Computer Vision
CSCI-GA.2272-001

Assignment, 3.

November 28, 2018

Introduction

This assignment explores various methods for aligning images and feature
extraction. There are four parts to the assignment:

1. Image alignment using RANSAC — Solve for an affine transformation
between a pair of images using the RANSAC fitting algorithm. [30
points).

2. Estimating Camera Parameters — using a set of 3D world points and
their 2D image locations, estimate the projection matrix P of a camera.
(35 points).

3. Structure from Motion — infer the 3D structure of an object, given a
set of images of the object. [35 points].

Please also download the assignment3.zip file from the course webpage as
it contains images and code needed for the assignment.

Requirements

You may perform this assignment in the language of your choice, but Python
or Matlab is strongly recommended as they are a high-level languages with
much of the required funtionality built-in.

CSCI-GA.2272-001 2

This assignment is due on Thursday December 20th at 7pm. Please
note that the late policy is as follows: (a) assignments that are late by less
than 24hrs will suffer a 10% reduction; (b) those between 24 and 72 hrs late
will suffer a 25% reduction and (c) those more 72hrs late will suffer a 50%
reduction. You are strongly encouraged to start the assignment early and
don’t be afraid to ask for help from either the TAs or myself.

You are allowed to collaborate with other students in terms discussing
ideas and possible solutions. However you code up the solution yourself,
i.e. you must write your own code. Copying your friends code and just
changing all the names of the variables is not allowed! You are not allowed
to use solutions from similar assignments in courses from other institutions,
or those found elsewhere on the web.

Your solutions should be emailed to me at (fergus@cs.nyu.edu) and the
graders Yi-Hsiang Kao (yhk342@nyu.edu) and Anshul Sharma (as10950@nyu. edu)
in a single zip file with the filename: lastname firstname a3.zip. This zip
file should contain: (i) a PDF file lastname firstname a3.pdf with your
report, showing output images for each part of the assignment and explana-
tory text, where appropriate; (ii) the source code used to generate the images
(with code comments), along with a master script that runs the code for each
part of the assignment in turn.

1 Image Alignment

In this part of the assignment you will write a function that takes two images
as input and computes the affine transformation between them. The overall
scheme, as outlined in lecture 5 and 6, is as follows:

e Find local image regions in each image

e Characterize the local appearance of the regions

e Get set of putative matches between region descriptors in each image
e Perform RANSAC to discover best transformation between images

The first two stages can be performed using David Lowe’s SIFT feature
detector and descriptor representation. A Matlab implementation of this
can be in found in the VLFeat package (http://www.vlfeat.org/overview/

CSCI-GA.2272-001 3

sift.html). A Python version can be found in the OpenCV-Python environ-
ment (http://opencv-python-tutroals.readthedocs.io/en/latest/py_
tutorials/py_feature2d/py_sift_intro/py_sift_intro.html).

The two images you should match are contained in the assignmentl.zip
file: scene.pgm and book.pgm, henceforth called image 1 and 2 respectively.

You should first run the SIFT detector over both images to produce a set
of regions, characterized by a 128d descriptor vector. Display these regions
on each picture to ensure that a satsifactory number of them have been
extracted. Please include the images in your report.

The next step is to obtain a set of putative matches T. This should be
done as follows: for each descriptor in image 1, compute the closest neighbor
amongst the descriptors from image 2 using Euclidean distance. Spurious
matches can be removed by then computing the ratio of distances between
the closest and second-closest neighbor and rejecting any matches that are
above a certain threshold. To test the functioning of RANSAC, we want to
have some erroneous matches in our set, thus this threshold should be set to
a fairly slack value of 0.9. To check that your code is functioning correctly,
plot out the two images side-by-side with lines showing the potential matches
(include this in your report).

The final stage, running RANSAC, should be performed as follows:

e Repeat N times (where NV is ~100):

e Pick P matches at random from the total set of matches T. Since we
are solving for an affine transformation which has 6 degrees of freedom,
we only need to select P=3 matches.

e Construct a matrix A and vector b using the 3 pairs of points as de-
scribed in lecture 6.

e Solve for the unknown transformation parameters q. In Matlab you
can use the \ command. In Python you can use linalg.solve.

e Using the transformation parameters, transform the locations of all T
points in image 1. If the transformation is correct, they should lie close
to their pairs in image 2.

e Count the number of inliers, inliers being defined as the number of
transformed points from image 1 that lie within a radius of 10 pixels
of their pair in image 2.

CSCI-GA.2272-001 4

e If this count exceeds the best total so far, save the transformation
parameters and the set of inliers.

e End repeat.

e Perform a final refit using the set of inliers belonging to the best trans-
formation you found. This refit should use all inliers, not just 3 points
chosen at random.

e Finally, transform image 1 using this final set of transformation pa-
rameters, . In Matlab this can be done by first forming a homogra-
phy matrix H = [q(1) q(2) q(5) ; q(3) q(4) q(6) ; 00 1 1;
and then using the imtransform and maketform functions as follows:
transformed image=imtransform(iml,maketform(’affine’ ,H’));. In
Python you can use the cv2.warpAffine from the OpenCV-Python en-
vironment. If you display this image you should find that the pose of
the book in the scene should correspond to its pose in image 2.

