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– Tracking
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Focus of this work

Traditional Computer Vision Pipeline

Prediction
Models
(e.g. SVM,

HMM, Bayesian)
Predictions

Feature
Extraction 

(e.g. color, 
texture, 

motions)
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Best (non-DL) Video Features

• improved Dense Trajectories (iDT)

Cons:
• Highly hand-crafted
• Computational intensive
• Hard to parallelize

Pros:
• Don’t need to learn
• Don’t need large-scale training 

data

Wang et al. IJCV’13
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Spatiotemporal Feature Learning

• Wang et al. IJCV’13

No explicit motion modeling

Biased to human design & 
computationally expensive

f1 f2 f10

Aggregate image features
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Why 3D ConvNets?

2D convolve on an image

2D convolve on multiple images as channels

Spatial-temporally convolve on multiple frames

�-> no motion modeling

-> collapse temporal signal after one 
convolution layer

�

-> hierarchically group temporal signal �
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What is a Good Architecture for 3D ConvNets?

• Dataset: UCF101
• Use VGG-similar architecture, varying kernel 

temporal length

8

D. Tran, L. Bourdev, R. Fergus, L. Torresani, M. Paluri, Learning 
Spatiotemporal Features with 3D Convolutional Networks, ICCV15.



Learning Video Features with C3D

• C3D architecture

– 8 convolution, 5 pool, 2 fully-connected layers

– 3x3x3 convolution kernels

– 2x2x2 pooling kernels

• Dataset: Sports-1M [Karpathy et al. CVPR14]

– 1.1M videos of 487 different sport categories

– Train/test splits are provided
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C3D as Generic Features

Simple recipe: C3D + linear SVM = good performance
10



Video Classification with C3D

C3D is discriminative and 
compact!

C3D code/model is publicly available
11
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Action Recognition Task
UCF101



Video Voxel Prediction

• Current methods make simple predictions
– E.g. classification or detection

• Some others make highly-abstracted predictions
– E.g. video captioning/description

Voxel Prediction: making a 
prediction for every voxel

Many potential applications
13

D. Tran, L. Bourdev, R. Fergus, L. Torresani, M. Paluri, Deep End2End 
Voxel2Voxel Prediction, CVPRW16



Limitations of 3D ConvNets

• Smaller output resolution at deeper layers
– E.g. 2x7x7 at conv5b for C3D (input 16x112x112)

• Traditional upsamplers work poorly on sparse 
signals

• Fully-connected upsamplers involve many 
parameters 
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3D ConvNets with Deconv

[Zeiler & Fergus ECCV’14] [Long et al. CVPR’15]

• Acts as convolutional upsamplers
• Has much smaller #params compared to fully-

connected upsamplers
• Provides locally smooth predictions
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Application-dependent

V2V: End-to-end Voxel Prediction

16

• Frozen lower part, train 
upper part (6M params)

• Fine-tune everything
• Train from scratch

Training options:



Semantic Segmentation Results

17

input sky ground

building tree car

human vertical mix main mix

Results on GATECH



Video Coloring on UCF101

• Good predictions on “common sense” colors.

• Train & test on UCF101 train/test split 1
• An ill-posed and challenging problem
– Cloth can take any colors

input predict truth
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Overview

• Applying ConvNets to Video
– Classification
– Dense prediction

• Optical Flow
• Two-stream ConvNets for Video
– Classification
– Tracking
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Optical flow
Combination of slides from Rick Szeliski, Steve Seitz, 

Alyosha Efros and Bill Freeman and Fredo Durand



Motion estimation: Optical flow

Will start by estimating motion of each pixel separately
Then will consider motion of entire image 



Why estimate motion?
Lots of uses

• Feature representation for DeepNets [coming up]
• Track object behavior
• Correct for camera jitter (stabilization)
• Align images (mosaics)
• 3D shape reconstruction
• Special effects



Problem definition:  optical flow

How to estimate pixel motion from image H to image I?
• Solve pixel correspondence problem

– given a pixel in H, look for nearby pixels of the same color in I

Key assumptions
• color constancy:  a point in H looks the same in I

– For grayscale images, this is brightness constancy
• small motion:  points do not move very far

This is called the optical flow problem



Optical flow constraints (grayscale images)

Let’s look at these constraints more closely

• brightness constancy:   Q:  what’s the equation?

