Recurrent Neural Nets \& Visual Captioning

Lecture 17

Slides from: Dhruv Bhatra, Fei-Fei Li, Justin Johnson, Serena Yeung, Andrej Karpathy

Recurrent Neural Nets

one to one

one to many

many to one

many to many

Recurrent Neural Nets

one to one

Input: No sequence
Output: No sequence

Example: "standard" classification / regression problems
one to many

Input: No sequence
Output: Sequence
Example: Im2Caption
many to one

Input: Sequence
Output: No sequence
Example: sentence classification, multiple-choice question answering
many to many

Input: Sequence
Output: Sequence
Example: machine translation, video captioning, openended question answering, video question answering

Synonyms

- Recurrent Neural Networks (RNNs)
- Types:
- "Vanilla" RNNs
- Long Short Term Memory (LSTMs)
- Gated Recurrent Units (GRUs)
- Algorithms
- BackProp Through Time (BPTT)

What's wrong with MLPs/ConvNets?

- Problem 1: Can't model sequences
- Fixed-sized Inputs \& Outputs
- No temporal structure
- Problem 2: Pure feed-forward processing
- No "memory", no feedback

Sequences are everywhere...

Foreign Minister.

FOREIGN MINISTER.

THE SOUND OF

$$
\begin{array}{ccccccc}
a_{1}=2 & a_{2}=0 & a_{3}=1 & a_{4}=3 & a_{5}=4 & a_{6}=2 & a_{7}=5 \\
\boldsymbol{x}= & \text { bringen } & \text { sie } & \text { bitte } & \text { das } & \text { auto } & \text { zurück }
\end{array}
$$

Even where you might not expect a sequence...

A group of people shopping at an outdoor market.

There are many vegetables at the fruit stand.

John has a dog . \rightarrow

John has a dog $\left.\quad \rightarrow \quad\left(\mathrm{S}(\mathrm{NP} \text { NNP })_{\mathrm{NP}}(\text { VP VBZ (NP DT NN })_{\mathrm{NP}}\right)_{\mathrm{VP}}.\right)_{\mathrm{S}}$
(C) Dhruv Batra

Recurrent Neural Network

Recurrent Neural Network

Recurrent Neural Network

We can process a sequence of vectors \mathbf{x} by applying a recurrence formula at every time step:

$$
h_{t}=f_{W}\left(h_{t-1},, x_{t}\right)
$$

new state old state input vector at
some time step some function with parameters W

Recurrent Neural Network

We can process a sequence of vectors \mathbf{x} by applying a recurrence formula at every time step:

$$
h_{t}=f_{W}\left(h_{t-1}, x_{t}\right)
$$

Notice: the same function and the same set of parameters are used at every time step.

(Vanilla) Recurrent Neural Network

The state consists of a single "hidden" vector \mathbf{h} :

$$
y_{t}=W_{h y} h_{t}+b_{y}
$$

$$
h_{t}=f_{W}\left(h_{t-1}, x_{t}\right)
$$

$$
h_{t}=\tanh \left(W_{h h} h_{t-1}+W_{x h} x_{t}+b_{h}\right)
$$

RNN: Computational Graph

RNN: Computational Graph

RNN: Computational Graph

RNN: Computational Graph

Re-use the same weight matrix at every time-step

RNN: Computational Graph: Many to Many

RNN: Computational Graph: Many to Many

RNN: Computational Graph: Many to Many

RNN: Computational Graph: Many to One

RNN: Computational Graph: One to Many

Sequence to Sequence: Many-to-one + one-tomany

Many to one: Encode input sequence in a single vector

Sequence to Sequence: Many-to-one + one-tomany

One to many: Produce output sequence from single input vector

Many to one: Encode input sequence in a single vector

Forward through entire sequence to compute loss, then backward through entire sequence to compute gradient

Truncated Backpropagation through time

Run forward and backward through chunks of the sequence instead of whole sequence

Truncated Backpropagation through time

Carry hidden states forward in time forever, but only backpropagate for some smaller number of steps

Truncated Backpropagation through time

Example:
 Character-level Language Model

Vocabulary: [h,e,l,o]

Example training sequence: "hello"

