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Optical flow
Combination of slides from Rick Szeliski, Steve Seitz, Alyosha Efros and 

Bill Freeman and Fredo Durand



Motion estimation: Optical flow

Will start by estimating motion of each pixel separately
Then will consider motion of entire image 



Why estimate motion?
Lots of uses

• Feature representation for DeepNets [coming up]
• Track object behavior
• Correct for camera jitter (stabilization)
• Align images (mosaics)
• 3D shape reconstruction
• Special effects



Problem definition:  optical flow

How to estimate pixel motion from image H to image I?
• Solve pixel correspondence problem

– given a pixel in H, look for nearby pixels of the same color in I

Key assumptions
• color constancy:  a point in H looks the same in I

– For grayscale images, this is brightness constancy
• small motion:  points do not move very far

This is called the optical flow problem



Optical flow constraints (grayscale images)

Let’s look at these constraints more closely

• brightness constancy:   Q:  what’s the equation?

• small motion:  (u and v are less than 1 pixel)

– suppose we take the Taylor series expansion of I:

H(x,y)=I(x+u, y+v)



Optical flow equation
Combining these two equations

In the limit as u and v go to zero, this becomes exact



Optical flow equation

Q:  how many unknowns and equations per pixel?

Intuitively, what does this constraint mean?

• The component of the flow in the gradient direction is determined

• The component of the flow parallel to an edge is unknown

This explains the Barber Pole illusion
http://www.sandlotscience.com/Ambiguous/Barberpole_Illusion.htm
http://www.liv.ac.uk/~marcob/Trieste/barberpole.html

2 unknowns, one equation

http://en.wikipedia.org/wiki/Barber's_pole

http://www.sandlotscience.com/Ambiguous/Barberpole_Illusion.htm
http://www.liv.ac.uk/~marcob/Trieste/barberpole.html


Aperture problem



Aperture problem



Solving the aperture problem
How to get more equations for a pixel?

• Basic idea:  impose additional constraints
– most common is to assume that the flow field is smooth locally
– one method:  pretend the pixel’s neighbors have the same (u,v)

» If we use a 5x5 window, that gives us 25 equations per pixel!



RGB version
How to get more equations for a pixel?

• Basic idea:  impose additional constraints
– most common is to assume that the flow field is smooth locally
– one method:  pretend the pixel’s neighbors have the same (u,v)

» If we use a 5x5 window, that gives us 25*3 equations per pixel!

Note that RGB is not enough to disambiguate 
because R, G & B are correlated
Just provides better gradient



Lukas-Kanade flow
Prob:  we have more equations than unknowns

• The summations are over all pixels in the K x K window
• This technique was first proposed by Lukas & Kanade (1981)

Solution:  solve least squares problem
• minimum least squares solution given by solution (in d) of:



Aperture Problem and Normal Flow
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Combining Local Constraints
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Conditions for solvability

• Optimal (u, v) satisfies Lucas-Kanade equation

When is This Solvable?
• ATA should be invertible 
• ATA should not be too small due to noise

– eigenvalues l1 and l2 of ATA should not be too small
• ATA should be well-conditioned

– l1/ l2 should not be too large (l1 = larger eigenvalue)
ATA is solvable when there is no aperture problem



Eigenvectors of ATA

• Recall the Harris corner detector: M = ATA is 
the second moment matrix

• The eigenvectors and eigenvalues of M relate 
to edge direction and magnitude 
• The eigenvector associated with the larger eigenvalue points 

in the direction of fastest intensity change
• The other eigenvector is orthogonal to it



Interpreting the eigenvalues

l1

l2

“Corner”
l1 and l2 are large,
l1 ~ l2

l1 and l2 are small “Edge” 
l1 >> l2

“Edge” 
l2 >> l1

“Flat” 
region

Classification of image points using eigenvalues 
of the second moment matrix:



Local Patch Analysis



Edge

– large gradients, all the same
– large l1, small l2



Low texture region

– gradients have small magnitude
– small l1, small l2



High textured region

– gradients are different, large magnitudes
– large l1, large l2



Observation
This is a two image problem BUT

• Can measure sensitivity by just looking at one of the images!
• This tells us which pixels are easy to track, which are hard

– very useful later on when we do feature tracking...