• small motion:  (u and v are less than 1 pixel)

– suppose we take the Taylor series expansion of I:

H(x,y)=I(x+u, y+v)



Optical flow equation
Combining these two equations

In the limit as u and v go to zero, this becomes exact



Optical flow equation

Q:  how many unknowns and equations per pixel?

Intuitively, what does this constraint mean?

• The component of the flow in the gradient direction is determined

• The component of the flow parallel to an edge is unknown

This explains the Barber Pole illusion
http://www.sandlotscience.com/Ambiguous/Barberpole_Illusion.htm
http://www.liv.ac.uk/~marcob/Trieste/barberpole.html

2 unknowns, one equation

http://en.wikipedia.org/wiki/Barber's_pole

http://www.sandlotscience.com/Ambiguous/Barberpole_Illusion.htm
http://www.liv.ac.uk/~marcob/Trieste/barberpole.html


Aperture problem



Aperture problem



Solving the aperture problem
How to get more equations for a pixel?

• Basic idea:  impose additional constraints
– most common is to assume that the flow field is smooth locally
– one method:  pretend the pixel’s neighbors have the same (u,v)

» If we use a 5x5 window, that gives us 25 equations per pixel!



RGB version
How to get more equations for a pixel?

• Basic idea:  impose additional constraints
– most common is to assume that the flow field is smooth locally
– one method:  pretend the pixel’s neighbors have the same (u,v)

» If we use a 5x5 window, that gives us 25*3 equations per pixel!

Note that RGB is not enough to disambiguate 
because R, G & B are correlated
Just provides better gradient



Lukas-Kanade flow
Prob:  we have more equations than unknowns

• The summations are over all pixels in the K x K window
• This technique was first proposed by Lukas & Kanade (1981)

Solution:  solve least squares problem
• minimum least squares solution given by solution (in d) of:



Aperture Problem and Normal Flow
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Combining Local Constraints
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Conditions for solvability

• Optimal (u, v) satisfies Lucas-Kanade equation

When is This Solvable?
• ATA should be invertible 
• ATA should not be too small due to noise

– eigenvalues l1 and l2 of ATA should not be too small
• ATA should be well-conditioned

– l1/ l2 should not be too large (l1 = larger eigenvalue)
ATA is solvable when there is no aperture problem



Eigenvectors of ATA

• Recall the Harris corner detector: M = ATA is 
the second moment matrix

• The eigenvectors and eigenvalues of M relate 
to edge direction and magnitude 
• The eigenvector associated with the larger eigenvalue points 

in the direction of fastest intensity change
• The other eigenvector is orthogonal to it



Interpreting the eigenvalues

l1

l2

“Corner”
l1 and l2 are large,
l1 ~ l2

l1 and l2 are small “Edge” 
l1 >> l2

“Edge” 
l2 >> l1

“Flat” 
region

Classification of image points using eigenvalues 
of the second moment matrix:



Local Patch Analysis



Edge

– large gradients, all the same
– large l1, small l2



Low texture region

– gradients have small magnitude
– small l1, small l2



High textured region

– gradients are different, large magnitudes
– large l1, large l2



Observation
This is a two image problem BUT

• Can measure sensitivity by just looking at one of the images!
• This tells us which pixels are easy to track, which are hard

– very useful later on when we do feature tracking...



Motion models

Translation

2 unknowns

Affine

6 unknowns

Perspective

8 unknowns

3D rotation

3 unknowns



• Substituting into the brightness constancy 
equation:
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yaxaayxu
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• Substituting into the brightness constancy 
equation:

yaxaayxv
yaxaayxu

654
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• Each pixel provides 1 linear constraint in 
6 unknowns

[ ] 2å ++++++= tyx IyaxaaIyaxaaIaErr )()()( 654321
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• Least squares minimization:

Affine motion



Errors in Lukas-Kanade
What are the potential causes of errors in this procedure?

• Suppose ATA is easily invertible
• Suppose there is not much noise in the image

When our assumptions are violated
• Brightness constancy is not satisfied
• The motion is not small
• A point does not move like its neighbors

– window size is too large
– what is the ideal window size?



