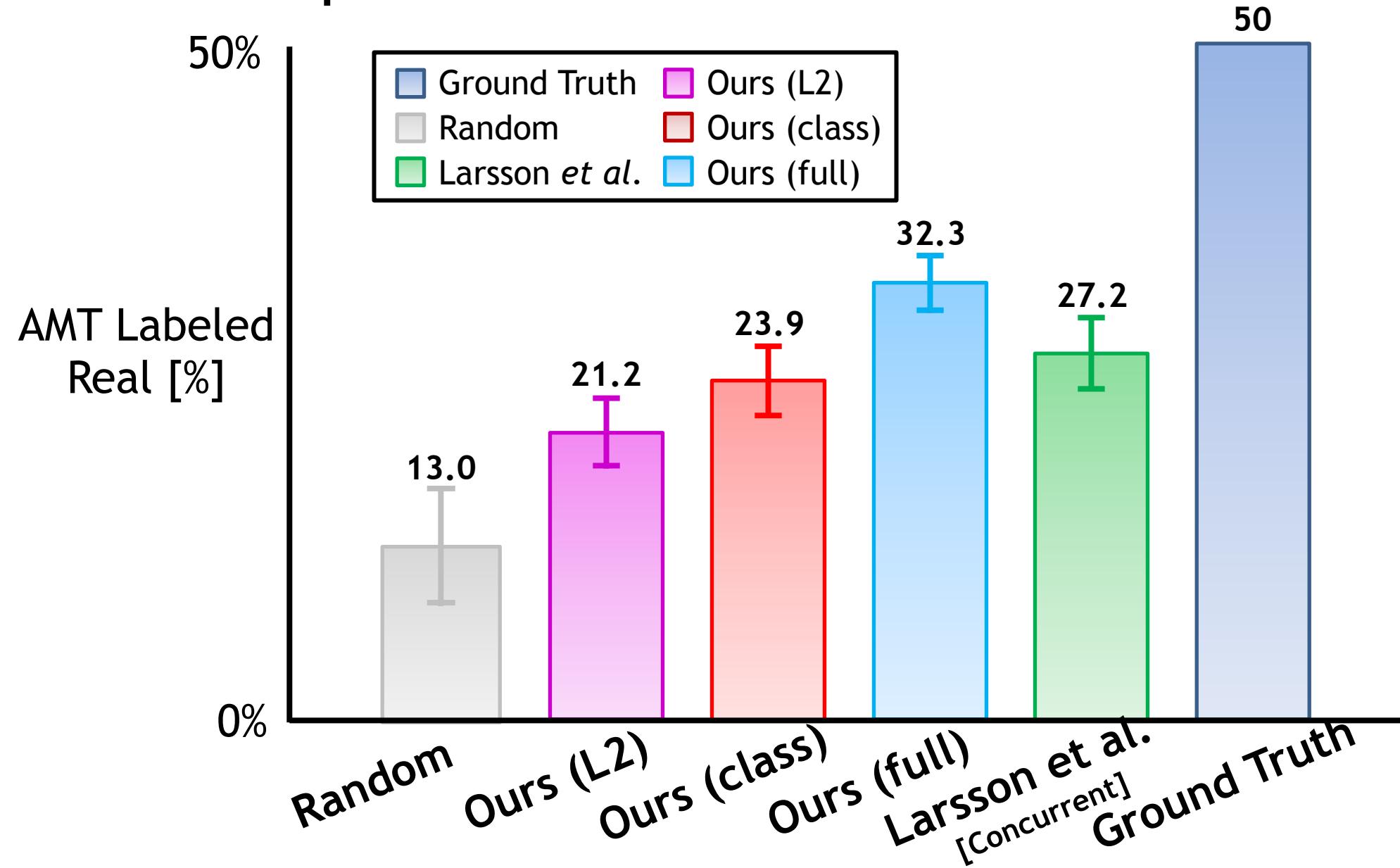
from Reddit /u/SherySantucci

Recolorized by Reddit ColorizeBot

**Photo taken by
Reddit /u/
Timteroo,
Mural from street
artist Eduardo
Kobra**

**Recolorized
by Reddit