Motion models

Translation

2 unknowns

Affine

6 unknowns

Perspective

8 unknowns

3D rotation

3 unknowns



• Substituting into the brightness constancy 
equation:
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• Substituting into the brightness constancy 
equation:
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• Each pixel provides 1 linear constraint in 
6 unknowns
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• Least squares minimization:

Affine motion



Errors in Lukas-Kanade
What are the potential causes of errors in this procedure?

• Suppose ATA is easily invertible
• Suppose there is not much noise in the image

When our assumptions are violated
• Brightness constancy is not satisfied
• The motion is not small
• A point does not move like its neighbors

– window size is too large
– what is the ideal window size?



Iterative Refinement
Iterative Lukas-Kanade Algorithm

1. Estimate velocity at each pixel by solving Lucas-Kanade equations
2. Warp H towards I using the estimated flow field

- use image warping techniques
3. Repeat until convergence



Optical Flow: Iterative Estimation

xx0

Initial guess: 
Estimate:

estimate 
update

(using d for displacement here instead of u)



Optical Flow: Iterative Estimation

xx0

estimate 
update

Initial guess: 
Estimate:



Optical Flow: Iterative Estimation

xx0

Initial guess: 
Estimate:
Initial guess: 
Estimate:

estimate 
update



Optical Flow: Iterative Estimation

xx0



Optical Flow: Iterative Estimation
Some Implementation Issues:

• Warping is not easy (ensure that errors in warping are smaller than the estimate 
refinement)

• Warp one image, take derivatives of the other so you don’t need to re-compute the 
gradient after each iteration.

• Often useful to low-pass filter the images before motion estimation (for better 
derivative estimation, and linear approximations to image intensity)



Revisiting the small motion assumption

Is this motion small enough?
• Probably not—it’s much larger than one pixel (2nd order terms dominate)
• How might we solve this problem?



Optical Flow: Aliasing

Temporal aliasing causes ambiguities in optical flow because 
images can have many pixels with the same intensity.
I.e., how do we know which ‘correspondence’ is correct? 

nearest match is correct 
(no aliasing)

nearest match is incorrect 
(aliasing)

To overcome aliasing: coarse-to-fine estimation.

actual shift

estimated shift



Reduce the resolution!



image Iimage H

Gaussian pyramid of image H Gaussian pyramid of image I

image Iimage H u=10 pixels

u=5 pixels

u=2.5 pixels

u=1.25 pixels

Coarse-to-fine optical flow estimation



image Iimage J

Gaussian pyramid of image H Gaussian pyramid of image I

image Iimage H

Coarse-to-fine optical flow estimation

run iterative L-K

run iterative L-K

warp & upsample

.

.

.



Direct-methods (e.g. optical flow)
• Directly recover image motion from spatio-temporal image brightness variations
• Global motion parameters directly recovered without an intermediate feature 

motion calculation
• Dense motion fields, but more sensitive to appearance variations
• Suitable for video and when image motion is small (< 10 pixels)

Feature-based methods (e.g. SIFT+Ransac+regression) [To be covered]
• Extract visual features (corners, textured areas) and track them over multiple 

frames
• Sparse motion fields, but possibly robust tracking
• Suitable especially when image motion is large (10-s of pixels)

Recap: Classes of Techniques



FlowNet

FlowNet: Learning Optical Flow with Convolutional Networks 
[Fischer et al. 2015]
~ 1sec/image vs ~17 secs/image for traditional optical flow
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Abstract

Convolutional neural networks (CNNs) have recently

been very successful in a variety of computer vision tasks,

especially on those linked to recognition. Optical flow esti-

mation has not been among the tasks where CNNs were suc-

cessful. In this paper we construct appropriate CNNs which

are capable of solving the optical flow estimation problem

as a supervised learning task. We propose and compare

two architectures: a generic architecture and another one

including a layer that correlates feature vectors at different

image locations.