Iterative Refinement
Iterative Lukas-Kanade Algorithm

1. Estimate velocity at each pixel by solving Lucas-Kanade equations
2. Warp H towards I using the estimated flow field

- use image warping techniques
3. Repeat until convergence



Optical Flow: Iterative Estimation

xx0

Initial guess: 
Estimate:

estimate 
update

(using d for displacement here instead of u)



Optical Flow: Iterative Estimation

xx0

estimate 
update

Initial guess: 
Estimate:



Optical Flow: Iterative Estimation

xx0

Initial guess: 
Estimate:
Initial guess: 
Estimate:

estimate 
update



Optical Flow: Iterative Estimation

xx0



Optical Flow: Iterative Estimation
Some Implementation Issues:

• Warping is not easy (ensure that errors in warping are 
smaller than the estimate refinement)

• Warp one image, take derivatives of the other so you don’t 
need to re-compute the gradient after each iteration.

• Often useful to low-pass filter the images before motion 
estimation (for better derivative estimation, and linear 
approximations to image intensity)



Revisiting the small motion assumption

Is this motion small enough?
• Probably not—it’s much larger than one pixel (2nd order terms dominate)
• How might we solve this problem?



Optical Flow: Aliasing

Temporal aliasing causes ambiguities in optical flow because 
images can have many pixels with the same intensity.
I.e., how do we know which ‘correspondence’ is correct? 

nearest match is correct 
(no aliasing)

nearest match is incorrect 
(aliasing)

To overcome aliasing: coarse-to-fine estimation.

actual shift

estimated shift



Reduce the resolution!



image Iimage H

Gaussian pyramid of image H Gaussian pyramid of image I

image Iimage H u=10 pixels

u=5 pixels

u=2.5 pixels

u=1.25 pixels

Coarse-to-fine optical flow estimation



image Iimage J

Gaussian pyramid of image H Gaussian pyramid of image I

image Iimage H

Coarse-to-fine optical flow estimation

run iterative L-K

run iterative L-K

warp & upsample

.

.

.



Direct-methods (e.g. optical flow)
• Directly recover image motion from spatio-temporal image brightness variations
• Global motion parameters directly recovered without an intermediate feature 

motion calculation
• Dense motion fields, but more sensitive to appearance variations
• Suitable for video and when image motion is small (< 10 pixels)

Feature-based methods (e.g. SIFT+Ransac+regression) [To be covered]
• Extract visual features (corners, textured areas) and track them over multiple 

frames
• Sparse motion fields, but possibly robust tracking
• Suitable especially when image motion is large (10-s of pixels)

Recap: Classes of Techniques



FlowNet

FlowNet: Learning Optical Flow with Convolutional Networks 
[Fischer et al. 2015]
~ 1sec/image vs ~17 secs/image for traditional optical flow
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FlowNet
• FlowNet: Learning Optical Flow with 

Convolutional Networks [Fischer et al. 2015]



Overview
Applying ConvNets to Video

• Classification
• Dense prediction

Optical Flow
Two-stream ConvNets for Video

• Classification
• Tracking
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Deep Learning for Video Recognition

Christoph Feichtenhofer
work with

Axel Pinz
Graz University of Technology 

Andrew Zisserman
University of Oxford

Richard P. Wildes
York University, Toronto



Outline
• Progress in image-based recognition has been dramatic

• Part 1: Advancing Video Recognition with Deep Learning
Architectures for Action, Scene and Object Recognition in Video

– Published in CVPR16, NIPS16, 2xCVPR17 and ICCV17

• Part 2: Understanding Deep Video Representations
– What do deep architectures build internally?
– Why are they performing so well and when do they fail?
– In submission to CVPR’18 (2x)



Johansson: Perception of Biological Motion

Sources: Johansson, G. “Visual perception of biological motion and a model for its analysis.” Perception & Psychophysics. 14(2):201-211. 1973.