ColorizeBot**

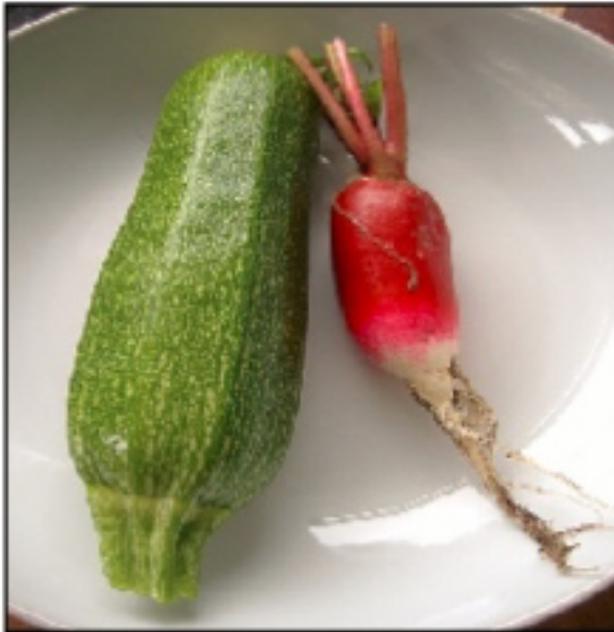
Perceptual Realism Test



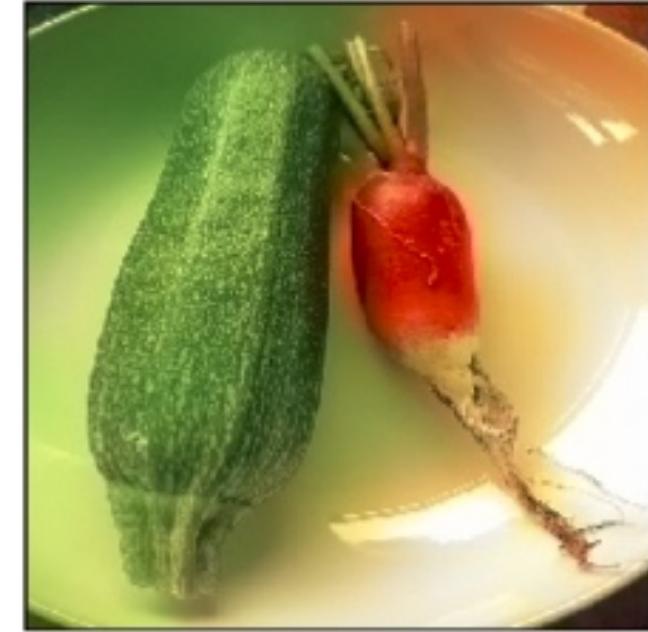
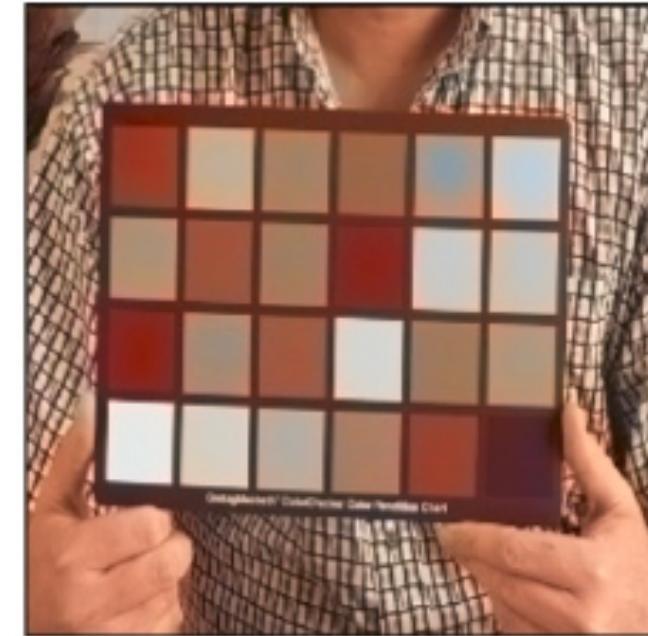
1600 images
tested per
algorithm

