
Semantic Segmentation
and
Image Processing

with Convnets

Overview

• Methods where output is also an image
• Fully Convolutional Nets [Long et al., CVPR 2015]
• Depth, normals and semantic labels from a single image [Eigen ICCV 2015]

• Image processing with Convnets

UC Berkeley in CVPR'15, PAMI'16

A Fuller Understanding of
Fully Convolutional Networks

Evan Shelhamer* Jonathan Long* Trevor Darrell

3

pixels in, pixels out

semantic
segmentation

4

monocular depth + normals Eigen & Fergus 2015

boundary prediction Xie & Tu 2015optical flow Fischer et al. 2015

colorization
Zhang et al.2016

5

“tabby cat”

1000-dim vector

< 1 millisecond

convnets perform classification

end-to-end learning

6

~1/10 second

end-to-end learning

???

lots of pixels, little time?

“tabby cat”

7

a classification network

8

becoming fully convolutional

9

becoming fully convolutional

10

upsampling output

11

end-to-end, pixels-to-pixels network

conv, pool,
nonlinearity

upsampling

pixelwise
output + loss

end-to-end, pixels-to-pixels network

12

spectrum of deep features

combine where (local, shallow) with what (global, deep)

fuse features into deep jet

(cf. Hariharan et al. CVPR15 “hypercolumn”) 13

skip layers

skip to fuse layers!

interp + sum

interp + sum

dense output 14

end-to-end, joint learning
of semantics and location

stride 32

no skips

stride 16

1 skip

stride 8

2 skips

ground truthinput image

skip layer refinement

15

skip FCN computation Stage 1 (60.0ms)

Stage 2 (18.7ms)

Stage 3 (23.0ms)

A multi-stream network that fuses features/predictions across layers

FCN SDS* Truth Input

17

Relative to prior state-of-the-
art SDS:

- 30% relative
improvement
for mean IoU

- 286× faster

*Simultaneous Detection and Segmentation
Hariharan et al. ECCV14

SegNet: A Deep Convolutional Encoder-Decoder
Architecture for Image Segmentation

https://arxiv.org/abs/1511.00561

Max pooling indices transferred to decoder to improve output resolution

How to do the Upsampling?

Also known as Deconvolution
See https://distill.pub/2016/deconv-checkerboard/

Avoid artifacts by doing bilinear interpolation

UNet: Convolutional Networks for Biomedical Image Segmentation

https://arxiv.org/abs/1505.04597 Segmentation of a 512x512 image takes less than a second on a recent GPU

[Multi-Scale Context Aggregation by Dilated Convolutions, Yu and Koltun, 2015]

Published as a conference paper at ICLR 2016

Layer 1 2 3 4 5 6 7 8
Convolution 3⇥3 3⇥3 3⇥3 3⇥3 3⇥3 3⇥3 3⇥3 1⇥1
Dilation 1 1 2 4 8 16 1 1
Truncation Yes Yes Yes Yes Yes Yes Yes No
Receptive field 3⇥3 5⇥5 9⇥9 17⇥17 33⇥33 65⇥65 67⇥67 67⇥67

Output channels
Basic C C C C C C C C
Large 2C 2C 4C 8C 16C 32C 32C C

Table 1: Context network architecture. The network processes C feature maps by aggregating
contextual information at progressively increasing scales without losing resolution.

This completes the presentation of the basic context network. Our experiments show that even this
basic module can increase dense prediction accuracy both quantitatively and qualitatively. This is
particularly notable given the small number of parameters in the network: ⇡ 64C2 parameters in
total.

We have also trained a larger context network that uses a larger number of feature maps in the
deeper layers. The number of maps in the large network is summarized in Table 1. We generalize
the initialization scheme to account for the difference in the number of feature maps in different
layers. Let ci and ci+1 be the number of feature maps in two consecutive layers. Assume that C
divides both ci and ci+1. The initialization is

kb(t, a) =

8
><

>:

C

ci+1
t = 0 and

�
aC

ci

⌫
=

�
bC

ci+1

⌫

" otherwise
(5)

Here " ⇠ N (0,�2) and � ⌧ C/ci+1. The use of random noise breaks ties among feature maps
with a common predecessor.