Example:
 Character-level Language Model

$$
h_{t}=\tanh \left(W_{h h} h_{t-1}+W_{x h} x_{t}+b_{h}\right)
$$

Vocabulary: [h,e,l,o]

Example training sequence: "hello"

Example: Character-level Language Model

Vocabulary: [h,e,l,o]

Example training sequence: "hello"

Example:
 Character-level Language Model Sampling

Vocabulary:
[h,e,l,o]

At test-time sample characters one at a time, feed back to

Example:
 Character-level Language Model Sampling

Vocabulary:
[h,e,l,o]

At test-time sample characters one at a time, feed back to model

Example:
 Character-level Language Model Sampling

Vocabulary:

[h,e,l,o]
At test-time sample characters one at a time, feed back to model

Example:
 Character-level Language Model Sampling

Vocabulary:
[h,e,l,o]

At test-time sample characters one at a time, feed back to model

min-char-rnn.py gist: 112 lines of Python

```
M
|>n)
import numpy as np
data =open('innut.txt','r').read() * should be simple plain text file
chars = 1ist(set(data))
```



```
Char_to ix ={ ch:i for i,ch in enumerate(chars) }
# hyperparameters
Midden_size =180 % size of hidden Layer of neurons
seq_length =25* num
wxh = np.random.randn(hidden_size, vocab_size) ro.01 " input to hidden
walm,
Why = np.randon.randत(vocao_size,
l
def lossFun(inputs, targets, hprev):
    inputs, targets are both list of integers.
    returns the loss, oradients on model parameters, and last hidden state
xs, hs, ys, ps = {3, {}, {}, 0]
Ms, hs, ys, ps = {}, (},, {,
l
# Torward pass
    {ort in xrange(len((inputs)):
    Ns[t]=np.tanh(mp.dot(wxh, xs[t]) + np.dot(Mhh, ns[t-1]) + th) # hidden state
    yst[] = n. dot(WWy, hs[t]) + by # unormalized 109 probabilities for next cha/s
```



```
doh, doy = np.zeros like(bh);
    fort in reversed(\xrange(len(inputs)):
    dy = np.copy(ps[t])
    dy[targets[.
    dby t= np.dot(dy, ns[t].T)
    Th = no.dot(uhy. T, dy )
    dh = np.dot(\hy.T, dy + dhnext # backprop into b
    diraw =(1- - \
    l}\begin{array}{l}{\mathrm{ dwxh }+=\mathrm{ np.dot(ddraw, xs[t].T)}}\\{\mathrm{ dWhh += np.dot(dhraw, hs [t-1].T)}}
    M,
    dinnex = np.dot(uhh, T, diraw), db, doy]:
Mp.clip(daram, -5, 5, out=dparam), clip to mitigate explooing gradients
```

sample a sequence of integers from the model
sample a sequence of integers from the model
his memory state, seec_-ix is seed hetter for first time ste
nun man
""" $=$ np.zeros ((vocab size, 1)
$\underset{\substack{x[\text { seed_- } i x] \\ \text { ixes } \\=[]}}{ }=$
ixes $=[1$
for t in xrange(n):
for t in xrange (n)
$h=$ np. $\tanh ($ np. dot (4)
$y=n p$ dot (why, h) + b

$x=n p$.zeros ((Yocab_size, 1))
$x[i x]=1$
1xes.appena(1
1exs. append($1 \times$)
return ixes
$p=0$ o
$\mathrm{n}, \mathrm{p}=0$,
maxh, mwhin
muxh, muwh, muhy = np.zeros_1ike(hxhh), np.zeros_1ike((Whh), np.zeros_1ike((Why)

while true:
\# prepare inputs (we're sweeping from left to right in steps seq_length long)

hprev $=n p$.zeros (hiddeñ-size, 1$))=$ reset RNM memory

$\begin{aligned} & 4 \text { sample from the model now and then } \\ & \text { if } n \% 100=0\end{aligned}$
sample_ix $=$ sample(hprev, inputs[$[\mathrm{e}, 200$)

" forward sea -_ength characters through the net and fetch gradient

if n \% $100==0$: print 'iter xd , loss: xf
n perform paraneter update with Adagrad
for paran, dparan, men in zip(Whxh, whh, why, bh, by],

mem $+=$ dparan, dparan
paran $+=-$ - learnning rate
aram / np. sqre(mem + 1e-8) \# adagrad update
$\mathrm{p}+=$ seq_1ength = move data pointer
(https://gist.github.com/karpathy/d4dee 566867f8291f086)