Input

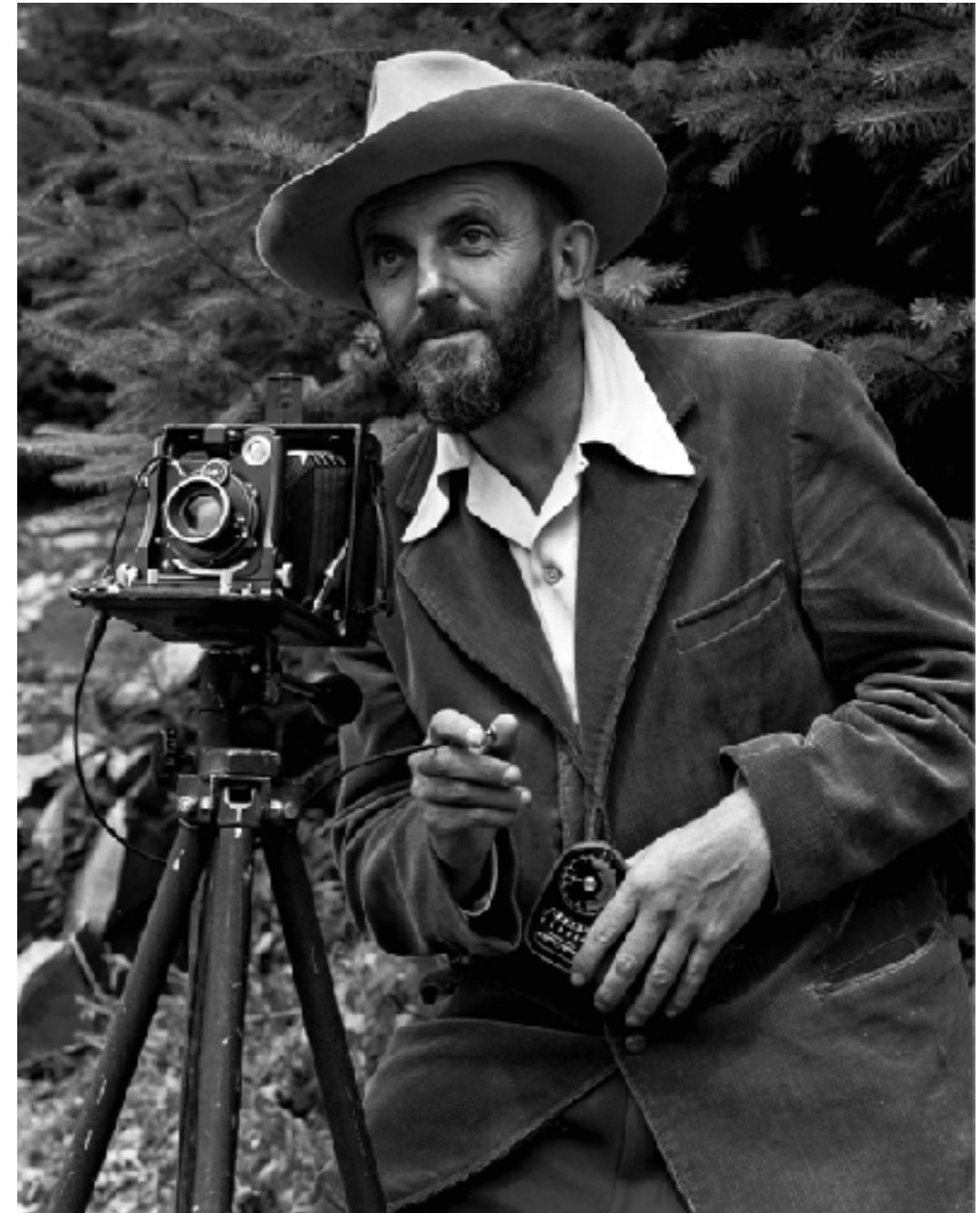
Ground Truth



Output



Does the method
work on *legacy*
black and white
photos?