Since existing ground truth datasets are not sufficiently

large to train a CNN, we generate a synthetic Flying Chairs

dataset. We show that networks trained on this unrealistic

data still generalize very well to existing datasets such as

Sintel and KITTI, achieving competitive accuracy at frame

rates of 5 to 10 fps.

1. Introduction

Convolutional neural networks have become the method
of choice in many fields of computer vision. They are clas-
sically applied to classification [25, 24], but recently pre-
sented architectures also allow for per-pixel predictions like
semantic segmentation [28] or depth estimation from single
images [10]. In this paper, we propose training CNNs end-
to-end to learn predicting the optical flow field from a pair
of images.

While optical flow estimation needs precise per-pixel lo-
calization, it also requires finding correspondences between
two input images. This involves not only learning image
feature representations, but also learning to match them at
different locations in the two images. In this respect, optical

⇤Supported by the Deutsche Telekom Stiftung
‡These authors contributed equally

Figure 1. We present neural networks which learn to estimate op-
tical flow, being trained end-to-end. The information is first spa-
tially compressed in a contractive part of the network and then
refined in an expanding part.

flow estimation fundamentally differs from previous appli-
cations of CNNs.

Since it was not clear whether this task could be solved
with a standard CNN architecture, we additionally devel-
oped an architecture with a correlation layer that explicitly
provides matching capabilities. This architecture is trained
end-to-end. The idea is to exploit the ability of convolu-
tional networks to learn strong features at multiple levels of
scale and abstraction and to help it with finding the actual
correspondences based on these features. The layers on top
of the correlation layer learn how to predict flow from these
matches. Surprisingly, helping the network this way is not
necessary and even the raw network can learn to predict op-
tical flow with competitive accuracy.

Training such a network to predict generic optical flow
requires a sufficiently large training set. Although data aug-
mentation does help, the existing optical flow datasets are
still too small to train a network on par with state of the art.
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Figure 2. The two network architectures: FlowNetSimple (top) and FlowNetCorr (bottom).

nate the ‘upconvolution’ results with the features from the
‘contractive’ part of the network.

Convolutional neural networks are known to be very
good at learning input–output relations given enough la-
beled data. We therefore take an end-to-end learning ap-
proach to predicting optical flow: given a dataset consisting
of image pairs and ground truth flows, we train a network
to predict the x–y flow fields directly from the images. But
what is a good architecture for this purpose?

A simple choice is to stack both input images together
and feed them through a rather generic network, allowing
the network to decide itself how to process the image pair to
extract the motion information. This is illustrated in Fig. 2
(top). We call this architecture consisting only of convolu-
tional layers ‘FlowNetSimple’.

In principle, if this network is large enough, it could learn
to predict optical flow. However, we can never be sure that a
local gradient optimization like stochastic gradient descent
can get the network to this point. Therefore, it could be ben-
eficial to hand-design an architecture which is less generic,
but may perform better with the given data and optimization
techniques.

A straightforward step is to create two separate, yet iden-
tical processing streams for the two images and to combine
them at a later stage as shown in Fig. 2 (bottom). With
this architecture the network is constrained to first produce
meaningful representations of the two images separately
and then combine them on a higher level. This roughly

resembles the standard matching approach when one first
extracts features from patches of both images and then com-
pares those feature vectors. However, given feature repre-
sentations of two images, how would the network find cor-
respondences?

To aid the network in this matching process, we intro-
duce a ‘correlation layer’ that performs multiplicative patch
comparisons between two feature maps. An illustration
of the network architecture ‘FlowNetCorr’ containing this
layer is shown in Fig. 2 (bottom). Given two multi-channel
feature maps f1, f2 : R2 ! Rc, with w, h, and c being their
width, height and number of channels, our correlation layer
lets the network compare each patch from f1 with each path
from f2.