4 FRONT END

We implemented and trained a front-end prediction module that takes a color image as input and
produces C = 21 feature maps as output. The front-end module follows the work of Long et al.
(2015) and Chen et al. (2015a), but was implemented separately. We adapted the VGG-16 network
(Simonyan & Zisserman, 2015) for dense prediction and removed the last two pooling and striding
layers. Specifically, each of these pooling and striding layers was removed and convolutions in
all subsequent layers were dilated by a factor of 2 for each pooling layer that was ablated. Thus
convolutions in the final layers, which follow both ablated pooling layers, are dilated by a factor of
4. This enables initialization with the parameters of the original classification network, but produces
higher-resolution output. The front-end module takes padded images as input and produces feature
maps at resolution 64⇥64. We use reflection padding: the buffer zone is filled by reflecting the
image about each edge.

Our front-end module is obtained by removing vestiges of the classification network that are counter-
productive for dense prediction. Most significantly, we remove the last two pooling and striding
layers entirely, whereas Long et al. kept them and Chen et al. replaced striding by dilation but
kept the pooling layers. We found that simplifying the network by removing the pooling layers
made it more accurate. We also remove the padding of the intermediate feature maps. Intermediate
padding was used in the original classification network, but is neither necessary nor justified in dense
prediction.

This simplified prediction module was trained on the Pascal VOC 2012 training set, augmented by
the annotations created by Hariharan et al. (2011). We did not use images from the VOC-2012
validation set for training and therefore only used a subset of the annotations of Hariharan et al.
(2011). Training was performed by stochastic gradient descent (SGD) with mini-batch size 14,
learning rate 10�3, and momentum 0.9. The network was trained for 60K iterations.

We now compare the accuracy of our front-end module to the FCN-8s design of Long et al. (2015)
and the DeepLab network of Chen et al. (2015a). For FCN-8s and DeepLab, we evaluate the public

4

Dilated / Atrous Convolutions

• No pooling operations
• Constant resolution feature maps
• Integrate increasing spatial context by special kind of

dilated convolution

• Constant 64x64 spatial resolution throughout

[Multi-Scale Context Aggregation by Dilated Convolutions, Yu and Koltun, 2015]

Dilated / Atrous ConvolutionsPublished as a conference paper at ICLR 2016

(a) Image (b) FCN-8s (c) DeepLab (d) Our front end (e) Ground truth

Figure 2: Semantic segmentations produced by different adaptations of the VGG-16 classification
network. From left to right: (a) input image, (b) prediction by FCN-8s (Long et al., 2015), (c)
prediction by DeepLab (Chen et al., 2015a), (d) prediction by our simplified front-end module, (e)
ground truth.

ae
ro

bi
ke

bi
rd

bo
at

bo
ttl

e

bu
s

ca
r

ca
t

ch
ai

r

co
w

ta
bl

e

do
g

ho
rs

e

m
bi

ke

pe
rs

on

pl
an

t

sh
ee

p

so
fa

tra
in tv

m
ea

n
Io

U

FCN-8s 76.8 34.2 68.9 49.4 60.3 75.3 74.7 77.6 21.4 62.5 46.8 71.8 63.9 76.5 73.9 45.2 72.4 37.4 70.9 55.1 62.2
DeepLab 72 31 71.2 53.7 60.5 77 71.9 73.1 25.2 62.6 49.1 68.7 63.3 73.9 73.6 50.8 72.3 42.1 67.9 52.6 62.1
DeepLab-Msc 74.9 34.1 72.6 52.9 61.0 77.9 73.0 73.7 26.4 62.2 49.3 68.4 64.1 74.0 75.0 51.7 72.7 42.5 67.2 55.7 62.9
Our front end 82.2 37.4 72.7 57.1 62.7 82.8 77.8 78.9 28 70 51.6 73.1 72.8 81.5 79.1 56.6 77.1 49.9 75.3 60.9 67.6