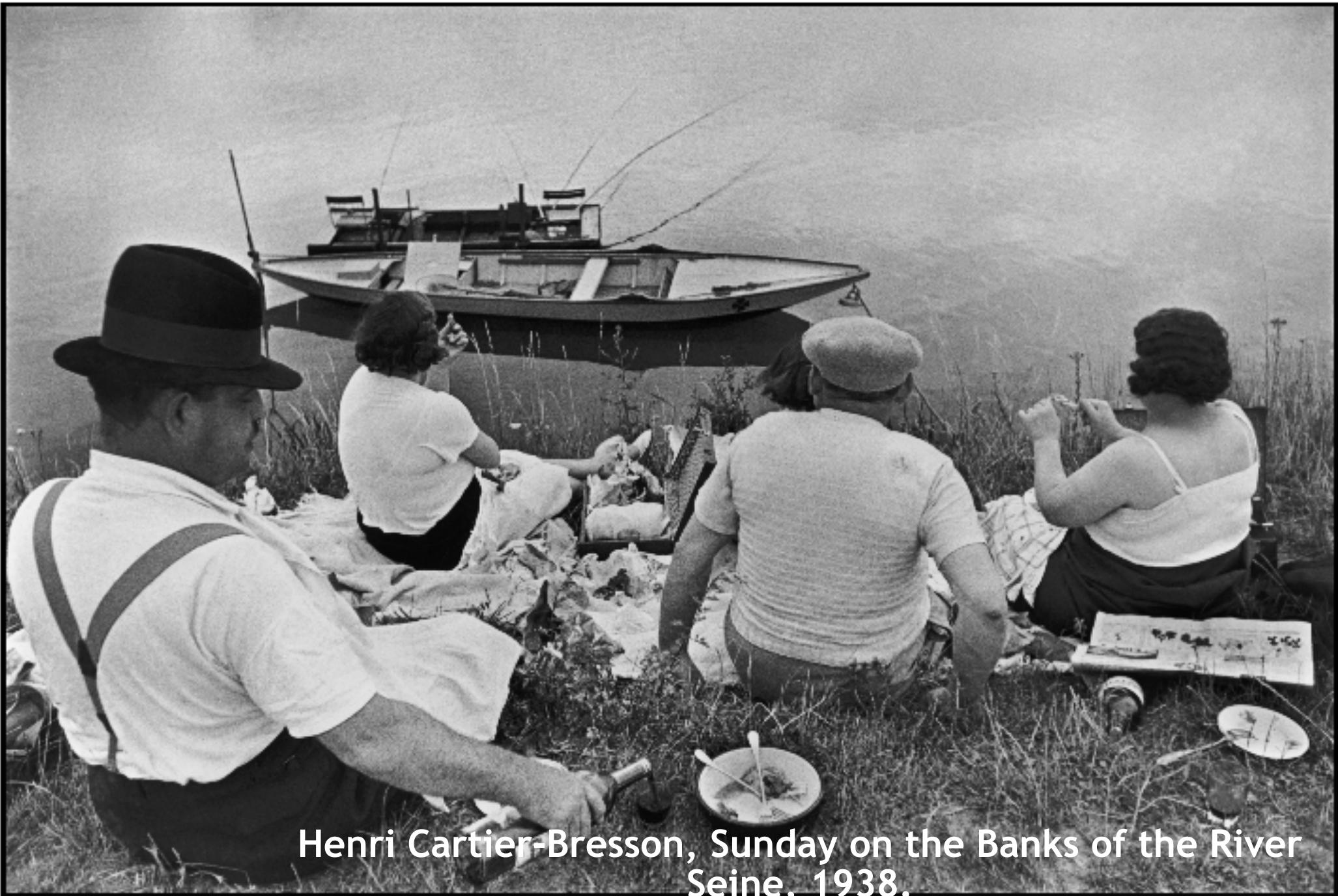


Thylacine, Dr. David Fleay, extinct in 1936.