For now we consider only a single comparison of two
patches. The ’correlation’ of two patches centered at x1 in
the first map and x2 in the second map is then defined as

c(x1,x2) =
X

o2[�k,k]⇥[�k,k]

hf1(x1 + o), f2(x2 + o)i (1)

for a square patch of size K := 2k + 1. Note that Eq. 1
is identical to one step of a convolution in neural networks,
but instead of convolving data with a filter, it convolves data
with other data. For this reason, it has no trainable weights.

Computing c(x1,x2) involves c · K2 multiplications.
Comparing all patch combinations involves w2 · h2 such
computations, yields a large result and makes efficient for-
ward and backward passes intractable. Thus, for computa-
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Images Ground truth EpicFlow FlowNetS FlowNetC

Figure 7. Examples of optical flow prediction on the Sintel dataset. In each row left to right: overlaid image pair, ground truth flow and 3
predictions: EpicFlow, FlowNetS and FlowNetC. Endpoint error is shown for every frame. Note that even though the EPE of FlowNets is
usually worse than that of EpicFlow, the networks often better preserve fine details.

on KITTI discussed above, and also from detailed perfor-
mance analysis on Sintel Final (not shown in the tables).
FlowNetS+ft achieves an s40+ error (EPE on pixels with
displacements of at least 40 pixels) of 43.3px, and for
FlowNetC+ft this value is 48px. One explanation is that the
maximum displacement of the correlation does not allow to
predict very large motions. This range can be increased at

the cost of computational efficiency.

6. Conclusion

Building on recent progress in design of convolutional
network architectures, we have shown that it is possible to
train a network to directly predict optical flow from two in-

FlowNet
• FlowNet: Learning Optical Flow with 

Convolutional Networks [Fischer et al. 2015]



Focus of this work

Traditional Computer Vision Pipeline

Prediction
Models
(e.g. SVM,

HMM, Bayesian)
Predictions

Feature
Extraction 

(e.g. color, 
texture, 

motions)

44



Best (non-DL) Video Features

• improved Dense Trajectories (iDT)

Cons:
• Highly hand-crafted
• Computational intensive
• Hard to parallelize

Pros:
• Don’t need to learn
• Don’t need large-scale training 

data

Wang et al. IJCV’13

45



Spatiotemporal Feature Learning

• Wang et al. IJCV’13

No explicit motion modeling

Biased to human design & 
computationally expensive

f1 f2 f10

Aggregate image features

46



Why 3D ConvNets?

2D convolve on an image

2D convolve on multiple images as channels

Spatial-temporally convolve on multiple frames

�-> no motion modeling

-> collapse temporal signal after one 
convolution layer

�

-> hierarchically group temporal signal �

47



What is a Good Architecture for 3D ConvNets?

• Dataset: UCF101
• Use VGG-similar architecture, varying kernel 

temporal length

48

D. Tran, L. Bourdev, R. Fergus, L. Torresani, M. Paluri, Learning 
Spatiotemporal Features with 3D Convolutional Networks, ICCV15.



• C3D architecture
– 8 convolution, 5 pool, 2 fully-connected layers
– 3x3x3 convolution kernels
– 2x2x2 pooling kernels

• Dataset: Sports-1M [Karpathy et al. CVPR14]

– 1.1M videos of 487 different sport categories
– Train/test splits are provided

49

What is a Good Architecture for 3D ConvNets?
D. Tran, L. Bourdev, R. Fergus, L. Torresani, M. Paluri, Learning 
Spatiotemporal Features with 3D Convolutional Networks, ICCV15.



C3D as Generic Features

Simple recipe: C3D + linear SVM = good performance
50



Video Classification with C3D

C3D is discriminative and 
compact!

