Lecture 9

Video Recognition, Optical Flow

Slides from: Du Tran, Rick Szeliski, Steve Seitz,
Christoph Feichtenhofer
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Optical flow

Combination of slides from Rick Szeliski, Steve Seitz, Alyosha Efros and
Bill Freeman and Fredo Durand
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Motion estimation: Optical flow

++++++
nnnnnnnnnnnn
------
------

vvvvvvvvvvvv

uuuuuuuu

Will start by estimating motion of each pixel separately
Then will consider motion of entire image



Why estimate motion?

Lots of uses
» Feature representation for DeepNets [coming up]
« Track object behavior
» Correct for camera jitter (stabilization)
« Align images (mosaics)
« 3D shape reconstruction
» Special effects




Problem definition: optical flow
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How to estimate pixel motion from image H to image 1?

» Solve pixel correspondence problem
— given a pixel in H, look forinearby|pixels of the|same colof in |

Key assumptions
» color constancy: a point in H looks the same in |
— For grayscale images, this is brightness constancy

« small motion: points do not move very far
This is called the optical flow problem



Optical flow constraints (grayscale images)

(z,y)
\Sllsplacement = (u,v)

Q
(z +u,y +v)

H(z,y) I(z,y)

Let's look at these constraints more closely

» brightness constancy: Q: what’s the equation?
H(x,y)=l(x+u, y+v)

« small motion: (u and v are less than 1 pixel)
— suppose we take the Taylor series expansion of I:

I(x+u,y+v) = I(x, y)—l— fU—I—h|gher order terms
~ I(x,y) + 92 —I—



Optical flow equation

Combining these two equations
O=I(zx+uy+v)— H(x,y)
~ [(z,y) + Iyu+ Iyv — H(z,y)
~ ([(z,y) — H(z,y)) + Ipu + Iyv
~ I + Iyu + Iy
~ I+ VI-[|u v]

shorthand: I, = %

In the limit as u and v go to zero, this becomes exact

O:It—FV[-[% %]



Optical flow equation

O0=1;+VI-[u v]

Q: how many unknowns and equations per pixel?
2 unknowns, one equation
Intuitively, what does this constraint mean?

« The component of the flow in the gradient direction is determined
* The component of the flow parallel to an edge is unknown

This explains the Barber Pole illusion

http://www.sandlotscience.com/Ambiguous/Barberpole lllusion.ht
http://www.liv.ac.uk/~marcob/Trieste/barberpole.html

http://en.wikipedia.org/wiki/Barber's_pole


http://www.sandlotscience.com/Ambiguous/Barberpole_Illusion.htm
http://www.liv.ac.uk/~marcob/Trieste/barberpole.html

Aperture problem




Aperture problem




Solving the aperture problem

How to get more equations for a pixel?

Basic idea: impose additional constraints
— most common is to assume that the flow field is smooth locally

— one method: pretend the pixel’s neighbors have the same (u,v)
» If we use a 5x5 window, that gives us 25 equations per pixel!

0 = Ii(p;) + VI(p;) - [u 7]
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RGB version

How to get more equations for a pixel?

Basic idea: impose additional constraints
— most common is to assume that the flow field is smooth locally

— one method: pretend the pixel’s neighbors have the same (u,v)
» If we use a 5x5 window, that gives us 25*3 equations per pixel!

0 = Ii(pp[0, 1,2] + VI(p)[0, 1,2] - [u o]

I Ix(pl)
I:(p1)

IZC(p-]_)

I (p25)[0
I:(p25)[1]

| Ix(p25)[2.

0] Iy(p)IO,
:1: Iy(pl): -
2] Iy(p1)[2]
0] Iy(p25)[0
1] Iy(p2s)[1.
2] Iy(p2s5)I2]

A

5X2

O
1
2

0
1
S

2%x1

Note that RGB is not enough to disambiguate
because R, G & B are correlated
Just provides better gradient
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Lukas-Kanade flow

Prob: we have more equations than unknowns

A d=b —— minimize ||Ad — b||?
25x2 2x1 25x1

Solution: solve least squares problem
* minimum least squares solution given by solution (in d) of:

(ATA) d= ATp

2X2 2x1 2x1

[2198130 zlxly] [u] _ [ zfxft]
Sy SLIy || v | ™ | Sy

AT A Alp

 The summations are over all pixels in the K x K window
» This technique was first proposed by Lukas & Kanade (1981)



Aperture Problem and Normal Flow

Normal Flow: \

u,

The gradient constraint:

lu+lv+1,=0

VieU =0

Defines a line in the (u,v) space
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Combining Local Constraints

<

VI'eU =~
VIiZeU =-]"
VIPeU =-]’

etc.



Conditions for solvability

« Optimal (u, v) satisfies Lucas-Kanade equation

Do dxdy ) Ixly wo| | ey
> Ixly > Iyly v | > Iyly

AT A Al

When is This Solvable?