THE SONNETS

by William Shakespeare

From fairest creatures we desire increase,
That thereby beauty's rose might never die,
But as the riper should by time decease,
His tender heir might bear his memory:
But thou, contracted to thine own bright eyes,
Feed'st thy light's flame with self-substantial fuel,
Making a famine where abundance lies,
Thyself thy foe, to thy sweet self too cruel:
And only herald to the gaudy spring,

When forty winters shall besiege thy brow And dig deep trenches in thy beauty's field, And dig deep trenches in thy beauty's field, Will be a tatter'd weed of small worth held Then being asked, where all thy beauty lies, Where all the treasure of thy lusty days; To say, within thine own deep sunken eye Were an all-eating shame, and thriftless praise. How much more praise deserv'd thy beauty's use, If thou couldst answer 'This fair child of mine Shall sum my count, and make my old excuse, Proving his beauty by succession thine!

This were to be new made when thou art old,
And see thy blood warm when thou feel'st it cold.

```
tyntd-iafhatawiaoihrdemot lytdws e ,tfti, astai f ogoh eoase rrranbyne 'nhthnee e
plia tklrgd t o idoe ns,smtt h ne etie h,hregtrs nigtike,aoaenns lng
```


train more

```
"Tmont thithey" fomesscerliund
Keushey. Thom here
sheulke, anmerenith ol sivh I lalterthend Bleipile shuwy fil on aseterlome
coaniogennc Phe lism thond hon at. MeiDimorotion in ther thize."
```


train more

Aftair fall unsuch that the hall for Prince Velzonski's that me of her hearly, and behs to so arwage fiving were to it beloge, pavu say falling misfort how, and Gogition is so overelical and ofter.

train more

```
"Why do what that day," replied Natasha, and wishing to himself the fact the
princess, Princess Mary was easier, fed in had oftened him.
Pierre aking his soul came to the packs and drove up his father-in-law women.
```


Multilayer RNNs

Vanilla RNN Gradient Flow

$$
\begin{aligned}
h_{t} & =\tanh \left(W_{h h} h_{t-1}+W_{x h} x_{t}\right) \\
& =\tanh \left(\left(\begin{array}{ll}
W_{h h} & W_{h x}
\end{array}\right)\binom{h_{t-1}}{x_{t}}\right) \\
& =\tanh \left(W\binom{h_{t-1}}{x_{t}}\right)
\end{aligned}
$$

Vanilla RNN Gradient Flow

Backpropagation from h_{t}
to h_{t-1} multiplies by W
(actually $\mathrm{W}_{\mathrm{hh}}{ }^{\top}$)

$$
\begin{aligned}
h_{t} & =\tanh \left(W_{h h} h_{t-1}+W_{x h} x_{t}\right) \\
& =\tanh \left(\left(\begin{array}{ll}
W_{h h} & W_{h x}
\end{array}\right)\binom{h_{t-1}}{x_{t}}\right) \\
& =\tanh \left(W\binom{h_{t-1}}{x_{t}}\right)
\end{aligned}
$$

Vanilla RNN Gradient Flow

Computing gradient of h_{0} involves many factors of W (and repeated tanh)

Vanilla RNN Gradient Flow

Computing gradient of h_{0} involves many factors of W (and repeated tanh)

Largest singular value >1:
Exploding gradients
Largest singular value <1 :
Vanishing gradients

Vanilla RNN Gradient Flow

Computing gradient of h_{0} involves many factors of W (and repeated tanh)

Largest singular value >1: Exploding gradients

Largest singular value <1 :
Vanishing gradients

Gradient clipping: Scale gradient if its norm is too big

```
grad_norm = np.sum(grad * grad)
if grad_norm > threshold:
    grad *= (threshold / grad_norm)
```


Vanilla RNN Gradient Flow

Computing gradient of h_{0} involves many factors of W (and repeated tanh)

Largest singular value >1:
Exploding gradients
Largest singular value < $1:$
Vanishing gradients \rightarrow Change RNN architecture

Long Short Term Memory (LSTM)