C3D code/model is publicly available
51
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Action Recognition Task
UCF101



Overview

• Optical Flow
• ConvNets for Video

53



Recognition in Video

Christoph Feichtenhofer
Facebook AI Research (FAIR)

ICCV 2019 Tutorial



Task: Human action classification & detection

C. Feichtenhofer, H. Fan, J. Malik, K. He SlowFast Networks for Video Recognition. ICCV 2019



Outline: Components for state-of-the-art video understanding

Global decomposition spatial and temporal information
SlowFast networks contrast features of different 

framerate and channel capacity
[Feichtenhofer et al. 2019]

3D ConvNets
[Taylor et al. 2010, Karpathy et al. 2014, 

Tran et al. 2015,...]

Two-stream ConvNets (RGB+optical flow)
[Simonyan et al. 2014, Feichtenhofer et al. 2016, 

Wang et al. 2016, ...]

Local decomposition spatial and temporal information
[Feichtenhofer et al. 2016, Qiu et al. 2017, Tran et al. 

2018, Xie et al. 2018, …]

Attention-based models, Non-local network blocks, 
[Wang et al., 2018 2019, Girdhar et al. 2019 ,…]

Long-term Models [Varol et al. 2017, Wu et al. 2019, ...]



3D Convolutional Networks

prediction

“Head-butting” 
(Kinetics classification annotation)

G. W. Taylor, R. Fergus, Y. LeCun, and C. Bregler. Convolutional learning of spatio-temporal features. In Proc. ECCV, 2010.
D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri. Learning spatiotemporal features with 3D convolutional networks. In Proc. ICCV, 2015.
J. Carreira and A. Zisserman. Quo vadis, action recognition? a new model and the kinetics dataset. In Proc. CVPR, 2017.

Input clip of ~2sec

Intermediate filters only capture local
information (in x,y,t) with a growing 
receptive field size

T

C

H,W

4D tensors of shape T x H x W x C

Filter receptive field on input



Non-Local Blocks 

X. Wang, R. Girshick, A. Gupta, and K. He. Non-local neural networks. In Proc. CVPR, 2018.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł. and Polosukhin, I., Attention is all you need. NeurIPS 2017

o Self-attention in the spatiotemporal domain allows long-range feature aggregation

https://github.com/facebookresearch/SlowFast

Pytorch code now available:



Limited temporal input length of 3D ConvNets

3 D  C N N

2 -4 seconds

Actions



Temporal striding (subsampling)

3 D  C N N

Actions



3D CNN

Actions

FBO

full video

......

short clip

... ...

Long-Term Feature Bank
......

Long-Term Feature Banks for Video Understanding

CY Wu, C. Feichtenhofer, H. Fan, K. He, P. Krähenbühl, R. Girshick Long-Term Feature Banks for Detailed Video Understanding. In Proc. CVPR, 2019.

Feature bank operator (FBO) 
combines short-term and 
long-term info



3D CNN

Actions

FBO

full video

......

short clip

... ...

Long-Term Feature Bank
......

Long-Term Feature Banks for Video Understanding

CY Wu, C. Feichtenhofer, H. Fan, K. He, P. Krähenbühl, R. Girshick Long-Term Feature Banks for Detailed Video Understanding. In Proc. CVPR, 2019.



Baseline 1:
3D CNN x2

3D CNN

Actions

full videoshort clip

Long-Term Feature Bank
......

3D CNN

Actions

short clip

3D CNN

Actions

short clip

LFBBaseline 2:
Self-attention x2

FBOSelf-attention



Ablation study on short-term vs. long-term

21

22

23

24

25

26

27

3D CNN x2

Self-attn x2

LFB

AVA

48.75

50

51.25

52.5

53.75

55

3D CNN x2

Self-attn x2

LFB

EPIC-Kitchens

41.175

41.4

41.625

41.85

42.075

42.3

42.525

42.75

3D CNN x2

Self-attn x2

LFB

Charades



Ablation on input duration: subsampling vs LFB

17

19.25

21.5

23.75

26

2 3 5 10 15 30 60

m
AP

Temporal support (sec.)