Table 2: Our front-end prediction module is simpler and more accurate than prior models. This table
reports accuracy on the VOC-2012 test set.

models trained by the original authors on VOC-2012. Segmentations produced by the different
models on images from the VOC-2012 dataset are shown in Figure 2. The accuracy of the models
on the VOC-2012 test set is reported in Table 2.

Our front-end prediction module is both simpler and more accurate than the prior models. Specif-
ically, our simplified model outperforms both FCN-8s and the DeepLab network by more than 5
percentage points on the test set. Interestingly, our simplified front-end module outperforms the
leaderboard accuracy of DeepLab+CRF on the test set by more than a percentage point (67.6%
vs. 66.4%) without using a CRF.

5

Further Resources

http://blog.qure.ai/notes/semantic-segmentation-deep-learning-review

Overview

• Methods where output is now an image
• Fully Convolutional Nets [Long et al., CVPR 2015]
• Depth, normals and semantic labels from a single image [Eigen ICCV 2015]

• Image processing with Convnets
• Image colorization [Zhang et al. ECCV 2016]

Beyond Object Classification with
Convolutional Networks

David Eigen (NYU -> Clarifai)
Rob Fergus (Facebook / NYU)

Motivation

Input Image

• Understand input scene
– Semantic
– Geometric

Semantic Map

Motivation

Input Image

• Understand input scene
– Semantic
– Geometric

Depth

Semantic Map

Semantic Map

Motivation

Input Image

• Understand input scene
– Semantic
– Geometric

Depth

Normals

Semantic Map

Motivation

Input Image

• Predict Pixel Maps from a Single Image

Depth

Normals

Architecture
96 256 384 384 256 4096 64

Input: 320x240 Output 1: 19x14

Architecture
96 256 384 384 256 4096

64 128 64 64

64

upsample

Input: 320x240

Output 2: 75x55

Architecture
96 256 384 384 256 4096

64 128 64 64

63 64 64 64

convolutionsconv+pool concat

64

upsample

upsample

Input: 320x240

Output: 147x109

Architecture

convolutionsconv+pool concat

upsample

upsample

Input: 320x240

Architecture
96 256 384 384 256 4096

64 128 64 64

64 64+C 64 64

convolutionsconv+pool concat

64

upsample

upsample

Input: 320x240

Losses
Depth:

Normals

Labels

D = log predicted depth, D* = log true depth

Per-pixel soft-max

Angle between
true / predicted
normals

Training
• Pre-train Alexnet/VGGnet scale 1 with Imagenet
• Scale 2 & 3 random initialization
• Joint train layers 1 & 2 for each task
– Loss on output of layer 2

• Fix layers 1 & 2, train layer 3

• For depth & normals task, share scale 1
– But separate scale 2 & 3’s
– 1.6x speedup

Evaluation
• NYU Depth dataset
– RGB, Depth

and per-pixel labels
– Indoor scenes

• Supervised training
of models

• Compare to range of other methods
– Also on SIFTFlow and PASCAL VOC’11

Depths Comparison
Ground TruthOursEigen NIPS’14 (2 scales)

Depth Comparison
• m3d = Make3D [Saxena & Ng 2006]

Ours (2-scale)

Surface Normals

Surface Normals

Results: Normals
Angle from Ground Truth

0. 9. 18. 27. 36. 45.

Ours+VGG

Ours

Wang &al

Fouhey &al '14

Ladicky &al

3DP

mean

0. 7.5 15. 22.5 30. 37.5

median

depth

coarse fine

normals

input

Output from each scale
nearfar

Semantic Labels: NYUD

Results: NYUD 40 Classes

54.25 56. 57.75 59.5 61.25 63. 64.75 66.5

Ours (VGG)

Long &al

Ours

Gupta &al '14

Gupta &al '13

pix

20. 27. 34. 41. 48.