Vanilla RNN

 LSTM$$
h_{t}=\tanh \left(W\binom{h_{t-1}}{x_{t}}\right)
$$

$$
\begin{aligned}
\left(\begin{array}{l}
i \\
f \\
o \\
g
\end{array}\right) & =\left(\begin{array}{c}
\sigma \\
\sigma \\
\sigma \\
\tanh
\end{array}\right) W\binom{h_{t-1}}{x_{t}} \\
c_{t} & =f \odot c_{t-1}+i \odot g \\
h_{t} & =o \odot \tanh \left(c_{t}\right)
\end{aligned}
$$

Meet LSTMs

LSTMs Intuition: Memory

- Cell State / Memory

LSTMs Intuition: Forget Gate

- Should we continue to remember this "bit" of information or not?

$$
f_{t}=\sigma\left(W_{f} \cdot\left[h_{t-1}, x_{t}\right]+b_{f}\right)
$$

LSTMs Intuition: Input Gate

- Should we update this "bit" of information or not?
- If so, with what?

$$
\begin{aligned}
i_{t} & =\sigma\left(W_{i} \cdot\left[h_{t-1}, x_{t}\right]+b_{i}\right) \\
\tilde{C}_{t} & =\tanh \left(W_{C} \cdot\left[h_{t-1}, x_{t}\right]+b_{C}\right)
\end{aligned}
$$

LSTMs Intuition: Memory Update

- Forget that + memorize this

$$
C_{t}=f_{t} * C_{t-1}+i_{t} * \tilde{C}_{t}
$$

LSTMs Intuition: Output Gate

- Should we output this "bit" of information to "deeper" layers?

$$
\begin{aligned}
& o_{t}=\sigma\left(W_{o}\left[h_{t-1}, x_{t}\right]+b_{o}\right) \\
& h_{t}=o_{t} * \tanh \left(C_{t}\right)
\end{aligned}
$$

LSTMs Intuition: Additive Updates

Backpropagation from
c_{t} to c_{t-1} only elementwise multiplication by f, no matrix multiply by W

LSTMs Intuition: Additive Updates

LSTMs Intuition: Additive Updates

LSTMs

- A pretty sophisticated cell

믄ㄹㄹ

Neural Image Captioning

Neural Image Captioning

Image Embedding (VGGNet)

Neural Image Captioning

Neural Image Captioning

Sequence Model Factor Graph

Beam Search Demo

- http://dbs.cloudcv.org/captioning

Image Captioning

- Many recent works on this:
- Baidu/UCLA: Explain Images with Multimodal Recurrent Neural Networks
- Toronto: Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models
- Berkeley: Long-term Recurrent Convolutional Networks for Visual Recognition and Description
- Google: Show and Tell: A Neural Image Caption Generator
- Stanford: Deep Visual-Semantic Alignments for Generating Image Description
- UML/UT: Translating Videos to Natural Language Using Deep Recurrent Neural Networks
- Microsoft/CMU: Learning a Recurrent Visual Representation for Image Caption Generation
- Microsoft: From Captions to Visual Concepts and Back

Recurrent Neural Network

Convolutional Neural Network

image

conv-64
conv-64
maxpool
conv-128
conv-128
maxpool
conv-256
conv-256
maxpool
conv-512
conv-512
maxpool
conv-512
conv-512
maxpool
FC-4096
FC-4096
FC-1000
softmax

image

conv-64
conv-64
maxpool
conv-128
conv-128
maxpool
conv-256
conv-256
maxpool
conv-512
conv-512
maxpool
conv-512
conv-512
maxpool
FC. 96
FC-4096
FC-1000
softmax

image

conv-64
conv-64
maxpool
conv-128
conv-128
maxpool
conv-256
conv-256
maxpool
conv-512
conv-512
maxpool
conv-512
conv-512
maxpool

<START>

rL-40J0
FC-1000
softmax

conv-64
maxpool
conv-128
conv-128
maxpool
conv-256
conv-256
maxpool
conv-512
conv-512
maxpool
conv-512
conv-512
maxpool
V

rL-40ァ0
FC-1000
softmax

softmax

test image

before:

h $=\tanh (W x h$ * $x+W h h * h)$

now:

$h=\tanh (W x h * x+W h h * h+W i h * v)$

conv-64
conv-64
maxpool

conv-128
conv-128
maxpool

rL-40フ0
FC-1000
softmax

conv-64
conv-64
maxpool

test image
conv-128
conv-128
maxpool

rL-40フ0
FC-1000
softmax

conv-64
conv-64
maxpool

conv-128
conv-128
maxpool

rL-40フ0
FC-1000
softmax

conv-64
conv-64
maxpool

test image
conv-128
conv-128
maxpool

maxpool

rL-4uJo
FC-1000
softmax

rL-40л0
FC-1000
softmax

Image Captioning: Example Results

A cat sitting on a suitcase on the floor

Two people walking on the beach with surfboards

A cat is sitting on a tree branch

A tennis player in action on the court

A dog is running in the grass with a frisbee

Two giraffes standing in a grassy field

A white teddy bear sitting in the grass

A man riding a dirt bike on a dirt track

Image Captioning: Failure Cases

A woman is holding a cat in her hand

A woman standing on a beach holding a surfboard

A bird is perched on a tree branch

A person holding a computer mouse on a desk

More Image Captioning Examples

[men (0.59)] [group (0.66)] [woman (0.64)] [people (0.89)] [holding (0.60)] [playing (0.61)] [tennis (0.69)] [court (0.51)] [standing (0.59)] [skis (0.58)] [street (0.52)] [man (0.77)] [skateboard (0.67)]
a group of people standing next to each other
people stand outside a large ad for gap featuring a young boy

[umbrella (0.59)] [woman (0.52)]
[fire (0.96)] [hydrant (0.96)] [street (0.79)] [old (0.50)]
[bench (0.81)] [building (0.75)] [standing (0.57)] [baseball (0.55)] [white (0.82)] [sitting (0.65)] [people (0.79)] [photo (0.53)] black (0.84)] [kitchen (0.54)] [man (0.72)] a black and white photo of a fire hydrant
a courtyard full of poles pigeons and garbage cans also has benches on either side of it one of which shows the back of a large person facin g in the direction of the pigeons

[person (0.55)] [street (0.53)] [holding (0.55)] [group (0.63)] [slope (0.51)] [standing (0.62)] [snow (0.91)] [skis (0.74)] [player (0.54)] [people (0.85)] [men (0.57)] [skiing (0.51)] [skateboard (0.89)] [riding (0.75)] [tennis (0.74)] [trick (0.53)] [skate (0.52)] [woman (0.52)] [man (0.86)] [down (0.61)]
a group of people riding skis down a snow covered slope
a guy on a skate board on the side of a ramp

[horse (0.53)] [bear (0.71)] [elephant (0.99)] [elephants (0.95)] [brown (0.68)] [b
[laying (0.61)] [man (0.57)] [standing (0.79)] [field (0.65)]
[water (0.83)] [large (0.71)] [dirt (0.65)] [river (0.58)]
a baby elephant standing next to each other on a field elephants are playing together in a shallow watering hole

Show, Attend and Tell

(Xu et al., 2015)
Instead of learning word detectors over image regions, consider learning an attention model instead

- What is visual attention?
- How to augment Show and Tell with visual attention
- Soft vs. hard attention

Soft Attention

\boldsymbol{z}_{t} is calculated by taking the weighted sum of all feature vectors a

$$
z_{t}=\sum_{i=1}^{L} \alpha_{t}[i] \cdot a_{i}
$$

- Differentiable
- Deterministic: α_{i}^{\prime} s assign relative importance to give to location i in blending the a_{i}^{\prime} s together
- Learned using standard backpropagation

Soft Attention: Examples

Hard Attention

At time step t, the index into the feature vectors is sampled from the current location distribution vector α_{t}

$$
\begin{gathered}
k=\operatorname{sample}\left(\alpha_{t}\right) \\
z_{t}=a_{k}
\end{gathered}
$$

- Stochastic: α_{i}^{\prime} s assign probability that location i is the right place to focus for producing the next word
- Focuses on one image region at a time
- Non-differentiable due to sampling
- Set up as reinforcement learning problem:
- Action = which area to attend to next
- Reward = log-likelihood of caption wrt to target sentence

Soft vs. Hard Attention

Examples

A(1.00)

How to Evaluate different captions?