3D CNN x2 Sefl-Attn x2 LFB



P(holding an object)? 

4 sec  
6 sec  
8 sec  

10 sec  

20.3%
40.4%

35.9%
47.5%

Code/models:
https://github.com/facebookresearch/video-long-term-feature-banks

https://github.com/facebookresearch/video-long-term-feature-banks


Johansson: Perception of Biological Motion

Sources: Johansson, G. “Visual perception of biological motion and a model for its analysis.” Perception & Psychophysics. 14(2):201-211. 1973.

è Amazing what a human brain can do 
without appearance information



è Ventral (‘what’) stream performs object recognition

è Dorsal stream (‘where’) recognizes motion and locates 
objectsOPTICAL FLOW STIMULI

Motivation: Separate visual pathways in nature

Sources: “Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli." Journal of neurophysiology 65.6 (1991).
“A cortical representation of the local visual environment”, Nature. 392 (6676): 598–601, 2009
https://en.wikipedia.org/wiki/Two-streams_hypothesis

è “Interconnection” 
e.g. in STS area



Two-Stream Convolutional Networks 

Individual processing of spatial and temporal information

• Using a separate 2D (x,y) ConvNet recognition stream for each 

• Late fusion via softmax score averaging

K. Simonyan and A. Zisserman. Two-stream convolutional networks for action recognition in videos. In NIPS, 2014



Two-Stream Network Fusion and Long-term Two-Stream networks

C. Feichtenhofer, A. Pinz, and A. Zisserman. Convolutional two-stream network fusion for video action recognition. In Proc. CVPR, 2016
Wang, L., Xiong, Y., Wang, Z., Qiao, Y., Lin, D., Tang, X. and Van Gool, L., Temporal segment networks: Towards good practices for deep action 
recognition. ECCV 2016
C. Feichtenhofer, A. Pinz, and R. Wildes. Spatiotemporal residual networks for video action recognition. In NIPS, 2016.

conv1
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+
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conv3_x
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conv4_x
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conv4_x
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conv5_x

+

conv5_x
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loss
loss

o ST-ResNet allows the hierarchical learning of spacetime features by connecting the
appearance and motion channels of a two-stream architecture.

Appearance Stream

Motion Stream

x x x x
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Long-term Two-Stream networks and transforming filters by Inflation
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o Inflation allows to transform spatial filters to spatiotemporal ones (3D or 2D spatial +1D temporal)

C. Feichtenhofer, A. Pinz, and R. Wildes. Spatiotemporal residual networks for video action recognition. In NIPS, 2016. 
Wang, L., Xiong, Y., Wang, Z., Qiao, Y., Lin, D., Tang, X. and Van Gool, L., Temporal segment networks: Towards good practices for deep action 
recognition. ECCV 2016
J. Carreira and A. Zisserman. Quo vadis, action recognition? a new model and the kinetics dataset. In Proc. CVPR, 2017.



C. Feichtenhofer, A. Pinz, and R. Wildes. Spatiotemporal residual networks for video action recognition. In NIPS, 2016. 
Wang, L., Xiong, Y., Wang, Z., Qiao, Y., Lin, D., Tang, X. and Van Gool, L., Temporal segment networks: Towards good practices for deep action 
recognition. ECCV 2016
J. Carreira and A. Zisserman. Quo vadis, action recognition? a new model and the kinetics dataset. In Proc. CVPR, 2017.

Two-Stream Network Fusion and Long-term Two-Stream networks



C. Feichtenhofer, A. Pinz, and R. Wildes, A. Zisserman. What have we learned from deep representations for action recognition?. In CVPR, 2018.
C. Feichtenhofer, A. Pinz, and R. Wildes, A. Zisserman. Deep insights into convolutional networks for video recognition?. In IJCV, 2019. 

o Regularized activation maximization on the input

Convolutional Feature Maps of VGG-16

width

depth

height

Visualizing the learned representation

*Fusion

Maximize channel c
c

Loss

Input

Appearance

Motion

Temporal 
regularization weight

Spatial regularization
weight

Slow motion 
(high temporal reg.)