Thylacine, Dr. David Fleay, extinct in 1936.

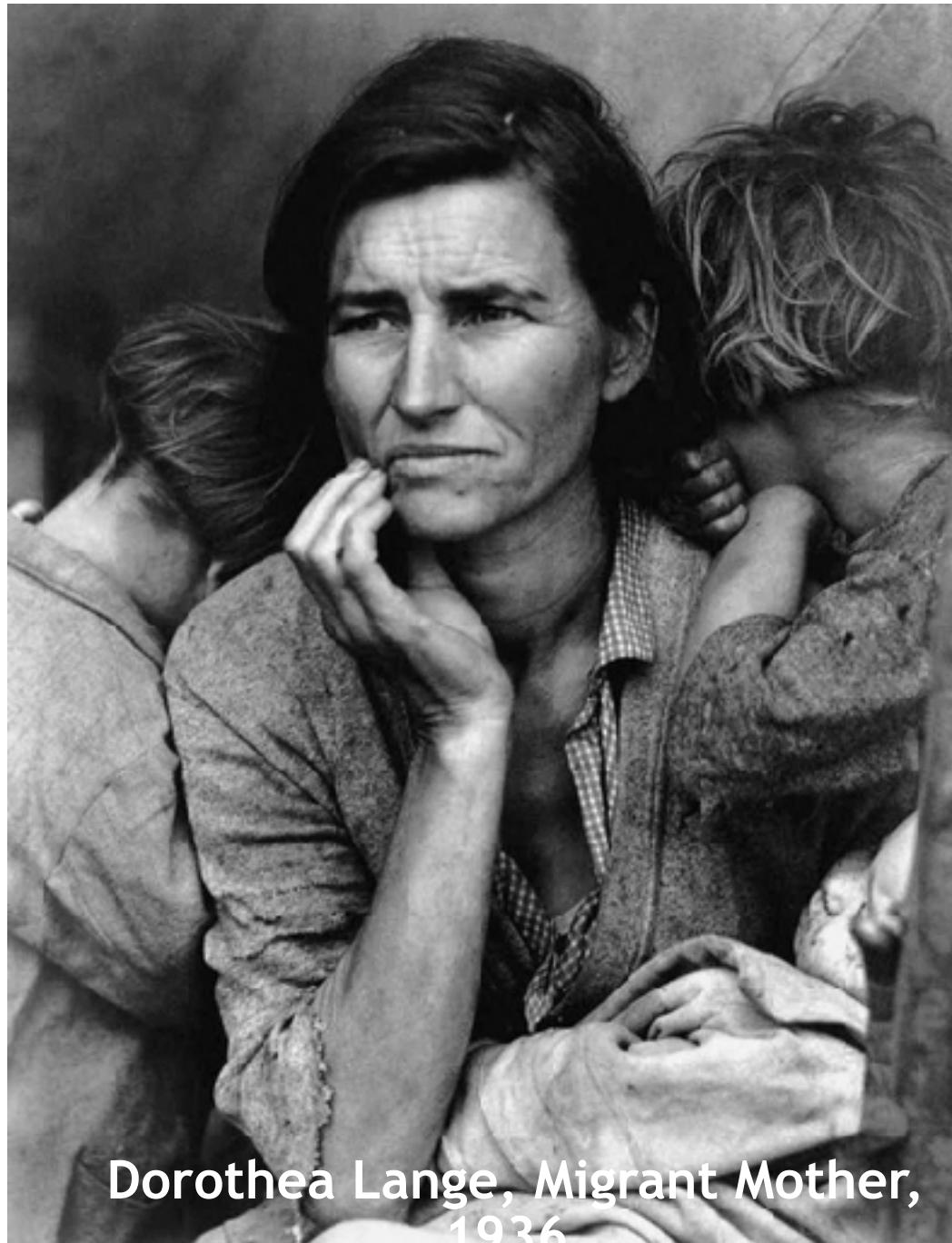
Amateur Family Photo, 1956.