1. A woman in a green shirt is getting food ready with a child, while sitting on rocks.
2. A mother and child having a picnic on a big rock with blue utensils.
3. A woman serving food for a little boy outside on a large rock.
4. A woman and a baby eating (having a picnic) .
5. A mother and child picnic on some rocks .

BLEU (BiLingual Evaluation Understudy)

(Papineni et al., 2002)

- "The closer a machine trans/ation is to a professional human translation, the better it is."
- Analyzes co-occurrences of n-grams between candidate and reference sentences

O Modified (clipped) n-gram precision
O Brevity penalty to penalize short candidate sentences

- Has been shown in MT literature to be an insufficient metric (Callison-Burch et al., 2006)

O Many large variations of a generated sentence can score identically
O Higher BLEU score is not necessarily indicative of higher human-judged quality
Candidate: the the the the the the the.
Reference 1: The cat is on the mat.
Reference 2: There is a cat on the mat.
Modified Unigram Precision $=2 / 7$.

Reference captions:

1. Latino man holding sign on the sidewalk outside promoting Quiznos-Subs .
2. A man is holding an advertisement for Quiznos Subs .
3. A man is holding a Quiznos sign next to a street .
4. A man is holding a Quiznos Sub sign .

Candidate caption:

? Quiznos worker wearing sign .

BLEU-4 $=0.106$

METEOR

(Banerjee \& Lavie, 2005)
More flexible MT metric that calculates sentence-level similarity scores as a harmonic mean of unigram precision \& recall, based on:

- Exact token matching
- Stemmed tokens
- WordNet synonyms
- Paraphrases

SYSTEM Jim went home
 REFERENCE Joe goes home

CIDEr: Consensus-based Image Description Evaluation

(Vedantam et al., 2015)

- "Does a caption describe an image as most people tend to describe it?"
- Automatically evaluate for image I_{i} how well a candidate sentence c_{i} matches the consensus of a set of image descriptions $S_{i}=\left\{s_{i 1}, \ldots, s_{i m}\right\}$
- Intuitively, a measure of consensus should:

O Encode how often n-grams in the candidate sentence are present in the reference sentences
O n-grams not present in the reference sentences should not be in the candidate sentence
O n-grams that commonly occur across all images in the dataset should be given lower weight, since they are likely to be less informative
In practice: perform a Term Frequency Inverse Document Frequency (TF-IDF)
(Robertson, 2004) weighting for each n-gram

	CIDEr-D ${ }_{\text {V }}$	Meteor	ROUGE-L	BLEU-1	BLEU-2	BLEU-3	BLEU-4	date
Watson Multimodal ${ }^{[46]}$	1.123	0.268	0.559	0.773	0.609	0.461	0.344	2016-11-16
MSM@MSRA ${ }^{[29]}$	1.049	0.266	0.552	0.751	0.588	0.449	0.343	2016-10-25
G-RMI(PG-SPIDEr-TAG) ${ }^{[17]}$	1.042	0.255	0.551	0.751	0.591	0.445	0.331	2016-11-11
MetaMind/VT_GT ${ }^{[25]}$	1.042	0.264	0.55	0.748	0.584	0.444	0.336	2016-12-01
ATT-IMG (MSM@MSRA) ${ }^{[5]}$	1.023	0.262	0.551	0.752	0.59	0.449	0.34	2016-06-13
G-RMI (PG-BCMR) ${ }^{[16]}$	1.013	0.257	0.55	0.754	0.591	0.445	0.332	2016-10-30
DONOT_FAIL_AGAIN ${ }^{[13]}$	1.01	0.262	0.542	0.734	0.564	0.425	0.32	2016-11-22
DLTC@MSR ${ }^{[12]}$	1.003	0.257	0.543	0.74	0.575	0.436	0.331	2016-09-04
Postech_CV ${ }^{[38]}$	0.987	0.255	0.539	0.743	0.575	0.431	0.321	2016-06-13
feng ${ }^{[15]}$	0.986	0.255	0.54	0.743	0.578	0.434	0.323	2016-11-06
\cdots								
Human ${ }^{[21]}$	0.854	0.252	0.484	0.663	0.469	0.321	0.217	2015-03-23

According to CIDEr, humans are in $38^{\text {th }}$ place!! eo