Fast motion
(low temporal reg.)

e.g. c = 4

Maximum Activation

0 5 10 15 20 25 30 35

BoxingPunchingBag

MilitaryParade

Archery

BenchPress

IceDancing

JumpingJack

BoxingSpeedBag

StillRings

Drumming

Punch



Going through the conv layers of VGG-16
(first four filters of each layer are shown)

Appearance Motion conv1_1 f1-4conv1_2 f1-4conv2_1 f1-4conv2_2 f1-4conv3_1 f1-4conv3_2 f1-4conv3_3 f1-4conv4_1 f1-4conv4_2 f1-4conv4_3 f1-4conv5_1 f1-4conv5_2 f1-4conv5_3 f1-4

Feichtenhofer, Pinz, Wildes, Zisserman, CVPR 2018, IJCV 2019



Filter #251 at conv5 fusion – the strongest 
local Billiards unit

slow medium fast

Maximum Activation

0 5 10 15 20 25 30 35 40

FloorGymnastics

SoccerPenalty

BaseballPitch

Lunges

Basketball

FieldHockeyPenalty

Fencing

SoccerJuggling

TableTennisShot

Billiards



Appearance  Slow motion
FC 6 (4096 features; RF 404x404)

Maximum Activation

0 1 2 3 4 5 6

PlayingSitar

ApplyLipstick

Archery

Mixing

ApplyEyeMakeup

PlayingViolin

HorseRiding

PlayingGuitar

PlayingCello

PlayingFlute



FC 7 (4096 features; RF 404x404)
Appearance  Slow motion

Maximum Activation

0 1 2 3 4 5 6

Punch

BoxingPunchingBag

BodyWeightSquats

PushUps

PullUps

BoxingSpeedBag

Lunges

JumpingJack

BenchPress

CleanAndJerk



Fast motion appearance

è
“CleanAndJerk”

e.g. “shaking with 
bar”

e.g. “push bar”
Appearance Slow motion Fast motion

Last layer



è “ApplyLipstick”

Appearance Slow motion Fast 
motion

Revealing idiosyncracies in data

Fast motion appearance



è
“ApplyEyeMakeup”

Fast motion appearance

Appearance Slow motion Fast 
motion

Revealing idiosyncracies in data



Fast pathway

Slow pathway

• New backbone network for human action classification & detection

SlowFast Networks for Video Recognition 
Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik and Kaiming He

C. Feichtenhofer, H. Fan, J. Malik, K. He SlowFast Networks for Video Recognition. Proc. ICCV 2019

T

C

H,W



“Hand-clap” 
(action detection annotation)

Slow framerateFast framerate 



Human brain: Separate visual pathways

David C. Van Essen, Jack L. Gallant, Neural mechanisms of form and motion processing in the primate visual system, 
Neuron, Volume 13, Issue 1, July 1994, Pages 1-10, ISSN 0896-6273

èMajority: ≈80%
èSlow conduction rate 

(less myelin)
èColor
èProcesses 

information about 
color & detail

èSmall receptive field

Parvo cells

èMinority: ≈20%
èFast conduction rate 

(more myelin)
èGrayscale
èProcesses 

information about 
depth & motion

èLarge receptive field

Magno cells



• Slow pathway
• Low frame rate
• Capturing spatial semantics

• Fast pathway 
• High frame rate
• Capturing motion information

Basic idea: Two pathways



Fast pathway

Slow pathway

Time

Channels

Space

prediction

C
C

C

αTαT

αT βC
βC

βC

T
T

T

Slow

Fast

Basic idea: Two pathways

Lightweight (< 20% of compute)