« ATA should be invertible
« ATA should not be too small due to noise

— eigenvalues A, and A, of ATA should not be too small
« ATA should be well-conditioned

— Aq/ A, should not be too large (A, = larger eigenvalue)
ATA is solvable when there is no aperture problem

Lly Y Il I,
ATA = [%ley %Iy[z] =2 [ I, ] [l I,] = Y- vI(vD)"



Eigenvectors of ATA

was St S| o[ i 1) = S oo
e Recall the Harris corner detector: M =A’A is
the second moment matrix

* The eigenvectors and eigenvalues of M relate

to edge direction and magnitude

« The eigenvector associated with the larger eigenvalue points
in the direction of fastest intensity change

* The other eigenvector is orthogonal to it



Interpreting the eigenvalues

Classification of image points using eigenvalues
of the second moment matrix:

Ay




Local Patch Analysis




— large gradients, all the same
— large A4, small A,



Low texture region

S vivn?
— gradients have small magnitude
— small A4, small A,




ngh textured region

S vi(vn® .

— gradients are different, large magnitudes *
— large A4, large A,




Observation

This is a two image problem BUT

« Can measure sensitivity by just looking at one of the images!

« This tells us which pixels are easy to track, which are hard
— very useful later on when we do feature tracking...



Motion models

JI‘ / _t-;lilﬂi ity pm]ecm =
nau51

Elll.'.‘lid-E":'-lﬂ ﬂﬂ"me

Translation Affine Perspective 3D rotation

2 unknowns 6 unknowns 8 unknowns 3 unknowns




Affine motion

u(x,y)=a, +a,x+a,y

v(x,y)=a,+ax+a.y

« Substituting into the brightness constancy
equation:

[, ou+l,-v+1, =0




Affine motion

u(x,y)=a, +a,x+a,y

v(x,y)=a,+ax+a.y

« Substituting into the brightness constancy
equation:

[ (a,+a,x+ay)+1 (a,+asx+agy)+1, =0

« Each pixel provides 1 linear constraint in
6 unknowns

» Least squares minimization:

Err(fi) — Z[]x(al +a2x+a3y)—|—[y(a4 +a5x—l—a6y)—|—[t] 2




Errors in Lukas-Kanade

What are the potential causes of errors in this procedure?
« Suppose ATA is easily invertible
» Suppose there is not much noise in the image

When our assumptions are violated
« Brightness constancy is not satisfied
* The motion is not small
« A point does not move like its neighbors

— window size is too large
— what is the ideal window size?



lterative Refinement

lterative Lukas-Kanade Algorithm
1. Estimate velocity at each pixel by solving Lucas-Kanade equations
2. Warp H towards | using the estimated flow field
- use image warping techniques
3. Repeat until convergence



Optical Flow: lterative Estimation

A f1(z) fo(x)

estimate

Initial quess: dn = 0O
update J 0

Estimate: dy =dg +d

a\)

Xo

(using d for displacement here instead of u)



Optical Flow: lterative Estimation

& file —d1) f5(2)

estimate

Initial guess: d
update J 1

Estimate: do =d; +d

a\)



Optical Flow: lterative Estimation

A file —d2) | f5(2)

estimate

Initial guess: d
update J 2

Estimate: d3 =do +d

a\)



Optical Flow: lterative Estimation

A fi1(z — d3) = fo(w)

a\)



Optical Flow: lterative Estimation

Some Implementation Issues:

« Warping is not easy (ensure that errors in warping are smaller than the estimate
refinement)

« Warp one image, take derivatives of the other so you don’t need to re-compute the
gradient after each iteration.

« Often useful to low-pass filter the images before motion estimation (for better
derivative estimation, and linear approximations to image intensity)



Revisiting the small motion assumption

Is this motion small enough?
* Probably not—it’'s much larger than one pixel (2"d order terms dominate)
* How might we solve this problem?



Optical Flow: Aliasing

Temporal aliasing causes ambiguities in optical flow because
images can have many pixels with the same intensity.

|.e., how do we know which ‘correspondence’ is correct?

A

f1(z) fo(x)

P

A

fi(z) fo(x)

actual shift

NS

estimated shift

nearest match is correct
(no aliasing)

|

nearest match is incorrect
(aliasing)

To overcome aliasing: coarse-to-fine estimation.



Reduce the resolution!




Coarse-to-fine optical flow estimation

u=1.25 pixels

u=2.5 pixels

u=>5 pixels

Gaussian pyramid of image H Gaussian pyramid of image |



Coarse-to-fine optical flow estimation
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Recap: Classes of Techniques

Direct-methods (e.g. optical flow)
» Directly recover image motion from spatio-temporal image brightness variations

» Global motion parameters directly recovered without an intermediate feature
motion calculation

» Dense motion fields, but more sensitive to appearance variations
« Suitable for video and when image motion is small (< 10 pixels)

Feature-based methods (e.g. SIFT+Ransac+regression) [To be covered]

« Extract visual features (corners, textured areas) and track them over multiple
frames

« Sparse motion fields, but possibly robust tracking
« Suitable especially when image motion is large (10-s of pixels)



FlowNet

FlowNet: Learning Optical Flow with Convolutional Networks
[Fischer et al. 2015]