è Amazing what the brain can do without 
appearance information



è Ventral (‘what’) stream performs object recognition

è Dorsal stream (‘where/how’) recognizes motion and locates objects
OPTICAL FLOW STIMULI

Motivation: Separate visual pathways in nature

Sources: “Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli." Journal of neurophysiology 65.6 (1991).
“A cortical representation of the local visual environment”, Nature. 392 (6676): 598–601, 2009
https://en.wikipedia.org/wiki/Two-streams_hypothesis

è “Interconnection” 
e.g. in STS area



o We study a number of ways of fusing two-stream ConvNets

Appearance Stream

Motion Stream

Motion + Appearance Stream

Prediction

+

Convolutional Two-Stream Network Fusion

Feichtenhofer, Pinz, Zisserman, CVPR 2016

f can be initialized 
as a sum kernel + 
feature identity 

mapping

[Simonyan & Zisserman, NIPS’14]

*

o Sum fusion works surprisingly well



Feichtenhofer, Pinz, Wildes, Zisserman, CVPR 2018 (in submission)

Convolutional Two-Stream Network Fusion

è Similar 
patterns



Spatiotemporal Residual Networks

conv1

conv2_x

+

conv1

conv2_x

+

conv3_x

+

conv3_x

+

conv4_x

+

conv4_x

+

conv5_x

+

conv5_x

+

loss
loss

o ST-ResNet allows the hierarchical learning of spacetime features by connecting the
appearance and motion channels of a two-stream architecture.

o Though, naive fusion does not work.

Feichtenhofer, Pinz, Wildes, NIPS’16 

Appearance Stream

Motion Stream

+ + + +



Fusing Two-Stream ResNets & Injecting Temporal Filters 

+

3x3 

1x1x3

1x1x3 ReLU

ReLU

ReLU

1x1 +

3x3x1 

1x1 ReLU

ReLU

ReLU

+

3x3 

1x1x3

1x1x3

ReLU

ReLU

ReLU

1x1 +

3x3 

1x1 

ReLU

ReLU

ReLU

Motion Stream

1x1 +

3x3 

1x1 ReLU

ReLU

ReLU
1x1 +

3x3 

1x1 

ReLU

ReLU

ReLU

Appearance Stream

Feichtenhofer, Pinz, Wildes, NIPS’16

o ResNets for the spatiotemporal domain by introducing residual connections in two ways

1. Residuals between the motion and appearance pathways to allow spatiotemporal 
interaction between the streams

2. Transformation of pretrained image ConvNets by filters initialized as residuals in time

+.

*

*

* *

*

1x1 
1x1

1x1 
1x1 



conv1

res2

+

conv1

res2

+

res3

+

res3

+

res4

+

res4

+

res5

+

res5

+

* *

* *

* *

* *

conv1

res2

+

res3

+

res4

+

res5

+

*

*

*

*

Increasing the temporal receptive field of ResNets
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+

*
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Feichtenhofer, Pinz, Wildes, NIPS’16

o The temporal receptive field is modulated by the temporal filters and input stride τ

…

Time t

…

t

*

conv1

res2

+

res3

+

res4

+

res5

+

pool

fc

* *

* *

* *

* *



Transforming spatial filters to spatiotemporal ones

o Chaining temporal filters supports hierarchical learning of long-term correspondences between
features of the appearance and motion stream.

o For example, if the stride is set to ! = 15 frames and we transform 8 filters, a unit at conv5_3 sees a
window of 17×15 = 255 frames.

Feichtenhofer, Pinz, Wildes, NIPS’16



Spatiotemporal Residual Networks: Architecture

o The base network is a 50 layer ResNet in each stream.

o Building blocks show width, height, temporal extent and number of feature
channels.

o Brackets outline residual units equipped with skip connections.

o Skip-stream indicates residual connections between streams.

o The temporal receptive field is modulated by the temporal stride !.

o For example, if the stride is set to ! = 15 frames, a unit at conv5_3 sees a
window of 17×15 = 255 frames.

Feichtenhofer, Pinz, Wildes, NIPS’16 & CVPR’17a



Spatiotemporal Multiplier Networks

Feichtenhofer, Pinz, Wildes, CVPR’17a

Fig. 2 Error rates (in %) on UCF101-split 1

è

with temporal filters



Comparison with the state-of-the-art

Feichtenhofer, Pinz, Wildes, CVPR’17a

CVPR‘16

CVPR17a

NIPS‘16



Object Detection in the wild by Faster R-CNN + ResNet-101

Model pre-trained on ImageNet, fine-tuned on MS COCO that has 80 categories. 
Frame-by-frame detection, no temporal processing.