Per-Pixel Acc. Per-Class Acc.

• Use RGB + ground truth depth & normals as inputs

Results: NYUD Labels

60. 67.5 75. 82.5

Ours

Gupta &al

Mueller &al

Stuckler &al

Khan &al

Couprie &al

4 Classes: Pixel Acc. 13 Classes: Pixel Acc.

30. 42.5 55. 67.5 80.

Ours

Khan

Hermans

Wang

Couprie

• Use RGB + ground truth depth & normals as inputs

Semantic Labels: Pascal VOC’11

• On NYU Depth

• Depth & normals: scale 1 most important
• Semantic labels: scale 2 most important

(if D & N are available)

Contribution from different scales

Using Predicted Depths
• Use predicted depth/normals as input?

69.8

65.1

65.

58.7

63.2

53.1

35. 43.75 52.5 61.25 70. 78.75

Scales 1+2

Scale 2 only

58.9

52.3

49.5

43.8

50.6

38.3

30. 37.5 45. 52.5 60. 67.5

Per-Pixel Acc. Per-Class Acc.

RGB only RGB + Pred D&N RGB + GT D&N
• NYU Depth

13-class

Overview
• Methods where output is also an image

– Fully Convolutional Nets [Long et al., CVPR 2015]
– Depth, normals and semantic labels from a single image [Eigen ICCV 2015]

• Image processing with Convnets

Denoising with ConvNets

• Burger et al. “Can plain NNs compete with BM3D?” CVPR 2012

Original Noised Denoised

Learning to See in the Dark

Learning to See in the Dark

Chen Chen
UIUC

Qifeng Chen
Intel Labs

Jia Xu
Intel Labs

Vladlen Koltun
Intel Labs

(a) Camera output with ISO 8,000 (b) Camera output with ISO 409,600 (c) Our result from the raw data of (a)

Figure 1. Extreme low-light imaging with a convolutional network. Dark indoor environment. The illuminance at the camera is < 0.1
lux. The Sony ↵7S II sensor is exposed for 1/30 second. (a) Image produced by the camera with ISO 8,000. (b) Image produced by the
camera with ISO 409,600. The image suffers from noise and color bias. (c) Image produced by our convolutional network applied to the
raw sensor data from (a).

Abstract

Imaging in low light is challenging due to low pho-
ton count and low SNR. Short-exposure images suffer from
noise, while long exposure can induce blur and is often
impractical. A variety of denoising, deblurring, and en-
hancement techniques have been proposed, but their effec-
tiveness is limited in extreme conditions, such as video-rate
imaging at night. To support the development of learning-
based pipelines for low-light image processing, we intro-
duce a dataset of raw short-exposure low-light images, with
corresponding long-exposure reference images. Using the
presented dataset, we develop a pipeline for processing
low-light images, based on end-to-end training of a fully-
convolutional network. The network operates directly on
raw sensor data and replaces much of the traditional im-
age processing pipeline, which tends to perform poorly on
such data. We report promising results on the new dataset,
analyze factors that affect performance, and highlight op-
portunities for future work.

1. Introduction

Noise is present in any imaging system, but it makes
imaging particularly challenging in low light. High ISO can
be used to increase brightness, but it also amplifies noise.
Postprocessing, such as scaling or histogram stretching, can
be applied, but this does not resolve the low signal-to-noise
ratio (SNR) due to low photon counts. There are physi-

cal means to increase SNR in low light, including opening
the aperture, extending exposure time, and using flash. But
each of these has its own characteristic drawbacks. For ex-
ample, increasing exposure time can introduce blur due to
camera shake or object motion.