~ 1sec/image ys ~17 secs/image for traditional optical flow

convolutional
network

FlowNetCorr



FlowNet

* FlowNet: Learning Optical Flow with
Convolutional Networks [Fischer et al. 2015]

Ground truth EpicFlow
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Traditional Computer Vision Pipeline

Extraction Models .
(e.g. color, (e.g. SVM, Predictions

texture, HMM, Bayesian)

motions)

Focus of this work J

44



Best (non-DL) Video Features

* improved Dense Trajectories (iDT)

Tracking in each spatial scale separately Trajectory description

Dense sampling
in each spatial scale
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X X
X X
Wang et al. IJCV’13

Pros: Cons:

* Don’t need to learn e Highly hand-crafted

* Don’t need large-scale training * Computational intensive

data * Hard to parallelize



Spatiotemporal Feature Learning

No explicit motion modeling

Aggregate Image teatures

Tracking in each spatial scale separately

Dense sampling
in each spatial scale

~<

T~

L=~

~————m

X X‘\ X
v VNX\) HOG HOF MBH

. Wang et al. JCV'13 computationally expensive
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Why 3D ConvNets?

output

W
2D convolve on an image

k Pra— / output

2D convolve on multiple images as channels

output

Spatial-temporally convolve on multiple frames

-> no motion modeling X

-> collapse temporal signal after one X
convolution layer

-> hierarchically group temporal signal V

47



What is a Good Architecture for 3D ConvNets?

D. Tran, L. Bourdeyv, R. Fergus, L. Torresani, M. Paluri, Learning
Spatiotemporal Features with 3D Convolutional Networks, ICCV15.

e Dataset: UCF101

* Use VGG-similar architecture, varying kernel
temporal length

clip accuracy

\ \ | [ =w—depth-3
I A Lo L L . Increase |
: : ‘ : —8=— (Jescrease

| |
10 12 14 16

6 8
# epoch
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What is a Good Architecture for 3D ConvNets?

D. Tran, L. Bourdeyv, R. Fergus, L. Torresani, M. Paluri, Learning
Spatiotemporal Features with 3D Convolutional Networks, ICCV15.

Convila = Conv2a o Conv3a || Conv3b ke Conv4a || Conv4b & Conv5a || Conv5b o [ fc6 || fc7
64 s 128 [[g]] 256 256 |[g]| 512 512 g 512 512 =1 14096/ |4096

* C3D architecture
— 8 convolution, 5 pool, 2 fully-connected layers
— 3x3x3 convolution kernels
— 2x2x2 pooling kernels

* Dataset: Sports-1M [Karpathy et al. CVPR14]
— 1.1M videos of 487 different sport categories

— Train/test splits are provided



C3D as Generic Features

C3D

What Objects?

What Scene?

pre-trained 3D ConvNet

Convla
Conv2a
fc6
fc7

.
| |
YA X
°

What Actions?

)
L

Simple recipe: C3D + linear SVM = good performance



Video Classification with C3D

Dataset SportlM UCF101 ASLAN YUPENN UMD Object
Task action recognition | action recognition | action similarity labeling | scene classification | scene classification | object recognition
Method [19] [39]([26]) [31] [10] [10] [32]
Result 80.2 75.8 (89.1) 68.7 96.2 71.7 12.0
C3D 85.2 85.2 (90.4) 78.3 98.1 87.7 22.3
A 5.0 9.4 (1.3) 9.6 1.9 10.0 10.3
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4or / - A= Imagenet ||
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-©- C3D

30

0 5.0 1(‘)0 15;0 2(|10 25.0 3(;0‘ 3.%0 4&‘)0 4EI‘»O 500
Number of dimensions

C3D is discriminative and
compact!

C3D code/model is publicly available




Action Recognition Task
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e Optical Flow
e ConvNets for Video

Overview
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facebook Artificial Intelligence Research

Recognition in Video

ICCV 2019 Tutorial

Christoph Feichtenhofer
Facebook Al Research (FAIR)



facebook Artificial Intelligence Research

Task: Human action classification & detection

:@,AZI.listen to person
[0.67] watch person

[0.58] watch person

[1.00] sit

[6.79] ugge,,;

\W 4

GT t%
[GT] stand L ] Sl

[GT] €arry object
FGT] Talk to person[GT] sit

0

C. Feichtenhofer, H. Fan, J. Malik, K. He SlowFast Networks for Video Recognition. ICCV 2019



facebook Artificial Intelligence Research

Outline: Components for state-of-the-art video understanding

o Feature bank operator:
Classifier |

FBO(S, L)

I i

Short-term Long-term |_|| " "

features: S feature bank: L ™ (I
[Foreool]

backbone

feature
extractor

A 3 ‘ v
= e OO e
3D ConvNets ' . ’ frames
[Taylor et al. 2010, Karpathy et al. 2014, ~ Lo

Tran et al. 2015,...] Attention-based models, Non-local network blocks,

Long-term Models [Varol et al. 2017, Wu et al. 2019, ...]
[Wang et al., 2018 2019, Girdhar et al. 2019,...]
4 Motion Stream ~ ~ ~ ~ : Slow pathway
VAR, .
e e e e —h|
g e 1 T W
c —r— \ 3
T NNEN |
it H e e H S s H e F esh i
HEbiENEpiENas v ]
\ J (e)R2+1)D fC T
Two-stream ConvNets (RGB+optical flow) Local decomposition spatial and temporal information Global decomposition spatial and temporal information
[Simonyan et al. 2014, Feichtenhofer et al. 2016, [Feichtenhofer et al. 2016, Qiu et al. 2017, Tran et al. SlowFast networks contrast features of different
Wang et al. 2016, ...] 2018, Xie et al. 2018, ...]

framerate and channel capacity
[Feichtenhofer et al. 2019]



facebook Artificial Intelligence Research

pceptive field on input
3D Convolutional Networks

4D tensors of shape TxHxW x C
HW
L.
C

> - +—>

N1~

Intermediate filters only capture /ocal
information (in x,y,t) with a growing
receptive field size

uo13d1pald

(Kinetics classification annotation)

G. W. Taylor, R. Fergus, Y. LeCun, and C. Bregler. Convolutional learning of spatio-temporal features. In Proc. ECCV, 2010.
D. Tran, L. Bourdey, R. Fergus, L. Torresani, and M. Paluri. Learning spatiotemporal features with 3D convolutional networks. In Proc. ICCV, 2015.

J. Carreira and A. Zisserman. Quo vadis, action recognition? a new model and the kinetics dataset. In Proc. CVPR, 2017.



Pytorch code now available:

facebook Artificial Intelligence Research

Non-Local Blocks https://github.com/facebookresearch/SlowFast

THWx512

TxHxWx512

THWxTHW

softmax

512xTHW

TxHxWx512

Z f TxHxWx1024

Ix1Ix1

TxHxWx512

THWx512

THWx512
TxHxWx512

0:1

x1x1 ¢: Ix1x1

g: IxIxl

A

A

)

| TxHxWx1024
X

O Self-attention in the spatiotemporal domain allows long-range feature aggregation

X. Wang, R. Girshick, A. Gupta, and K. He. Non-local neural networks. In Proc. CVPR, 2018.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, t. and Polosukhin, I., Attention is all you need. NeurIPS 2017
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Limited temporal input length of 3D ConvNets

Actions

2-4 seconds



facebook Artificial Intelligence Research

Temporal striding (subsampling)

Actions
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Long-Term Feature Banks for Video Understanding

Actions
Feature bank operator (FBO)
combines short-term and FBO : |

long-term info .T. Long-Term Feature Bank

3D CNN |

1

full video |

CY Wu, C. Feichtenhofer, H. Fan, K. He, P. Krahenbhl, R. Girshick Long-Term Feature Banks for Detailed Video Understanding. In Proc. CVPR, 2019.



Long-Term Feature |

&/
Scale,/1/512
N, x N
Ntx512| \X/ |Nx512 N x 512
| Linear | | Linear I | Linear |
Ny x 512 | | Nx512 I Nx512
St I—t Lt

facebook Artificial Intelligence Research

Inderstanding

Long-Term Feature Bank

full video

CY Wu, C. Feichtenhofer, H. Fan, K. He, P. Krahenbihl, R. Girshick Long-Term Feature Banks for Detailed Video Understanding. In Proc. CVPR, 2019.



Baseline 1:
3D CNN x2

Actions

]
t

3D CNN

I

short clip

Baseline 2;:
Self-attention x2

Actions

I

Self-attention

t
]
t

3D CNN

1

short clip

LFB

Actions

I

FBO

t
]
t

3D CNN

I

short clip

Long-Term Feature Bank

full video
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Ablation study on short-term vs. long-term

AVA EPIC-Kitchens Charades
27 55

53.75

52.5

51.25

50

48.75
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Ablation on input duration: subsampling vs LFB

=@-3D CNN x2 Sefl-Attn x2 === LFB
26
| |
23.75 E

< 215 - —©- N\

E N

19.25

ﬂ AN

2 3 s 20 5 3 0

Temporal support (sec.)
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Code/models:

https://github.com/facebookresearch/video-long-term-feature-banks

6 sec
8 Se( — 3, O 0/ o1
M ————— ] () GO e———————————————— ] ] | § Y »

P(holding an object)?



https://github.com/facebookresearch/video-long-term-feature-banks

facebook Artificial Intelligence Research

=» Amazing what a human brain can do
without appearance information

Johansso otion

Sources: Johansson, G. “Visual perception of biological motion and a model for its analysis.” Perception & Psychophysics. 14(2):201-211. 1973.
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Motivation: Separate visual pathways in nature

( ( ’ . [l
=» Dorsal stream (‘where’) recognizes motion and locates
( OPTICAL FLOW STIMULI PLANAR CIRCULAR RADIAL
|—— 100 deq — —— 100 deg ——f —— 100deg — —— 100deg ——i
| —_ T . Tl ll 1 ,l T T T T j—— 100deg —f f—— 100 deq —— p— 100 deq —f —— 100deg —
Al e et ARNT IR AR 7 =~ T =TI T2 TN T2
E f‘—‘-‘ ::H i ”*___,i: _’—>: i Illl ]'ll% lllllll% E III ITT }III'[ TII % T g /.;‘///E' :?x\l :/I‘/{T{'S‘\\\:\? g \:}\11.{5,‘/_ g \:‘: \IT/;_/_'_
e I st 1 RT IR I HIN TR TR USRI I LRSS EN B S e
=== === g l\\\t‘f’;//j i\i\\:“f/// IS NP2
k ? .ﬁ DOTNN qp CLOCKWISE /—\l .%Né—. é{;:l?

=» “Interconnection”
e.g. in STS area

DN

~—° 9>V /<

(-) Ventral (‘what’) stream performs object recognition

. Multiple Land- Land- Qutdoor
Faces Objects objects marks
L By .‘
v ! . ;

scapes scenes
Sources: “Sensitivity of MIST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli." Journal of neurophysiology 65.6 (1991).
“A cortical representation of the local visual environment”, Nature. 392 (6676): 598-601, 2009
https://en.wikipedia.org/wiki/Two-streams_hypothesis




Two-Stream Convolutional Networks

input
video

Spatial stream ConvNet

conv1 || conv2 || conv3 || conv4 || conv5 fullé full7 |[softmax
7X7x96 || 5x5x256 || 3x3x512 || 3x3x512 || 3x3x512 4096 2048
stride 2 || stride 2 || stride 1 || stride 1 || stride 1 || dropout || dropout
norm. norm. pool 2x2
single frame pool 2x2 || pool 2x2
- Temporal stream ConvNet
‘ conv1 || conv2 || conv3 || conv4 || conv5 fullé full7 ||softmax
7X7x96 ||5x5x256 || 3x3x512 || 3x3x512 || 3x3x512|| 4096 2048
stride 2 || stride 2 || stride 1 || stride 1 || stride 1 || dropout || dropout
. norm. |[|pool 2x2 pool 2x2
multi-frame pool 2x2

_optical flow

Figure 1: Two-stream architecture for video classification.

Individual processing of spatial and temporal information

» Using a separate 2D (x,y) ConvNet recognition stream for each

* Late fusion via softmax score averaging

facebook Artificial Intelligence Research

class
score
fusion

K. Simonyan and A. Zisserman. Two-stream convolutional networks for action recognition in videos. In NIPS, 2014
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Two-Stream Network Fusion and Long-term Two-Stream networks

f Motion Stream \
A RE S S S _
o
E N & 5 & :
x x x
4 Appearance Stream N\
A A 4 \ 4 \ 4
(@] (@] (@] (@]
(@) o o o o
i
\ I J

O ST-ResNet allows the hierarchical learning of spacetime features by connecting the
appearance and motion channels of a two-stream architecture.

C. Feichtenhofer, A. Pinz, and A. Zisserman. Convolutional two-stream network fusion for video action recognition. In Proc. CVPR, 2016
Wang, L., Xiong, Y., Wang, Z., Qiao, Y., Lin, D., Tang, X. and Van Gool, L., Temporal segment networks: Towards good practices for deep action
recognition. ECCV 2016

C. Feichtenhofer, A. Pinz, and R. Wildes. Spatiotemporal residual networks for video action recognition. In NIPS, 2016.
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Long-term Two-Stream networks and transforming filters by Inflation

Time t C——
convl convl convl convl convl convl convl | convi | convl |
* R ) 7 O — e O —=R —— 2 O =R e O o0 =V, =0 (<) Vo *
res2 res2 res2 res2 res2
+ @ () O, ()< 1) o O, +
* R ® R ® F— ) O =l S~ () S L O pum— () - *® R *
res3 res3 res3 res3 res3
; : © o © (o © : :
% KA % R ® R ® o Q)i o O~ () ® R » E R~ &
resd resd resd res4 resd resd resd res4
+ + + (+) © © + + +
3 i * I ) I * © O N { & I ) ] ®
 res5 ress ress res5 res5 res5 ress ress
n n ¥ + ¥ ¥ ¥ n ¥
o —
pool

O Inflation allows to transform spatial filters to spatiotemporal ones (3D or 2D spatial +1D temporal)

C. Feichtenhofer, A. Pinz, and R. Wildes. Spatiotemporal residual networks for video action recognition. In NIPS, 2016.
Wang, L., Xiong, Y., Wang, Z., Qiao, Y., Lin, D., Tang, X. and Van Gool, L., Temporal segment networks: Towards good practices for deep action

recognition. ECCV 2016

J. Carreira and A. Zisserman. Quo vadis, action recognition? a new model and the kinetics dataset. In Proc. CVPR, 2017.
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Two-Stream Network Fusion and Long-term Two-Stream networks
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C. Feichtenhofer, A. Pinz, and R. Wildes. Spatiotemporal residual networks for video action recognition. In NIPS, 2016.
Wang, L., Xiong, Y., Wang, Z., Qiao, Y., Lin, D., Tang, X. and Van Gool, L., Temporal segment networks: Towards good practices for deep action

recognition. ECCV 2016

J. Carreira and A. Zisserman. Quo vadis, action recognition? a new model and the kinetics dataset. In Proc. CVPR, 2017.
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entrtion

.
IAV\ V4

Fast motion
(low temporal reg.)

* v 7

Slow motion
(high temporal reg.)

v

Maximum Activation

Punch

Drumming

StillRings

BoxingSpeedBag

JumpingJack

IceDancing

BenchPress

Archery

MilitaryParade

BoxingPunchingBag

ition?. In CVPR, 2018.

C. Feichtenhofer, A. Pinz, and R. Wildes, A. Zisserman. Deep insights into convolutional networks tor video recognitions. In IJCV, 2019.
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Going through the conv layers of VGG-16
(first four filters of each layer are shown)

Appearance convd_2 f1-4 Motion

Feichtenhofer, Pinz, Wildes, Zisserman, CVPR 2018, IJCV 2019
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251 at conv5 fusion — the strongest
ocal Billiards unit
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FC 6 (4096 features; RF 404x404)

Appearance Slow motion

Maximum Activation

PlayingFlute

PlayingCello

PlayingGuitar

HorseRiding

PlayingViolin

pplyEyeMakeup

Mixing

Archery

ApplyLipstick

PlayingSitar
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FC 7 (4096 features; RF 404x404)

Appearance Slow motion

Maximum Activation

BoxingSpeedBag

PullUps

PushUps

BodyWeightSquats

BoxingPunchingBag

Punch
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Last layer

> 4
“CleanAndJerk”

Appearance

e.g. “shaking with
bar”
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SlowFast Networks for Video Recognition
Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik and Kaiming He

New backbone network for human action classification & detection

Slow pathway

[1 80] stand
6.78] 1isten to Pe i@n [1.080] stand

- [6.96] carry ebj‘!cf

-[0.8d talk to person '
1S
HW

/ Fast pathway

C. Feichtenhofer, H. Fan, J. Malik, K. He SlowFast Networks for Video Recognition. Proc. ICCV 2019
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“Hand-clap”
(action detection annotation)
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Human brain: Separate visual pathways

WHAT? (Form, Color)
[Inferotemporal stream]

=>» Minority: =20% =>» Majority: =80%
conduction rate =» Slow conduction rate

(more myelin) (less myelin)

Magno cells P Parvo cells
~1 Orientation —# Direction Pattlern (plaid) /-\-:Pursuit eye
X fSpatial &0 Disparity ot ® movements
A requency )
/\/\/X (high/low) 4 Wavelength @ rl:z?i-fnartesnan
W\t Temporal ) ianti
VUV Subjective ]
t frequency () @) Non-Cartesian
avav: (high/low) contour © pattern @ Faces

David C. Van Essen, Jack L. Gallant, Neural mechanisms of form and motion processing in the primate visual system,
Neuron, Volume 13, Issue 1, July 1994, Pages 1-10, ISSN 0896-6273
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Basic idea: Two pathways

* Slow pathway
* Low frame rate
e Capturing spatial semantics
pathway
* High frame rate
e Capturing motion information



Basic idea: Two pathways

facebook Artificial Intelligence Research

Spac
i zTime

Slow pathway Channels
ﬂ\ﬂ-
C A ¢
Low framergjte . 3
Lateral | connections %
ighBighighdrfve2ld% of compute) |3
I
G
Fast pathway e.g.o =8
6 =1/8
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Example instantiation of a SlowFast network

. Ni . 2 stage Slow pathway
Dimensionsare {71'xS*, C'} p— :
° 1 iql2
Strides are {temporal, spatial<} datalayer|  stride 16, 12
* The backbone is ResNet-50 T e
. conv o
e Residual blocks are shown by brackets ' stride 1, 22
. 1 %32 max
* Non-degenerate temporal filters are pooly stride 1, 22
underlined X264
* Here the speed ratio is « = 8 and the res ! ><1322’26546 X3
channel ratiois 8 = 1/8 L - X7, 250
1x12, 128
numbers mark fewer channels, resa 1%32. 128 | x4
for the Fast pathway 1x12, 512
* Green numbers mark higher temporal [ 3x12,256 |
resolution of the Fast pathway resq 1x3%,256 | x6
. 1x12, 1024
* No temporal pooling is performed - 5 -
throughout the hierarchy 3x1, 512
ress 1x32,512 | x3
| 1x12,2048 |

global average pool, concate, fc ' # classes
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SlowFast ablations: Individual paths

Kinetics action classification dataset has 240k training
Slow pathway

videos and 20k validation videos in 400 classes -
©
% 8
;‘ =
model T x 7| t-reduce top-1 top-5 GFLOPs \‘ = X §'
3D R-50 3x8 | 21 735 908 281 —X c
3D R-50 8% 8 1 74.6 915 449 LW
our Slow-only, R-50 | 4x 16 1 72.6 903 209 ’ [ ZT
our Fast-only, R-50 | 32x2 1 51.7  78.5 4.9 c
(b) Individual pathways: Training our Slow-only or Fast-only path- /
way alone, using the structure specified in Table 1. “t-reduce” is the 2
total temporal downsampling factor within the network. a=8 >l
X =
6 =1/8 A L & S
K 8C

8C Fast pathway



SlowFast ablations: Learning curves

20

Figure 2. Training procedure on Kinetics for Slow-only (blue) vs.