Amateur Family Photo, 1956.

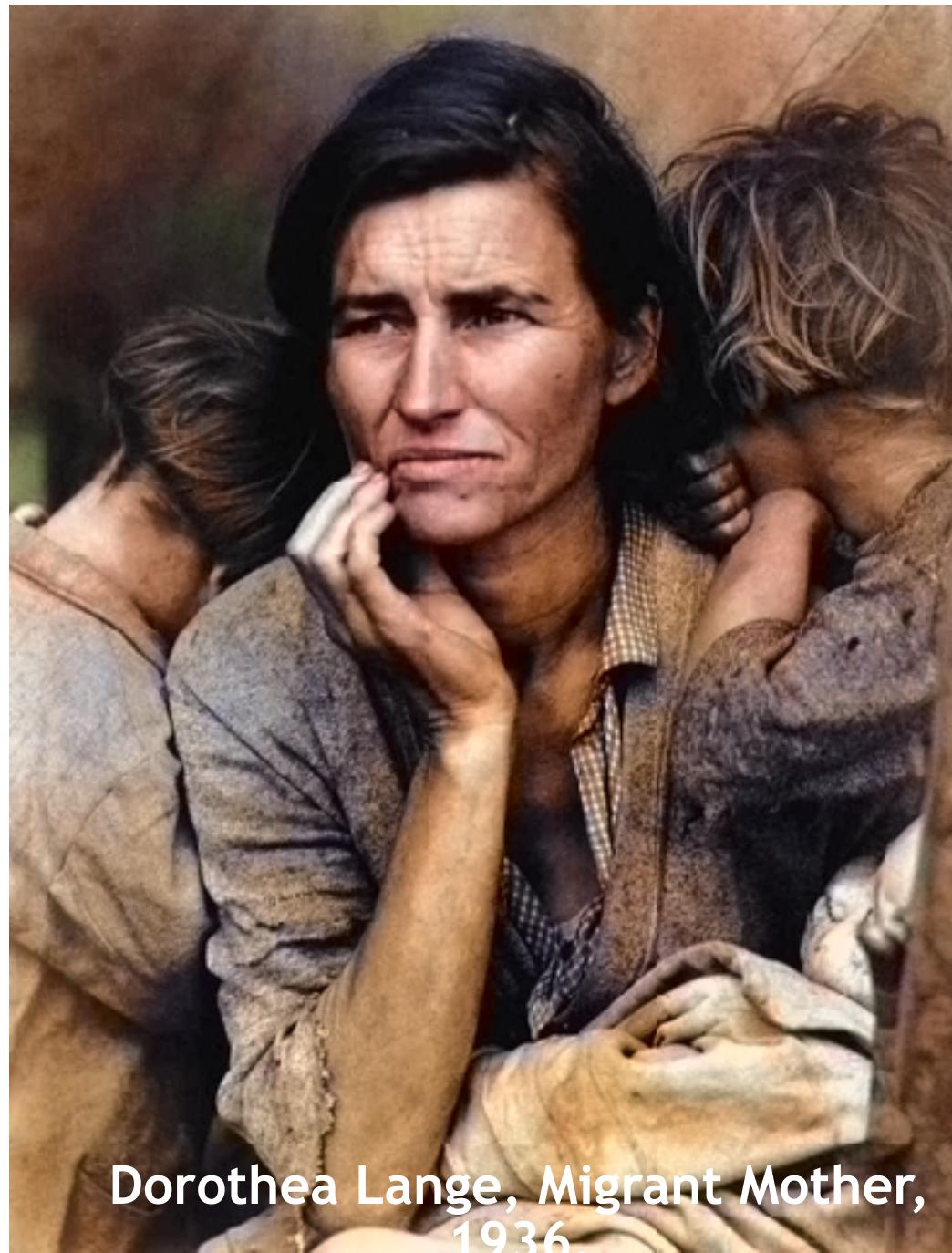


Henri Cartier-Bresson, Sunday on the Banks of the River Seine. 1938.

Henri Cartier-Bresson, Sunday on the Banks of the River Seine. 1938.



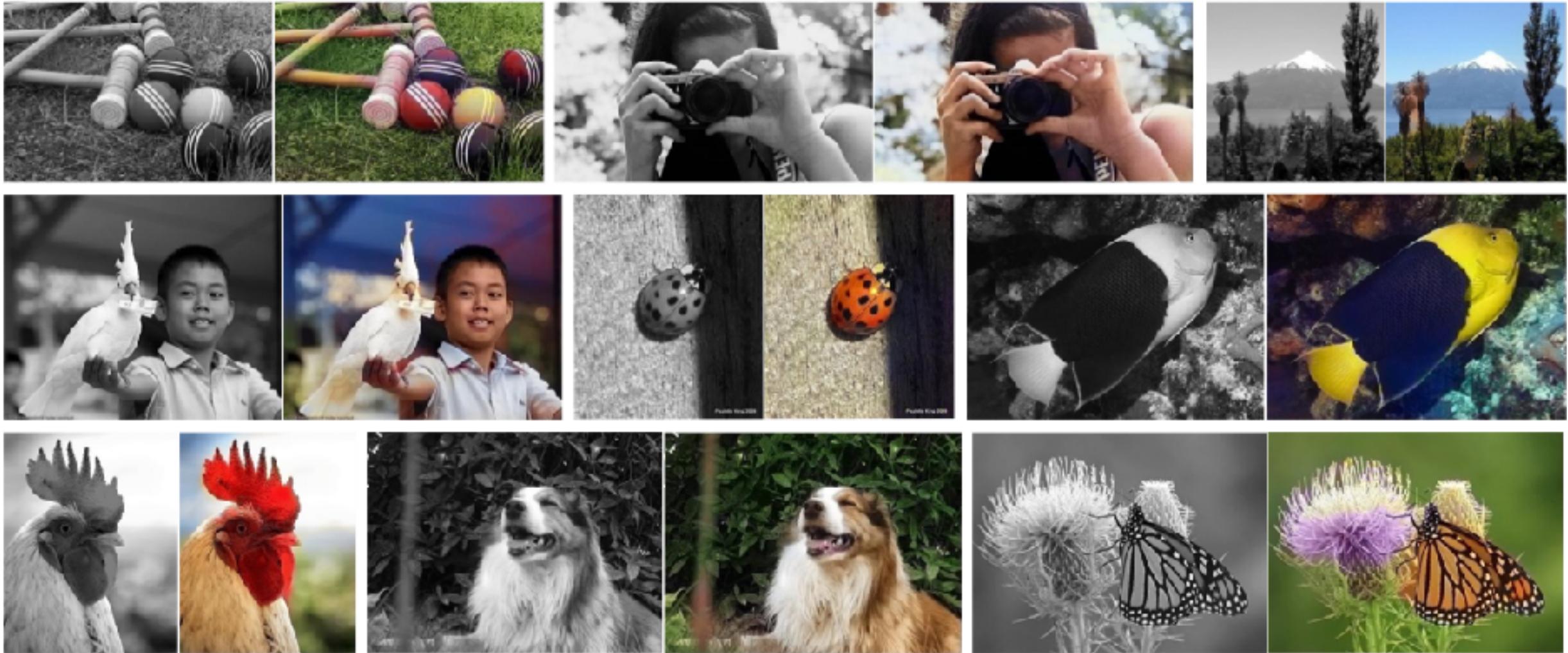
Dorothea Lange, Migrant Mother,
1936



Dorothea Lange, Migrant Mother,
1936

Additional Information

- Demo
 - <http://demos.algorithmia.com/colorize-photos/>
- Reddit ColorizeBot
 - Type “colorizebot” under any image post
- Code
 - <https://github.com/richzhang/colorization>
- Website – full paper, user examples, visualizations
 - <http://richzhang.github.io/colorization>



For the full paper, additional examples and our
model:
richzhang.github.io/colorization