Object Detection and Tracking in Video

Feichtenhofer, Pinz, Zisserman, ICCV 2017



Object Detection from Video: ImageNet VID Challenges

• View point change • Illumination variation • Motion blur • Occlusion

Feichtenhofer, Pinz, Zisserman, ICCV 2017



Detect & Track architecture

Conv

Frame t

Frame t+τ

RoIPooling

Conv features frame t

Conv features frame t+τ

“detections” frame t

RoIPooling

“detections” frame t+τ

RoITracking

“tracks” 
frame t → t+τ

hwyx DDDD ,,,
*

Feichtenhofer, Pinz, Zisserman, ICCV 2017



R-FCN: Object Detection via Region-based Fully Convolutional Networks
Jifeng Dai, Yi Li, Kaiming He, and Jian Sun, NIPS, 2016

Detect & Track Architecture

Convolutional Feature Maps

RoI Tracking

Video Frames

*Correlation

RPN Cls

Reg

Cls

Reg

RoI Pooling

RPN

RoI Pooling

Tra

Frame t

Frame t+τ

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun,  In TPAMI, 2016

Detections t

Detections t+τ

Tracks 
t → t+τ

Learning to track at 100 FPS with deep regression networks. 
D. Held, S. Thrun, and S. Savarese. ECCV, 2016.

Fully-convolutional siamese networks for object tracking.
L. Bertinetto, J. Valmadre, J. F. Henriques, A. Vedaldi, and P. H. S. Torr. ECCV VOT, 2016.

Can be seen as a multi-target version of any regression trackerCan be seen as a multi-target version of any correlation tracker

conv3
conv3

conv4
conv4

conv5
conv5

Feichtenhofer, Pinz, Zisserman, ICCV 2017



Detect & Track Training: Forward pass

Convolutional Feature Maps

RoI Tracking

Video Frames

*Correlation

Cls

Reg

Cls

Reg

Tra

conv3
conv3

conv4
conv4

conv5
conv5

Frame t+τ

RoI Pooling

RPN

RPN

RoI Pooling

Frame t

Feichtenhofer, Pinz, Zisserman, ICCV 2017

o Multi-task objective for frame-based object detection and
across-frame track regression

Track RoIsFrame RoIsClassification
softmax scores



Detect & Track Training: Backward pass

Convolutional Feature Maps

RoI Tracking

Video Frames

*

conv3
conv3

conv4
conv4

conv5
conv5

Frame t+τ

RoI Pooling

RPN

RPN

RoI Pooling

LCls

LReg

LTra

LCls

LReg

*

conv3
conv3

conv4
conv4

conv5
conv5

Frame t



Detect & Track: Testing

“detections” frame t+τ

RoITracking

*
“tracks” 

frame t → t+τ

hwyx DDDD ,,,

“detections” frame t

RoI Pooling

RoI Pooling

RoITracking

Feichtenhofer, Pinz, Zisserman, ICCV 2017



Qualitative Results

Code & Models: github.com/feichtenhofer/Detect-Track/

Results: robots.ox.ac.uk/~vgg/research/Detect-Track/
Feichtenhofer, Pinz, Zisserman, ICCV 2017



Detect & Track: Qualitative Results



Difficult cases

Feichtenhofer, Pinz, Zisserman, ICCV 2017



[1] J. Dai, Yi Li, K. He, and J. Sun R-FCN: Object Detection via Region-based Fully Convolutional Networks. In NIPS, 2016
[2] K. Kang, H. Li, T. Xiao, W. Ouyang, J. Yan, X. Liu, and X. Wang. Object detection in videos with tubelet proposal networks. In CVPR, 
2017.
[3] K. Kang, H. Li, J. Yan, X. Zeng, B. Yang, T. Xiao, C. Zhang, Z. Wang, R. Wang, X. Wang, and W. Ouyang. T-CNN: tubelets with
convolutional neural networks for object detection from videos. arXiv preprint, 2016.
[4] K. Kang, W. Ouyang, H. Li, and X. Wang. Object detection from video tubelets with convolutional neural networks. In CVPR, 2016.
[5] J. Yang, H. Shuai, Z. Yu, R. Fan, Q. Ma, Q. Liu, and J. Deng. ILSVRC2016 object detection from video: Team NUIST. http://image-
net.org/challenges/talks/2016/Imagenet%202016%20VID.pptx , 2016.

o ImageNet video object detection challenge (VID):
• 30 classes • ~1.3M frames • 3862 training and 555 validation videos 

Detect & Track: Quantitative Results



Revolution of Depth for Recognition

2012: VGG-M
5 conv. layers

ImageNet: 84.7%
UCF101: 88.8%
Pascal VOC: 58%

2014: VGG-16
16 conv. layers

ImageNet: 91.5%
UCF101: 91.8%
Pascal VOC: 66%

2016: ResNet
>50 conv. layers

ImageNet: 97.1%
UCF101: 94.2%
Pascal VOC: 86%

deeper

Pre-ConvNet accuracy:
Images (SIFT+FV): 73.8%
Actions (IDT+FV): 85.8%

Objects (HOG+DPM): 34%

è What has been learned internally?



o Regularized activation maximization on the input

Feichtenhofer, Pinz, Wildes, Zisserman, CVPR 2018 (in submission)

[Erhan et al. 2009]
[Simonyan et al. 2013]
[Mahendran & Vedaldi 2014]
[Yosinski et al. 2014]

Convolutional Feature Maps of VGG-16

width

depth

height

Visualizing the learned representation

*Fusion

Maximize channel c

c

Loss

Input

Appearance

Motion

Slow motion Fast motion

e.g. c = 4



Going through the conv layers of VGG-16
(first four filters of each layer are shown)

Appearance Slow motion          conv1_1 f1-4conv1_2 f1-4conv2_1 f1-4conv2_2 f1-4conv3_1 f1-4conv3_2 f1-4conv3_3 f1-4conv4_1 f1-4conv4_2 f1-4conv4_3 f1-4conv5_1 f1-4conv5_2 f1-4conv5_3 f1-4

Feichtenhofer, Pinz, Wildes, Zisserman, CVPR 2018 (in submission)



Filter #21 at conv5 fusion – a local Billiard neuron ? 

appearance (rgb)           flow (x, y, magnitude)         flow (direction)

è(mostly) linear motion

è accelerating motion in all directions

slow
erFast motion

Slow motion

è Test set 
example 
snippets

Feichtenhofer, Pinz, Wildes, Zisserman, CVPR 2018 (in submission)



slower

Specific features at conv5 fusion

Feichtenhofer, Pinz, Wildes, Zisserman, CVPR 2018 (in submission)



General features at conv5 fusion

slower

Feichtenhofer, Pinz, Wildes, Zisserman, CVPR 2018 (in submission)



Appearance  Slow motion

FC 6 (4096 features; RF 404x404)

Feichtenhofer, Pinz, Wildes, Zisserman, CVPR 2018 (in submission)



FC 7 (4096 features; RF 404x404)

Appearance  Slow motion

Feichtenhofer, Pinz, Wildes, Zisserman, CVPR 2018 (in submission)



Fast motion appearance

è “CleanAndJerk”

e.g. “shaking with bar” e.g. “push bar”

Appearance Slow motion Fast motion

Last layer



Feichtenhofer, Pinz, Wildes, Zisserman, CVPR 2018 (in submission)

è “Billiards”

Fast motion appearance

e.g. “ball rolling” e.g. “player moving”

Appearance Slow motion Fast motion

Last layer



Feichtenhofer, Pinz, Wildes, Zisserman, CVPR 2018 (in submission)

è “ApplyLipstick”

Appearance Slow motion Fast motion

Revealing idiosyncracies in data

Fast motion appearance



Feichtenhofer, Pinz, Wildes, Zisserman, CVPR 2018 (in submission)

è “ApplyEyeMakeup”

Fast motion appearance

Appearance Slow motion Fast motion

Revealing idiosyncracies in data



Explaining failure cases:

PlayingViolin 84% 

(11% confused with PlayingChello)

Feichtenhofer, Pinz, Wildes, Zisserman, CVPR 2018 (in submission)


