Lecture 8

Video Recognition, Optical Flow & Tracking

Slides from: Du Tran, Rick Szeliski, Steve Seitz, Christoph Feichtenhofer

Overview

- Applying ConvNets to Video
 - Classification
 - Dense prediction
- Optical Flow
- Two-stream ConvNets for Video
 - Classification
 - Tracking

Overview

- Applying ConvNets to Video
 - Classification
 - Dense prediction
- Optical Flow
- Two-stream ConvNets for Video
 - Classification
 - Tracking

Traditional Computer Vision Pipeline

Best (non-DL) Video Features

• improved Dense Trajectories (iDT)

Wang et al. IJCV'13

Pros:

- Don't need to learn
- Don't need large-scale training data

Cons:

- Highly hand-crafted
- Computational intensive
- Hard to parallelize

Spatiotemporal Feature Learning

No explicit motion modeling

Why 3D ConvNets?

-> no motion modeling

2D convolve on multiple images as channels

Spatial-temporally convolve on multiple frames

-> collapse temporal signal after one convolution layer

-> hierarchically group temporal signal

What is a Good Architecture for 3D ConvNets?

D. Tran, L. Bourdev, R. Fergus, L. Torresani, M. Paluri, *Learning Spatiotemporal Features with 3D Convolutional Networks,* ICCV15.

- Dataset: UCF101
- Use VGG-similar architecture, varying kernel temporal length

Learning Video Features with C3D

Conv1a Conv2a Conv3a 64 128 256	Conv3b m Conv4a 256 d 512	Conv4b to Conv5a	Conv5b ଜୁ fc6 fc7 512 4096 4096	softmax
---	------------------------------	------------------	------------------------------------	---------

- C3D architecture
 - 8 convolution, 5 pool, 2 fully-connected layers
 - 3x3x3 convolution kernels
 - 2x2x2 pooling kernels
- Dataset: Sports-1M [Karpathy et al. CVPR14]
 - 1.1M videos of 487 different sport categories
 - Train/test splits are provided

C3D as Generic Features

Simple recipe: C3D + linear SVM = good performance

Video Classification with C3D

Dataset	Sport1M	UCF101	ASLAN	YUPENN	UMD	Object
Task	action recognition	action recognition	action similarity labeling	scene classification	scene classification	object recognition
Method	[19]	[39]([26])	[31]	[10]	[10]	[32]
Result	80.2	75.8 (89.1)	68.7	96.2	77.7	12.0
C3D	85.2	85.2 (90.4)	78.3	98.1	87.7	22.3
Δ	5.0	9.4 (1.3)	9.6	1.9	10.0	10.3

Action Recognition Task UCF101

Video Voxel Prediction

D. Tran, L. Bourdev, R. Fergus, L. Torresani, M. Paluri, *Deep End2End Voxel2Voxel Prediction*, CVPRW16

- Current methods make simple predictions
 - E.g. classification or detection
- Some others make highly-abstracted predictions
 - E.g. video captioning/description

Voxel Prediction: making a prediction for every voxel

Optical Flow Prediction

Limitations of 3D ConvNets

- Smaller output resolution at deeper layers
 - E.g. 2x7x7 at conv5b for C3D (input 16x112x112)
- Traditional upsamplers work poorly on sparse signals
- Fully-connected upsamplers involve many parameters

3D ConvNets with Deconv

- Acts as convolutional upsamplers
- Has much smaller #params compared to fullyconnected upsamplers
- Provides locally smooth predictions

V2V: End-to-end Voxel Prediction

Training options:

- Frozen lower part, train upper part (6M params)
- Fine-tune everything
- Train from scratch

Conv1a

64

Semantic Segmentation Results

Method	Train	Acc (%)
2D-V2V	from scratch	55.7
Conv3b+Up	fine-tune	69.7
Conv4b+Up	fine-tune	72.7
Conv5b+Up	fine-tune	72.1
V2V-0	from scratch	66.7
V2V	fine-tune	76.0
V2V-remove-skip-0	from scratch	60.8
V2V-remove-skip	fine-tune	74.7
V2V-strided-convolution	from scratch	72.6

Results on GATECH

Video Coloring on UCF101

- Train & test on UCF101 train/test split 1
- An ill-posed and challenging problem

- Cloth can take any colors

• Good predictions on "common sense" colors.

Overview

- Applying ConvNets to Video
 - Classification
 - Dense prediction
- Optical Flow
- Two-stream ConvNets for Video
 - Classification
 - Tracking

Optical flow

Combination of slides from Rick Szeliski, Steve Seitz, Alyosha Efros and Bill Freeman and Fredo Durand

Motion estimation: Optical flow

Will start by estimating motion of each pixel separately Then will consider motion of entire image

Why estimate motion?

Lots of uses

- Feature representation for DeepNets [coming up]
- Track object behavior
- Correct for camera jitter (stabilization)
- Align images (mosaics)
- 3D shape reconstruction
- Special effects

Problem definition: optical flow

How to estimate pixel motion from image H to image I?

- Solve pixel correspondence problem
 - given a pixel in H, look for nearby pixels of the same color in I

Key assumptions

- color constancy: a point in H looks the same in I
 - For grayscale images, this is brightness constancy
- small motion: points do not move very far

This is called the optical flow problem

Optical flow constraints (grayscale images)

Let's look at these constraints more closely

- brightness constancy: Q: what's the equation?
 H(x,y)=I(x+u, y+v)
- small motion: (u and v are less than 1 pixel)

- suppose we take the Taylor series expansion of I:

$$I(x+u, y+v) = I(x, y) + \frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v + \text{higher order terms}$$
$$\approx I(x, y) + \frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v$$

Optical flow equation

Combining these two equations

$$0 = I(x + u, y + v) - H(x, y) \qquad \text{shorthand:} \quad I_x = \frac{\partial I}{\partial x}$$

$$\approx I(x, y) + I_x u + I_y v - H(x, y)$$

$$\approx (I(x, y) - H(x, y)) + I_x u + I_y v$$

$$\approx I_t + I_x u + I_y v$$

$$\approx I_t + \nabla I \cdot [u \ v]$$

In the limit as u and v go to zero, this becomes exact

$$0 = I_t + \nabla I \cdot \left[\frac{\partial x}{\partial t} \ \frac{\partial y}{\partial t}\right]$$

 $0 = I_t + \nabla I \cdot [u \ v]$

Q: how many unknowns and equations per pixel?

2 unknowns, one equation

Intuitively, what does this constraint mean?

- The component of the flow in the gradient direction is determined
- The component of the flow parallel to an edge is unknown

This explains the Barber Pole illusion

http://www.sandlotscience.com/Ambiguous/Barberpole_Illusion.htm http://www.liv.ac.uk/~marcob/Trieste/barberpole.html

http://en.wikipedia.org/wiki/Barber's_pol

Aperture problem

Aperture problem

Solving the aperture problem

How to get more equations for a pixel?

- Basic idea: impose additional constraints
 - most common is to assume that the flow field is smooth locally
 - one method: pretend the pixel's neighbors have the same (u,v)
 - » If we use a 5x5 window, that gives us 25 equations per pixel!

$$0 = I_t(\mathbf{p_i}) + \nabla I(\mathbf{p_i}) \cdot [u \ v]$$

$$\begin{bmatrix} I_x(\mathbf{p}_1) & I_y(\mathbf{p}_1) \\ I_x(\mathbf{p}_2) & I_y(\mathbf{p}_2) \\ \vdots & \vdots \\ I_x(\mathbf{p}_{25}) & I_y(\mathbf{p}_{25}) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} I_t(\mathbf{p}_1) \\ I_t(\mathbf{p}_2) \\ \vdots \\ I_t(\mathbf{p}_{25}) \end{bmatrix}$$

RGB version

How to get more equations for a pixel?

- Basic idea: impose additional constraints
 - most common is to assume that the flow field is smooth locally
 - one method: pretend the pixel's neighbors have the same (u,v)
 - » If we use a 5x5 window, that gives us 25*3 equations per pixel!

$$\begin{array}{c} 0 = I_{t}(\mathbf{p_{i}})[0,1,2] + \nabla I(\mathbf{p_{i}})[0,1,2] \cdot [u \ v] \\ \begin{bmatrix} I_{x}(\mathbf{p_{1}})[0] & I_{y}(\mathbf{p_{1}})[0] \\ I_{x}(\mathbf{p_{1}})[1] & I_{y}(\mathbf{p_{1}})[1] \\ I_{x}(\mathbf{p_{1}})[2] & I_{y}(\mathbf{p_{1}})[2] \\ \vdots & \vdots \\ I_{x}(\mathbf{p_{25}})[0] & I_{y}(\mathbf{p_{25}})[0] \\ I_{x}(\mathbf{p_{25}})[1] & I_{y}(\mathbf{p_{25}})[1] \\ I_{x}(\mathbf{p_{25}})[2] & I_{y}(\mathbf{p_{25}})[2] \end{array} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} I_{t}(\mathbf{p_{1}})[0] \\ I_{t}(\mathbf{p_{1}})[2] \\ \vdots \\ I_{t}(\mathbf{p_{25}})[0] \\ I_{t}(\mathbf{p_{25}})[0] \\ I_{t}(\mathbf{p_{25}})[1] \\ I_{t}(\mathbf{p_{25}})[2] \end{bmatrix} \\ \\ \begin{array}{c} A \\ 75 \times 2 \\ 2 \times 1 \\ \end{array} \xrightarrow{d} \\ 75 \times 1 \\ \end{array}$$
Note that RGB is not enough to disambiguate because R, G & B are correlated \\ Just provides better gradient \\ \end{array}

Lukas-Kanade flow

Prob: we have more equations than unknowns

$$\begin{array}{ccc} A & d = b \\ _{25\times2} & _{2\times1} & _{25\times1} \end{array} \longrightarrow \text{ minimize } \|Ad - b\|^2$$

Solution: solve least squares problem

• minimum least squares solution given by solution (in d) of:

$$(A^T A)_{2\times 2} d = A^T b_{2\times 1} d = A^T b$$

$$\begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} \sum I_x I_t \\ \sum I_y I_t \end{bmatrix}$$
$$A^T A \qquad \qquad A^T b$$

- The summations are over all pixels in the K x K window
- This technique was first proposed by Lukas & Kanade (1981)

Aperture Problem and Normal Flow

Combining Local Constraints

$$\nabla I^{1} \bullet U = -I_{t}^{1}$$
$$\nabla I^{2} \bullet U = -I_{t}^{2}$$
$$\nabla I^{3} \bullet U = -I_{t}^{3}$$
etc.

Conditions for solvability

• Optimal (u, v) satisfies Lucas-Kanade equation

$$\begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} \sum I_x I_t \\ \sum I_y I_t \end{bmatrix}$$
$$A^T A \qquad \qquad A^T b$$

When is This Solvable?

- A^TA should be invertible
- A^TA should not be too small due to noise
 - eigenvalues λ_1 and λ_2 of A^TA should not be too small
- A^TA should be well-conditioned

 $- \lambda_1 / \lambda_2$ should not be too large (λ_1 = larger eigenvalue) A^TA is solvable when there is no aperture problem

$$A^{T}A = \begin{bmatrix} \sum I_{x}I_{x} & \sum I_{x}I_{y} \\ \sum I_{x}I_{y} & \sum I_{y}I_{y} \end{bmatrix} = \sum \begin{bmatrix} I_{x} \\ I_{y} \end{bmatrix} [I_{x} I_{y}] = \sum \nabla I(\nabla I)^{T}$$

Eigenvectors of A^TA

$$A^{T}A = \begin{bmatrix} \sum I_{x}I_{x} & \sum I_{x}I_{y} \\ \sum I_{x}I_{y} & \sum I_{y}I_{y} \end{bmatrix} = \sum \begin{bmatrix} I_{x} \\ I_{y} \end{bmatrix} [I_{x} I_{y}] = \sum \nabla I(\nabla I)^{T}$$

- Recall the Harris corner detector: $M = A^T A$ is the second moment matrix
- The eigenvectors and eigenvalues of *M* relate to edge direction and magnitude
 - The eigenvector associated with the larger eigenvalue points in the direction of fastest intensity change
 - The other eigenvector is orthogonal to it

Interpreting the eigenvalues

Classification of image points using eigenvalues of the second moment matrix:

 λ_1
Local Patch Analysis

Edge

 $\sum \nabla I (\nabla I)^T \\ - \text{large gradients, all the same} \\ - \text{large } \lambda_1, \text{ small } \lambda_2$

Low texture region

 $\sum \nabla I (\nabla I)^T \\ - \text{ gradients have small magnitude} \\ - \text{ small } \lambda_1, \text{ small } \lambda_2$

High textured region

Observation

This is a two image problem BUT

- Can measure sensitivity by just looking at one of the images!
- This tells us which pixels are easy to track, which are hard
 - very useful later on when we do feature tracking...

Motion models

Translation

2 unknowns

Affine

6 unknowns

Perspective

8 unknowns

3D rotation

3 unknowns

Affine motion

$$u(x, y) = a_1 + a_2 x + a_3 y$$
$$v(x, y) = a_4 + a_5 x + a_6 y$$

• Substituting into the brightness constancy equation:

$$I_x \cdot u + I_y \cdot v + I_t \approx 0$$

Affine motion

$$u(x, y) = a_1 + a_2 x + a_3 y$$
$$v(x, y) = a_4 + a_5 x + a_6 y$$

• Substituting into the brightness constancy equation:

$$I_x(a_1 + a_2x + a_3y) + I_y(a_4 + a_5x + a_6y) + I_t \approx 0$$

- Each pixel provides 1 linear constraint in 6 unknowns
- Least squares minimization:

$$Err(\vec{a}) = \sum \left[I_x(a_1 + a_2x + a_3y) + I_y(a_4 + a_5x + a_6y) + I_t \right]^2$$

Errors in Lukas-Kanade

What are the potential causes of errors in this procedure?

- Suppose A^TA is easily invertible
- Suppose there is not much noise in the image

When our assumptions are violated

- Brightness constancy is not satisfied
- The motion is not small
- A point does not move like its neighbors
 - window size is too large
 - what is the ideal window size?

Iterative Refinement

Iterative Lukas-Kanade Algorithm

- 1. Estimate velocity at each pixel by solving Lucas-Kanade equations
- 2. Warp H towards I using the estimated flow field
 - use image warping techniques
- 3. Repeat until convergence

(using *d* for *displacement* here instead of *u*)

Some Implementation Issues:

- Warping is not easy (ensure that errors in warping are smaller than the estimate refinement)
- Warp one image, take derivatives of the other so you don't need to re-compute the gradient after each iteration.
- Often useful to low-pass filter the images before motion estimation (for better derivative estimation, and linear approximations to image intensity)

Revisiting the small motion assumption

Is this motion small enough?

- Probably not—it's much larger than one pixel (2nd order terms dominate)
- How might we solve this problem?

Temporal aliasing causes ambiguities in optical flow because images can have many pixels with the same intensity.

I.e., how do we know which 'correspondence' is correct?

To overcome aliasing: coarse-to-fine estimation.

Reduce the resolution!

Coarse-to-fine optical flow estimation

Gaussian pyramid of image H

Gaussian pyramid of image I

Coarse-to-fine optical flow estimation

Gaussian pyramid of image H

Gaussian pyramid of image I

Direct-methods (e.g. optical flow)

- Directly recover image motion from spatio-temporal image brightness variations
- Global motion parameters directly recovered without an intermediate feature motion calculation
- Dense motion fields, but more sensitive to appearance variations
- Suitable for video and when image motion is small (< 10 pixels)

Feature-based methods (e.g. SIFT+Ransac+regression) [To be covered]

- Extract visual features (corners, textured areas) and track them over multiple frames
- Sparse motion fields, but possibly robust tracking
- Suitable especially when image motion is large (10-s of pixels)

FlowNet

FlowNet: Learning Optical Flow with Convolutional Networks [Fischer et al. 2015]

~ 1sec/image vs ~17 secs/image for traditional optical flow

FlowNetCorr conv1 conv2 conv3 conv redir +, 1+, conv3_1 conv4 1 conv5 256 128 refine- prediction 1024 512 512 512 512 441 473 256 58

FlowNet

• FlowNet: Learning Optical Flow with Convolutional Networks [Fischer et al. 2015]

Overview

Applying ConvNets to Video

- Classification
- Dense prediction

Optical Flow

Two-stream ConvNets for Video

- Classification
- Tracking

Deep Learning for Video Recognition

Christoph Feichtenhofer

work with

Axel Pinz Graz University of Technology

Richard P. Wildes York University, Toronto

Andrew Zisserman University of Oxford

Outline

Progress in image-based recognition has been dramatic

- Part 1: Advancing Video Recognition with Deep Learning Architectures for Action, Scene and Object Recognition in Video
 - Published in CVPR16, NIPS16, 2xCVPR17 and ICCV17
- Part 2: Understanding Deep Video Representations
 - What do deep architectures build internally?
 - Why are they performing so well and when do they fail?
 - In submission to CVPR'18 (2x)

Amazing what the brain can do without appearance information

Sources: Johansson, G. "Visual perception of biological motion and a model for its analysis." Perception & Psychophysics. 14(2):201-211. 1973.

Motivation: Separate visual pathways in nature

Sources: "Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli." Journal of neurophysiology 65.6 (1991). "A cortical representation of the local visual environment", Nature. 392 (6676): 598–601, 2009 https://en.wikipedia.org/wiki/Two-streams hypothesis Convolutional Two-Stream Network Fusion

We study a number of ways of fusing two-stream ConvNets

[Simonyan & Zisserman, NIPS'14]

Sum fusion works surprisingly well

f can be initialized as a sum kernel + feature identity mapping

Feichtenhofer, Pinz, Zisserman, CVPR 2016

Spatiotemporal Residual Networks

- ST-ResNet allows the hierarchical learning of spacetime features by connecting the appearance and motion channels of a two-stream architecture.
- Though, naive fusion does not work.

Fusing Two-Stream ResNets & Injecting Temporal Filters

- ResNets for the spatiotemporal domain by introducing residual connections in two ways
 - 1. Residuals between the motion and appearance pathways to allow spatiotemporal interaction between the streams
 - 2. Transformation of pretrained image ConvNets by filters initialized as residuals in time

Increasing the temporal receptive field of ResNets

 \odot The temporal receptive field is modulated by the temporal filters $\stackrel{*}{=}$ and input stride τ

Transforming spatial filters to spatiotemporal ones

- Chaining temporal filters supports *hierarchical* learning of long-term correspondences between features of the appearance and motion stream.
- For example, if the stride is set to $\tau = 15$ frames and we transform 8 filters, a unit at conv5_3 sees a window of $17 \times 15 = 255$ frames.

Spatiotemporal Residual Networks: Architecture

- The base network is a 50 layer ResNet in each stream.
- Building blocks show width, height, temporal extent and number of feature channels.
- Brackets outline residual units equipped with skip connections.
- Skip-stream indicates residual connections between streams.
- The temporal receptive field is modulated by the temporal stride τ .
- For example, if the stride is set to $\tau = 15$ frames, a unit at conv5_3 sees a window of $17 \times 15 = 255$ frames.

Feichtenhofer, Pinz, Wildes, NIPS'16 & CVPR'17a

Spatiotemporal Multiplier Networks

Fig. 2

Error rates (in %) on UCF101-split 1

case	into	Fig.	UCF101	HMDB51
direct (+)	\leftarrow	Fig. 2(a)	24.78	54.85
direct ⊙	\leftarrow	Fig. 2(b)	81.98	77.89
residual (+)	\leftarrow	$\operatorname{Fig} 2(c)$	0 38	<i>A</i> 1 80
Sect. 3.2.1		1 lg. 2(C)	2.50	41.07
residual ⊙	∠	Fig. $2(d)$	8 72	37.23
Sect. 3.2.2	`	1 ig. 2(u)	<u>0.72</u>	<u>37.25</u>
residual (+)	\rightarrow	Fig. 2(c)	16.76	49.54
residual ⊙	\rightarrow	Fig. 2(d)	16.68	48.43
residual ⊙	\leftrightarrow	Fig. 2(e)	15.15	48.56

with temporal filters

Feichtenhofer, Pinz, Wildes, CVPR'17a
Comparison with the state-of-the-art

	Method	UCF101	HMDB51
	Improved Dense Trajectories (IDT) (Wang and Schmid, 2013b)	86.4%	61.7%
	Spatiotemporal ConvNet (Karpathy et al, 2014a)	65.4%	-
	Two-Stream ConvNet (Simonyan and Zisserman, 2014a)	88.0%	59.4%
	Long-term recurrent ConvNet (Donahue et al, 2015)	82.9%	-
	Composite LSTM Model (Srivastava et al, 2015)	84.3%	44.0
	Two-Stream+LSTM (Ng et al, 2015b)	88.6%	-
n Prodict	C3D (Tran et al, 2015)	85.2%	-
	C3D + IDT (Tran et al, 2015)	90.4%	-
00	Dynamic Image Nets (Bilen et al, 2016)	76.9%	42.8~%
	Dynamic Image Nets (Bilen et al, 2016) + IDT	89.1%	65.2%
	Transformations(Wang et al, 2016a)	92.4%	62.0%
5	Two-Stream Fusion(Feichtenhofer et al, 2016b)	92.5%	65.4%
	Two-Stream Fusion(Feichtenhofer et al, $2016b$) + IDT	93.5%	69.2%
	Long-term ConvNets (Varol et al, 2016)	91.7%	64.8%
	Long-term ConvNets (Varol et al, 2016) + IDT	92.7%	67.2%
	VideoLSTM + IDT (Li et al, 2016b)	92.2%	64.9%
	Hierarchical Attention Nets (Wang et al, 2016b)	92.7%	64.3%
	Key Volume Mining (Zhu et al, 2016)	93.1%	63.3%
	RNN-FV (Lev et al, 2016) + C3D (Tran et al, 2015) + IDT	94.1%	67.7%
	Spatiotemporal ResNets (Feichtenhofer et al, 2016a)	93.4%	66.4%
	TSN (Wang et al., 2016) + IDT flow	94.2%	69.0%
	Spatiotemporal ResNets (Feichtenhofer et al, $2016a$) + IDT	94.6%	70.3%
E	Ours	94.2%	68.9%
	Ours + IDT	94.9%	72.2%

CVPR'16

NIPS'16

CVPR17a

Feichtenhofer, Pinz, Wildes, CVPR'17a

Object Detection in the wild by Faster R-CNN + ResNet-101

Model pre-trained on ImageNet, fine-tuned on MS COCO that has 80 categories. Frame-by-frame detection, no temporal processing.

Object Detection and Tracking in Video

Feichtenhofer, Pinz, Zisserman, ICCV 2017

Object Detection from Video: ImageNet VID Challenges

• View point change • Illumination variation • Motion blur • Occlusion

Feichtenhofer, Pinz, Zisserman, ICCV 2017

Detect & Track architecture

Conv features frame t+t

"detections" frame t+T

Feichtenhofer, Pinz, Zisserman, ICCV 2017

Detect & Track Architecture

Feichtenhofer, Pinz, Zisserman, ICCV 2017

Detect & Track Training: Forward pass

Detect & Track Training: Backward pass

Detect & Track: Testing

Feichtenhofer, Pinz, Zisserman, ICCV 2017

"detections" frame t+ τ

Qualitative Results

Code & Models: github.com/feichtenhofer/Detect-Track/

D & T result for: ILSVRC2015_val_00037001/000000

Results: robots.ox.ac.uk/~vgg/research/Detect-Track/

Feichtenhofer, Pinz, Zisserman, ICCV 2017

Detect & Track: Qualitative Results

Difficult cases

D & T result for: ILSVRC2015_val_00022000/000000

Feichtenhofer, Pinz, Zisserman, ICCV 2017

Detect & Track: Quantitative Results

• 30 classes		• ~1.3M frames					 3862 training and 555 validation videos 										
Methods	aiplane	antelope	be _{dr}	bichcyc	bird	bus	Car.	cattle	do	ď. _{Cdf}	elephant	20 ⁴	8. Danda	hamster	horse	tion	
TCN [4]	72.7	75.5	42.2	39.5	25.0	64.1	36.3	51.1	24.4	48.6	65.6	73.9	61.7	82.4	30.8	34.4	Ī
TPN+LSTM [2]	84.6	78.1	72.0	67.2	68.0	80.1	54.7	61.2	61.6	78.9	71.6	83.2	78.1	91.5	66.8	21.6	
Winner ILSVRC'15 [3]	83.7	85.7	84.4	74.5	73.8	75.7	57.1	58.7	72.3	69.2	80.2	83.4	80.5	93.1	84.2	67.8	
D (R-FCN)	87.4	79.4	84.5	67.0	72.1	84.6	54.6	72.9	70.9	77.3	76.7	89.7	77.6	88.5	74.8	57.9	
D (& T loss)	89.4	80.4	83.8	70.0	71.8	82.6	56.8	71.0	71.8	76.6	79.3	89.9	83.3	91.9	76.8	57.3	
$D\&T(\tau=1)$	90.2	82.3	87.9	70.1	73.2	87.7	57.0	80.6	77.3	82.6	83.0	97.8	85.8	96.6	82.1	66.7	
$D\&T (\tau = 10)$	89.1	79.8	87.5	68.8	72.9	86.1	55.7	78.6	76.4	83.4	82.9	97.0	85.0	96.0	82.2	66.0	
		2					~					an					
	5	Jer,	÷.,	1	and the second sec	Q	7)	L.			. 7)	207	~0	~	d bu		
Methods	-inter-	unon an	mol	qqe1	pat,	shee	Shelf	⁵ qui	12.00 CC	train .	turu,	h ale	What	Čeb,	A.	7	
Methods TCN [4]	نې 54.2	1.6	61.0	99ez 36.6	29 19.7	چې 55.0	38.9	2.6	300 42.8	54.6	66.1	69.2	26.5	<u>پې</u> 68.6	94 4	7.5	-
Methods TCN [4] TPN+LSTM [2]	·30 54.2 74.4	1.6 36.6	61.0 76.3	36.6 51.4	22 19.7 70.6	\$ 55.0 64.2	38.9 61.2	2.6 42.3	39 42.8 84.8	54.6 78.1	66.1 77.2	69.2 61.5	26.5 66.9	50 68.6 88.5	4 6	7.5 8.4	_
Methods TCN [4] TPN+LSTM [2] Winner ILSVRC'15 [3]	54.2 74.4 80.3	1.6 36.6 54.8	61.0 76.3 80.6	36.6 51.4 63.7	19.7 70.6 85.7	55.0 64.2 60.5	38.9 61.2 72.9	2.6 42.3 52.7	42.8 84.8 89.7	54.6 78.1 81.3	66.1 77.2 73.7	69.2 61.5 69.5	26.5 66.9 33.5	68.6 88.5 90.2	4 4 7	7.5 8.4 3.8	-
Methods TCN [4] TPN+LSTM [2] Winner ILSVRC' 15 [3] Winner ILSVRC' 16 [5]	54.2 74.4 80.3 (sing	1.6 36.6 54.8 gle model	61.0 76.3 80.6 performa	36.6 51.4 63.7 ance)	19.7 70.6 85.7	55.0 64.2 60.5	38.9 61.2 72.9	2.6 42.3 52.7	42.8 84.8 89.7	54.6 78.1 81.3	66.1 77.2 73.7	69.2 61.5 69.5	26.5 66.9 33.5	68.6 88.5 90.2	4 4 7 7	7.5 8.4 3.8 6.2	
Methods TCN [4] TPN+LSTM [2] Winner ILSVRC'15 [3] Winner ILSVRC'16 [5] D (R-FCN)	54.2 74.4 80.3 (sing 76.8	1.6 36.6 54.8 gle model 50.1	61.0 76.3 80.6 performa 80.2	36.6 51.4 63.7 ince) 61.3	19.7 70.6 85.7 79.5	55.0 64.2 60.5 51.9	38.9 61.2 72.9 69.0	2.6 42.3 52.7 57.4	35 42.8 84.8 89.7 90.2	54.6 78.1 81.3 83.3	66.1 77.2 73.7 81.4	69.2 61.5 69.5 68.7	26.5 66.9 33.5 68.4	68.6 88.5 90.2 90.9	4 4 7 7 7 7	7.5 8.4 3.8 5.2 4.2	_
Methods TCN [4] TPN+LSTM [2] Winner ILSVRC'15 [3] Winner ILSVRC'16 [5] D (R-FCN) D (& T loss)	54.2 74.4 80.3 (sing 76.8 79.0	\$ 1.6 36.6 54.8 gle model 50.1 54.1	61.0 76.3 80.6 performa 80.2 80.3	36.6 51.4 63.7 unce) 61.3 65.3	2 19.7 70.6 85.7 79.5 85.3	55.0 64.2 60.5 51.9 56.9	38.9 61.2 72.9 69.0 74.1	2.6 42.3 52.7 57.4 59.9	42.8 84.8 89.7 90.2 91.3	54.6 78.1 81.3 83.3 84.9	66.1 77.2 73.7 81.4 81.9	69.2 61.5 69.5 68.7 68.3	26.5 66.9 33.5 68.4 68.9	\$ 68.6 88.5 90.2 90.9 90.9	2 4 6 7 7 7 7 7 7	7.5 8.4 3.8 6.2 4.2 5.8	_
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	54.2 74.4 80.3 (sing 76.8 79.0 83.4	1.6 36.6 54.8 gle model 50.1 54.1 57.6	61.0 76.3 80.6 performa 80.2 80.3 86.7	36.6 51.4 63.7 unce) 61.3 65.3 74.2	2 19.7 70.6 85.7 79.5 85.3 91.6	55.0 64.2 60.5 51.9 56.9 59.7	38.9 61.2 72.9 69.0 74.1 76.4	2.6 42.3 52.7 57.4 59.9 68.4	300 300 300 300 300 300 300 300	54.6 78.1 81.3 83.3 84.9 86.1	66.1 77.2 73.7 81.4 81.9 84.3	69.2 61.5 69.5 68.7 68.3 69.7	26.5 66.9 33.5 68.4 68.9 66.3	5 68.6 88.5 90.2 90.9 90.9 90.9 95.2	2 4 6 7 7 7 7 7 7 7 7 7 7	7.5 8.4 3.8 5.2 4.2 5.8 9.8	_

ImageNet video object detection challenge (VID): Ο

• •

Table 1. Performance comparison on the ImageNet VID validation set. The average precision (in %) for each class and the mean average precision over all classes is shown. τ corresponds to the temporal sampling stride.

[1] J. Dai, Yi Li, K. He, and J. Sun R-FCN: Object Detection via Region-based Fully Convolutional Networks. In NIPS, 2016

[2] K. Kang, H. Li, T. Xiao, W. Ouyang, J. Yan, X. Liu, and X. Wang. Object detection in videos with tubelet proposal networks. In CVPR, 2017.

[3] K. Kang, H. Li, J. Yan, X. Zeng, B. Yang, T. Xiao, C. Zhang, Z. Wang, R. Wang, X. Wang, and W. Ouyang. T-CNN: tubelets with convolutional neural networks for object detection from videos. arXiv preprint, 2016.

[4] K. Kang, W. Ouyang, H. Li, and X. Wang. Object detection from video tubelets with convolutional neural networks. In CVPR, 2016. [5] J. Yang, H. Shuai, Z. Yu, R. Fan, Q. Ma, Q. Liu, and J. Deng. ILSVRC2016 object detection from video: Team NUIST. http://imagenet.org/challenges/talks/2016/Imagenet%202016%20VID.pptx, 2016.

Revolution of Depth for Recognition

Visualizing the learned representation

Going through the conv layers of VGG-16 (first four filters of each layer are shown)

Appearance

conv**3_3** f1-4

Slow motion

Filter #21 at conv5 fusion – a local Billiard neuron ?

slower

slower

FC 6 (4096 features; RF 404x404)

Appearance

Slow motion

FC 7 (4096 features; RF 404x404)

Appearance

Slow motion

HAPPENER A

Fast motion appearance

es, Zisserman, CVPR 2018 (in submission)

Revealing idiosyncracies in data

"ApplyLipstick"

Slow motion

Fast motion

Fast motion appearanc

s, Zisserman, CVPR 2018 (in submission)

Revealing idiosyncracies in data

→ "ApplyEyeMakeup"

Slow motion

Fast motion

, Zisserman, CVPR 2018 (in submission)

Explaining failure cases:

PlayingViolin 84%

(11% confused with PlayingChello)