Slow-only (train)

---- SlowFast (train)

Slow-only (val)
—— SlowFast (val)

50 100

150
epoch

200

250

SlowFast (green) network. We show the top-1 training error (dash)
and validation error (solid). The curves are single-crop errors; the

video accuracy is 72.6% vs. 75.6% (see also Table 2c¢).

facebook Artificial Intelligence Research



top-1 accuracy (%)

SlowFast ablations: Video action classification

Kinetics action classification performance

+1.7/.

78 -
® +2.0 16x8, R101
o
® +3.4| [+2.1 8x8. R101

+3.0 | 8x8,R50

74 -
4x16, R101

25 _+3-3 4x16, R50
70 1 2x32, R50

25 50 75 100 125 150 175 200

Model capacity in GFLOPs

facebook Artificial Intelligence Research

Slow pathway

> Y .
C < ¢ ¢
A
T
g
5
2
=)
-> —)ﬁ ]—)
£ &
A 6 ° 6c
“ c

8c

Fast pathway
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SlowFast ablations: Making the Fast path thin in channel dimension

e Kinetics dataset has 240k training videos and 20k
validation videos in 400 classes

top-1 top-5 GFLOPs
Slow-only | 72.6  90.3 20.9
B=1/4| 75,6 91.7 41.7
1/6| 75.8 92.0 32.0
1/8| 75.6  92.1 27.6
1/12| 752 91.8  25.1
1/16| 75.1 91.7 234
1/32| 742 91.3 21.9

(d) Channel capacity ratio: Varying
values of 3, the channel capacity ratio
of the Fast pathway. Backbone: R-50.

Slow pathway

-

A

\'
mI
uol3o1paud

o 8C

Fast pathway
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SlowFast ablations: Weaken the Fast appearance information

Fast pathway | spatial | top-1 top-5 GFLOPs
RGB - 75.6 921 27.6
RGB, 5=1/4| half 7477 91.8 263
gray-scale - 75.5 919 26.1
time diff - 745 91.6 26.2
optical flow - 73.8 91.3 269

(e) Weaker spatial input to Fast pathway: Various
ways of weakening spatial inputs to the Fast path-
way in SlowFast models. 5=1/8 unless specified

otherwise. Backbone: R-50.

Slow pathway

-

A

\'
mI
uol3o1paud

Fast pathway
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Conv1 filters
SlowFast ablatios: Weaker input

eEEswl OANECSAEES40 EREF RN
& reduced channels: convl filters ~ ERSS=ESY CoESsZ== EHECGR:Z
) L
reaucea cnannels. conv | eglsow DLHIE=E0S IEIEHH A ]
Fast pathway | spatial | top-1 top-5 GFLOPs EE%E%E% %==E== 95=EEEE=
RGB - 756 92.1  27.6 dOfA=LEO+dE COEEQNEEAS [DFE5E"6E
EEFaECR™N M=FEiiEa OEII=EQ=ECON
8=1 /4 gray-scale - 755 919 26.1
time diff - 745  91.6 262 rgb grayscale time diff
— _ = e ST Ja|
EEETY 1/6 6=1/8 mammn [ 1 Iad |
T (e) tlal input to Fast pathway: Various ERCEE
EEECE way!.ﬁhmg spat1a1 inputs to the Fast path-  Fgst EEEEN T T WT]
g models. B=1 /8 unless specified | lad ] | | EECER
- CHENEN -
boneBstm/16 = 1/32 I ERETN
EEECE — —>
T e 1 1T BEEETT t t
L | ] R iy - o
lel | U]l L EEECN ,
— — —

t t

grayscale
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SlowFast: State-of-the-art comparison on Kinetics

inference

model flow | pretrain | top-1]top-5 | GFLOPs x crops [1] J. Carreira and A. Zisserman. Quo vadis, action recognition? a

new model and the kinetics dataset. In Proc. CVPR, 2017.

v [2] A.Diba, M. Fayyaz, V. Sharma, M. M. Arzani, R. Yousefzadeh,
J. Gall, and L. Van Gool. Spatio-temporal channel correlation
networks for action classification. In Proc. ECCV, 2018.

I;fgg? Flow 3] v 2;; Z;i 1315A2 i II\II/SA [3] D. Tran, H. Wang, L. Torresani, J. Ray, Y. LeCun, and
ARTNet [4] i 692 1883 235 x 250 M. Paluri. A closer look at spatiotemporal convolutions for
S3D [6] _ 69418911 664 x N/A action recognition. In Proc. CVPR, 2018.