Low framerate

High framerate
Lateral   connections

β = 1/8
e.g. α = 8



Example instantiation of a SlowFast network

• Dimensions are
• Strides are {temporal, spatial2} 
• The backbone is ResNet-50
• Residual blocks are shown by brackets
• Non-degenerate temporal filters are 

underlined
• Here the speed ratio is α = 8 and the 

channel ratio is β = 1/8
• Orange numbers mark fewer channels, 

for the Fast pathway
• Green numbers mark higher temporal 

resolution of the Fast pathway
• No temporal pooling is performed 

throughout the hierarchy



SlowFast ablations: Individual paths

Fast pathway

Slow pathway

T

C

H,W

prediction

C

αT

C
C

αT

αT βC
βC

βC

T
T

T

β = 1/8

prediction

α = 8

• Kinetics action classification dataset has 240k training 
videos and 20k validation videos in 400 classes



SlowFast ablations: Learning curves 



SlowFast ablations: Video action classification

Slow pathway

prediction

Fast pathway

αTαT

αT βC
βC

βC

C
C

C
T

T
T



SlowFast ablations: Making the Fast path thin in channel dimension

Slow pathway

T

C

H,W

prediction

Fast pathway

αTαT

αT βC
βC

βC

C
C

C
T

T
T

• Kinetics dataset has 240k training videos and 20k 
validation videos in 400 classes



SlowFast ablations: Weaken the Fast appearance information

Slow pathway

T

C

H,W

prediction

Fast pathway

αTαT

αT βC
βC

βC

C
C

C
T

T
T



SlowFast ablatios: Weaker input 
& reduced channels: conv1 filters

t

grayscale time diff

t

dtrgb grayscale

ttt

Slow

Fast

rgb

t

β = 1/8

β = 1/16

β = 1/6

β = 1/4

β = 1/32

t

Conv1 filters



SlowFast: State-of-the-art comparison on Kinetics

93

§§§§§§§§§
at 10% 

of FLOPs
+ 5.1% 
top-1



SlowFast: State-of-the-art comparison Charades1

• Charades has 9.8k training videos and 1.8k validation videos in 157 classes 
• Multi-label classification setting of longer activities spanning 30 seconds on average

1G. A. Sigurdsson, G. Varol, X. Wang, A. Farhadi, I. Laptev, and A. Gupta. Hollywood in homes: Crowdsourcing data collection for activity 
understanding. In ECCV, 2016. , CVPR 2016



Experiments: AVA1 Action Detection

• Fine-scale localization of 80 different 
physical actions

• Data from 437 different movies and 
spatiotemporal labels are provided in a 
1Hz interval

• 211k training and 57k validation video 
segments

• We follow the standard protocol of 
evaluating on 60 most freqent classes

• Every person is annotated with a 
bounding box and (possibly multiple) 
actions

1Gu et al. AVA: A Video Dataset of Spatio-temporally Localized Atomic Visual Actions, CVPR 2018

SlowFast detector output



SlowFast: AVA action detection

RPN

RoIAlign

Fast pathway

Slow pathway

βC

T

C

H,W

C

αT

C
C

αT

αT βC βC

T
T

T

concat

2019: SlowFast winner: 34.3 mAP
+13 mAP

2018: Challenge winner: 21.1 mAP

Top-3 ranked teams used SlowFast



SlowFast ablations: AVA class level performance
Slow pathway

prediction

Fast pathway

αTαT

αT βC
βC

βC

C
C

C
T

T
T



Experiments: AVA Qualitative results



Experiments: AVA Qualitative results



Conclusion

Fast pathway

Slow pathway

• The time axis is a special dimension of video
• 3D ConvNets treat space and time uniformly
• Non-local networks and Long-term feature banks 

aggregate long-term spatiotemporal information
• SlowFast & Two-Stream networks treat space and time 

differently and share motivation from neuroscience
• The SlowFast architecture design focuses on 

contrasting the speed along the temporal axis
• Given the mutual benefits of jointly modeling video 

with different temporal speeds, we hope that this 
concept can foster further research in video analysis

https://github.com/facebookresearch/SlowFast
Pytorch code available:


