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Image Recognition: conventional setup

- Use large, manually curated dataset of §image,label pairs for supervised
training of large convolutional network model

Convolutional >"Plane"

Network

- But datasets expensive and time-consuming to build

- Hard to get beyond a few million labels



Learning from weak labels

- Facebook contains tons of data like this:
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Architecture

- Train convolutional network to predict words that co-occur with an image

Flickr 100M dataset contains ~100M photos with associated "captions”

- We treat each individual word in a photo's caption as a target for that photo

Thatis: a multi-label learning problem with extremely noise labels

= We train convolutional networks to predict the words from the images:

We use standard convnet architectures such as AlexNet



Loss function

= We train using multi-class logistic loss over 100K hashtags:

(0. W:D) = L33 o log | SRV x0i8)
N n:Jl k:Jl Zk’zl eXp(Wk’f(Xna ))

Surprisingly, this worked better than one-versus-all losses

- Training is performed using mini-batch stochastic gradient descent:

We use class-uniform sampling to prevent frequent classes from
dominating the visual features




Experimental setup

- First, we train our networks on the Flickr 100M dataset

We perform experiments with dictionary sizes up to 100K

- We evaluate the networks in two experiments:

Experiment 1: Given a photo, predict the words

Experiment 2: Use the features learned by the convolutional networks for
transfer learning to other vision tasks



Word prediction: Learning curves

- How much data do we need to train good word prediction models?
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- Having tens of millions of weakly supervised images helps!



Word prediction

- Six images with high scores for arbitrary words:

autumn




classification accuracy —

Transfer Learning: Learning Curves
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| could do a new version of this for the
talk?
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Analyzing the word embeddings

= Output layer of our convnets is essentially a word embedding

 This embedding has captured semantic information:
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Summary

- Training with 100M images + noisy labels gives visual features comparable
to 1M images + clean labels.

* Clean labels not essential for training



Random Labels????