ECO [7] - 70.0 | 89.4 | N/A x N/A [4] L. Wang, W. Li, W. Li, and L. Van Gool. Appearance-and-
13D [1] v i 71.6 1900 216 X N/A relation networks for video classification. In Proc. CVPR,
R(2+1)D [3] - 72.0 | 90.0 152 x 115

R(2+1)D [3] v - 7391909 | 304 x 115 2018.
SlowFast, R50 (4x 16) - 75610011 361 x 30 X. Wang, R. Girshick, A. Gupta, and K. He. Non-local neural

SlowFast, R50 - 77.0 926 | 657 x 30 at 10% networks. In Proc. CVPR, 2018.

SlowFast, R50 + NL - |77.7]93.11 808X30 E of FLOPs S. Xie, C. Sun, J. Huang, Z. Tu, and K. Murphy. Rethinking

SO ) e e 106530 spatiotemporal feature learning for video understanding. arXiv

SlowFast, R101 + NL - 79.0 | 93.6 115 X 30 <= ) ) |

preprint arXiv:1712.04851, 2017. o3

[7] M. Zolfaghari, K. Singh, and T. Brox. ECO: efficient
convolutional network for online video understanding. In Proc.
ECCV, 2018.

Table 1. Comparison with the state-of-the-art on Kinetics-400.
In the column of computational cost, we report the cost of a single
spacetime crop and the numbers of such crops used. “N/A” indi-
cates the numbers are not available for us. The SlowFast models
are the I'x T = 8x 8 versions, unless specified.
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SlowFast: State-of-the-art comparison Charades'

* Charades has 9.8k training videos and 1.8k validation videos in 157 classes
e Multi-label classification setting of longer activities spanning 30 seconds on average

Annotated Actions: (gray if not active) Video 21 of 50: (3x Speed)
inference P s v ooy
model pretrain mAP | GFLOPs x views

CoViAR, R-50 [55] ImageNet 21.9 N/A

Asyn-TF, VGG16 [39] ImageNet 22.4 N/A

MultiScale TRN [58] ImageNet 25.2 N/A

Nonlocal, R101 [52] ImageNet+Kinetics400| 37.5 544 x 30

STRG, R101+NL [53] |ImageNet+Kinetics400| 39.7 630 x 30

our baseline (Slow-only) Kinetics-400 39.0 187 x 30

SlowFast Kinetics-400 41.8 213 x 30

SlowFast, +NL Kinetics-400 42.5 234 x 30

SlowFast, +NL Kinetics-600 45.2 | 234 x 30 Nioisled Oblacks Script:

Table 4. Comparison with the state-of-the-art on Charades. All e S S sthramptag: e o S

our variants are based on 7'x7 = 16 x8, R101.

1G. A. Sigurdsson, G. Varol, X. Wang, A. Farhadi, |. Laptev, and A. Gupta. Hollywood in homes: Crowdsourcing data collection for activity
understanding. In ECCV, 2016., CVPR 2016
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. . 1 " '
Experiments: AVA+ Action Detection SlowFast detector outpbut

* Fine-scale localization of 80 different
physical actions

e Data from 437 different movies and

spatiotemporal labels are provided in a
1Hz interval AVA validation set videos

e 211k training and 57k validation video

segments We show:

- Detected boxes in green, with prectictions (if confidence > 0.5) on top

© We fO”(?W the standard protocol of - Ground-Truth (GT) boxes in 1=, with annotated labels on the bottom
evaluating on 60 most fregent classes

, : Detecti d GT h d, with reduced playback d
« Every person is annotated with a etections an are shown every second, with reduced playback spee

bounding box and (possibly multiple)
actions

1Gu et al. AVA: A Video Dataset of Spatio-temporally Localized Atomic Visual Actions, CVPR 2018
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SlowFast: AVA action detection

AETIVIT I NET igAaEstan 16.75] stand
[1.80] talk to persor [1.66] listen to person

Large Scale Activity Recognition Challenge [0.97] watchuperson

2019: SlowFast winner: 34.3 mAP

led UPZ)

Top-3 ranked teams used SlowFast

/4 ‘ ‘ ‘
: ¢ [6T] watch per
¢ 6C
6C

6C Fast pathway
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AVA class level performance

SlowFast ablations
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Experiments: AVA Qualitative results

[1.00] sit
[@.51] drive
[0.78] talk to person
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Experiments: AVA Qualitative results

[0.96] 51t
[0.74] Eo0ER
[0.73] |

sit

TGTl}ggiry obJect

L T Mﬁﬁﬂé R
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Pytorch code available:

Conclusion https://github.com/facebookresearch/SlowFast

The time axis is a special dimension of video
3D ConvNets treat space and time uniformly

Non-local networks and Long-term feature banks
aggregate long-term spatiotemporal information

SlowFast & Two-Stream networks treat space and time
differently and share motivation from neuroscience

The SlowFast architecture design focuses on
contrasting the speed along the temporal axis

[GT] stand
Given the mutual benefits of jointly modeling video [ETINESRIcoIeeE
L . ] TGT] TELK to person[GT] sit
with different temporal Speeds, we hope that this [GT] watch person [GT] carry objsaf

concept can foster further research in video analysis —_