Your report should include: (i) the transformed image 1 and (ii) the
values in the matrix H.

2 Estimating the Camera Parameters

Here the goal is the compute the 3x4 camera matrix P describing a pin-
hole camera given the coordinates of 10 world points and their corresponding
image projections. Then you will decompose P into the intrinsic and extrinsic
parameters. You should write a simple Matlab or Python script that works
through the stages below, printing out the important terms.

Download from the course webpage the two ASCII files, world.txt and
image.txt. The first file contains the (X,Y,Z) values of 10 world points. The
second file contains the (x,y) projections of those 10 points.

(a) Find the 3x4 matrix P that projects the world points X to the 10
image points x. This should be done in the following steps:

e Since P is a homogeneous matrix, the world and image points (which
are 3 and 2-D respectively), need to be converted into homogeneous
points by concatenating a 1 to each of them (thus becoming 4 and 3-D
respectively).

CSCI-GA.2272-001 5

e We now note that x x PX = 0, irrespective of the scale ambiguity.
This allows us to setup a series of linear equations of the form:

for each correspondence x; + X;, where x; = (x4, y;, w;)?, w; being the
homogeneous coordinate, and P/ is the j** row of P. But since the 3rd
row is a linear combination of the first two, we need only consider the
first two rows for each correspondence ¢. Thus, you should form a 20
by 12 matrix A, each of the 10 correspondences contributing two rows.

This yields Ap = 0, p being the vector containing the entries of matrix
P.

e To solve for p, we need to impose an extra constraint to avoid the trivial
solution p = 0. One simple one is to use ||p||] = 1. This constraint
is implicitly imposed when we compute the SVD of A. The value of
p that minimizes Ap subject to ||p|la = 1 is given by the eigenvector
corresponding to the smallest singular value of A. To find this, compute
the SVD of A, picking this eigenvector and reshaping it into a 3 by 4
matrix P.

e Verify your answer by re-projecting the world points X and checking
that they are close to x.

(b) Now we have P, we can compute the world coordinates of the pro-
jection center of the camera C'. Note that PC' = 0, thus C' lies in the null
space of P, which can again be found with an SVD (the Matlab command
is svd). Compute the SVD of P and pick the vector corresponding to this
null-space. Finally, convert it back to inhomogeneous coordinates and to
yield the (X,Y,Z) coordinates. Your report should contain the matrix P and
the value of C.

In the alternative route, we decompose P into it’s constituent matrices.
Recall from the lectures that P = K[R|t]. However, also, t = —RC, C being
the inhomogeneous form of C'. Since K is upper triangular, use a RQdecom-
position to factor K R into the intrinsic parameters K and a rotation matrix
R. Then solve for C'. Check that your answer agrees with the solution from
the first method.

CSCI-GA.2272-001 6
3 Structure from Motion

In this section you will code up an affine structure from motion algorithm, as
described in the slides of lecture 10. For more details, you can consult page
437 of the Hartley & Zisserman book.

Load the file sfm_points.mat (included in assignmentl.zip). In Python
this can be done using scipy (http://docs.scipy.org/doc/scipy/reference/
tutorial/io.html). The file contains a 2 by 600 by 10 matrix, holding
the z, y coordinates of 600 world points projected onto the image plane
of the camera in 10 different locations. The points correspond, that is
image_points(:,1,:) is the projection of the same 3D world point in the
10 frames. The points have been drawn randomly to lie on the surface of a
transparent 3D cube, which does not move between frames (i.e. the object is
static, only the camera moves). Try plotting out several frames and the cube
shaped structure should be apparent (the plot3 command may be useful).

To simplify matters, we will only attempt an affine reconstruction, thus
the projection matrix of each camera ¢ will have following form:

P11 P12 P13 DPi4 i i
MYt
—())

P = D21 P22 P23 P24 0 1
0 0 0 1

where M® is a 2 by 3 matrix and ¢* is a 2 by 1 translation vector.

So given m = 10 views and n = 600 points, having image locations Xé»,
where j = 1,...,n, ¢ = 1,...,m, we want to determine the affine camera
matrices M* ¢ and 3D points X; so that we minimize the reconstruction
error:

DI — (MX; + 1) (3)
ij

We do this in the following stages:

e Compute the translations t* directly by computing the centroid of point
in each image .

e Center the points in each image by subtracting off the centroid, so that
the points have zero mean

e Construct the 2m by n measurement matrix W from the centered data.

e Perform an SVD decomposition of W into UDVT.

CSCI-GA.2272-001 7

e The camera locations M* can be obtained from the first three columns
of U multiplied by D(1: 3,1 : 3), the first three singular values.

e The 3D world point locations are the first three columns of V.

e You can verify your answer by plotting the 3D world points out. using
the plot3 command. The rotate3d command will let you rotate the
plot. This functionality is replicated in Python within the matplotlib
package.

You should write a script to implement the steps above. The script should
print out the M* and ¢* for the first camera and also the 3D coordinates of
the first 10 world points. Cut and paste these into your report.