The challenge of fast imaging in low light is well-
known in the computational photography community, but
remains open. Researchers have proposed techniques for
denoising, deblurring, and enhancement of low-light im-
ages [34, 16, 42]. These techniques generally assume that
images are captured in somewhat dim environments with
moderate levels of noise. In contrast, we are interested in
extreme low-light imaging with severely limited illumina-
tion (e.g., moonlight) and short exposure (ideally at video
rate). In this regime, the traditional camera processing
pipeline breaks down and the image has to be reconstructed
from the raw sensor data.

Figure 1 illustrates our setting. The environment is ex-
tremely dark: less than 0.1 lux of illumination at the cam-
era. The exposure time is set to 1/30 second. The aperture
is f/5.6. At ISO 8,000, which is generally considered high,
the camera produces an image that is essentially black, de-
spite the high light sensitivity of the full-frame Sony sen-
sor. At ISO 409,600, which is far beyond the reach of most
cameras, the content of the scene is discernible, but the im-
age is dim, noisy, and the colors are distorted. As we will
show, even state-of-the-art denoising techniques [32] fail to
remove such noise and do not address the color bias. An
alternative approach is to use a burst of images [24, 14], but

1

ar
X

iv
:1

80
5.

01
93

4v
1

 [c
s.C

V
]

4
M

ay
 2

01
8

[Chen et al., arXiv 1805.01934]

(a) Traditional pipeline (b) ... followed by BM3D denoising (c) Our result

Figure 7. An image from the Sony x300 set. (a) Low-light input processed by the traditional image processing pipeline and linear scaling.
(b) Same, followed by BM3D denoising. (c) Our result.

Condition Sony Fuji

1. Our default pipeline 28.88/0.787 26.61/0.680
2. U-net ! CAN 27.40/0.792 25.71/0.710
3. Raw ! sRGB 17.40/0.554 25.11/0.648
4. L1 ! SSIM loss 28.64/0.817 26.20/0.685
5. L1 ! L2 loss 28.47/0.784 26.51/0.680
6. Packed ! Masked 26.95/0.744 –
7. X-Trans 3⇥ 3 ! 6⇥ 6 – 23.05/0.567
8. Stretched references 18.23/0.674 16.85/0.535

Table 3. Controlled experiments. This table reports mean
PSNR/SSIM in each condition.

Network structure. We begin by comparing different net-
work architectures. Table 3 (row 2) reports the result of
replacing the U-net [35] (our default architecture) by the
CAN [5]. The U-net has higher PSNR on both sets. Al-
though images produced by the CAN have higher SSIM,
they sometimes suffer from loss of color. A patch from the
Fuji x300 set is shown in Figure 8. Here colors are not re-
covered correctly by the CAN.

(a) CAN (b) U-net

Figure 8. Comparison of network architectures on an image patch
from the Fuji x300 test set. (a) Using the CAN structure, the color
is not recovered correctly. (b) Using the U-net. Zoom in for detail.

Input color space. Most existing denoising methods oper-
ate on sRGB images that have already been processed by a
traditional image processing pipeline. We have found that
operating directly on raw sensor data is much more effective
in extreme low-light conditions. Table 3 (row 3) shows the
results of the presented pipeline when it’s applied to sRGB
images produced by the traditional pipeline.

Loss functions. We use the L1 loss by default, but have
evaluated many alternative loss functions. As shown in
Table 3 (rows 4 and 5), replacing the L1 loss by L2 or
SSIM [43] produces comparable results. We have not ob-
served systematic perceptual benefits for any one of these
loss functions. Adding a total variation loss does not im-
prove accuracy. Adding a GAN loss [11] significantly re-
duces accuracy.

Data arrangement. The raw sensor data has all colors in a
single channel. Common choices for arranging raw data for
a convolutional network are packing the color values into
different channels with correspondingly lower spatial reso-
lution, or duplicating and masking different colors [10]. We
use packing by default. As shown in Table 3 (row 6), mask-
ing the Bayer data (Sony subset) yields lower PSNR/SSIM
than packing; a typical perceptual artifact of the masking
approach is loss of some hues in the output.

The X-Trans data is very different in structure from the
Bayer data and is arranged in 6⇥6 blocks. One option is
to pack it into 36 channels. Instead, we exchange some val-
ues between neighboring elements to create a 3⇥3 pattern,
which is packed into 9 channels. As shown in Table 3 (row
7), 6⇥6 packing yields lower PSNR/SSIM; a typical per-
ceptual artifact is loss of color and detail.

Postprocessing. In initial experiments, we included his-
togram stretching in the processing pipeline for the ref-
erence images. Thus the network had to learn histogram
stretching in addition to the rest of the processing pipeline.
Despite trying many network architectures and loss func-
tions, we were not successful in training networks to per-

Learning to See in the Dark

Raw DataRaw Data Align &
Merge

White
Balance,

Demosaic,
Chroma,
Denoise

Local tone
map

Dehaze,
Global tone

map

Sharpen,
hue &

saturation
Burst OutputRaw

(a)

�

Bayer Raw

Amplification Ratio

Black Level

Output RGB

� ×� × ͵�
ʹ ×

�
ʹ × ͳʹ�

ʹ ×
�
ʹ × Ͷ

� ×� × ͳ

ConvNet

(b)

White
Balance Demosaic Color Space

Conversion
Denoise,
Sharpen

Gamma
CorrectionTraditional OutputRaw

[Chen et al., arXiv 1805.01934]

Fully Convolutional Network (FCN)

Deblurring with Convnets

• Blind deconvolution
– Learning to Deblur, Schuler et al., arXiv 1406.7444, 2014

Inpainting with Convnets
• Image Denoising and Inpainting with Deep Neural

Networks, Xie et al. NIPS 2012.
• Mask-specific inpainting with deep neural networks,

Köhler et al., Pattern Recognition 2014

Original Schmid CVPR’10 Köhler et al.
‘14

Removing Local Corruption
• Restoring An Image Taken Through a Window Covered with

Dirt or Rain, Eigen et al., ICCV 2013.

Removing Local Corruption

Enhanced Deep Residual Networks for
Single Image Super-Resolution, Bee Lim

Sanghyun Son Heewon Kim Seungjun Nah
Kyoung Mu Le, CVPR 2017 workshop

Class Project Admin

• Presentations
• Report
• Deadline is Friday Dec 20th midnight
• Feel free to turn in earlier
• Will *try* to grade them and compute final grades by Christmas

• Will post all of this to Piazza

Presentation session
• Thursday, December 19th at 7:00-9:00 pm (405 Silver).

• 2 slides presentation on your project
– Submit slides beforehand
– Strict timing (to fit in 2hrs!)
–Will be part of grading

• Pizza & drinks will be served!

Project Expectations

• Grading (45% of total grade for class)
• Novelty / Technical difficulty of problem [15%]
• Quality of Results [15%]
• Quality of implementation [5%]
• Quality of writeup [5%]
• Presentation [5%]
• How many people in your group

Project Expectations

• Report

• 4-8 page conference paper style report on your project

• Intro (with refs to related work)

• Method (be sure to cite any code/pre-trained models)

• Experiments (must have plots/results figures; also should have baselines;
ideally some kind of ablation experiments too)

• Discuss (brief)

• See examples: http://openaccess.thecvf.com/CVPR2018.py

• Zip of source code or link to Github (please ensure you give access to robfergus)

• For presentations:

• 2 (two) PPT slides only. Will not show more slides.

Project Expectations

• Generalities
• Please make sure you have *something* working, even if you

don’t achieve overall goal
• Even a small part of an ambitious project can be OK
• So please have a safe plan B option in mind
• Expect all projects to train something, i.e. must use b-prop at some

point
• Just evaluating existing models is NOT OK.
• Cluster gets busy -- please don’t leave it all to last moment.

