
Introduction to
Convolutional Networks

Rob Fergus

New York University

Lecture 7

PerceptronNeural Net

Boosting

SVM

GMMSP

BayesNP

Convolutional Neural Net

Recurrent Neural Net

AutoencoderNeural Net

Sparse Coding

Restricted BMDeep Belief Net

Deep (sparse/denoising) Autoencoder

UNSUPERVISED

SUPERVISED

DEEP SHALLOW

Slide: M. Ranzato

Convolutional Neural Networks

• LeCun et al. 1989

• Neural network with specialized
connectivity structure

ConvNet Architecture

• Exploits two properties of images:

• 1. Dependencies are local
– No need to have each

unit connect to every
pixel

• 2. Spatially stationary statistics
– Translation invariant dependencies
– Only approximately true

(2, 0)

(15, 15)

W�1

W

V H

E(v,h) = �
VX

i=1

HX

j=1

vihjwij �
VX

i=1

vib
v
i �

HX

j=1

hjb
h
j

• v

• h

• vi i

• hj j

• wij i j

Multistage Hubel-Wiesel Architecture

Slide: Y.LeCun

• Stack multiple stages of simple cells / complex cells layers
• Higher stages compute more global, more invariant features
• Classification layer on top

History:
• Neocognitron [Fukushima 1971-1982]
• Convolutional Nets [LeCun 1988-2007]
• HMAX [Poggio 2002-2006]
• Many others….

Overview of Convnets

• Feed-forward:
– Convolve input
– Non-linearity (rectified linear)
– Pooling (local max)

• Supervised
• Train convolutional filters by

back-propagating classification error

Input Image

Convolution (Learned)

Non-linearity

Pooling

LeCun et al. 1998

Feature maps

Convnet Successes

• Handwritten text/digits
– MNIST (0.17% error [Ciresan et al. 2011])
– Arabic & Chinese [Ciresan et al. 2012]

• Simpler recognition benchmarks
– CIFAR-10 (9.3% error [Wan et al. 2013])
– Traffic sign recognition

• 0.56% error vs 1.16% for humans [Ciresan et al. 2011]

• But less good at more complex datasets
– E.g. Caltech-101/256 (few training examples)

Application to ImageNet

[NIPS 2012]

Validation classification

Validation classification

Validation classification

[Deng et al. CVPR 2009]

• ~14 million labeled images, 20k classes

• Images gathered from Internet

• Human labels via Amazon Turk

Goal

Validation classification

[Krizhevsky et al. NIPS 2012]

• Image Recognition
– Pixels à Class Label

Krizhevsky et al. [NIPS2012]

• 7 hidden layers, 650,000 neurons, 60,000,000 parameters
• Trained on 2 GPUs for a week

• Same model as LeCun’98 but:
- Bigger model (8 layers)

- More data (106 vs 103 images)
- GPU implementation (50x speedup over CPU)
- Better regularization (DropOut)

0

5

10

15

20

25

30

2010 2011 2012 2013 2014 Human

To
p-

5
C

las
sif

ica
tio

n
Er

ro
r (

%
)

2015

ImageNet Classification (2010 – 2015)

Convolutional
Neural Nets

Examples
• From Clarifai.com

Examples
• From Clarifai.com

Examples
• From Clarifai.com

Using Features on Other Datasets

• Train model on ImageNet 2012 training set

• Re-train classifier on new dataset
– Just the top layer (softmax)

• Classify test set of new dataset

0 10 20 30 40 50 60
25

30

35

40

45

50

55

60

65

70

75

Training Images per−class

Ac
cu

ra
cy

 %

Bo etal
Sohn etal

Caltech 256
Zeiler & Fergus, Visualizing and Understanding Convolutional Networks, arXiv 1311.2901, 2013

0 10 20 30 40 50 60
25

30

35

40

45

50

55

60

65

70

75

Training Images per−class

Ac
cu

ra
cy

 %

Our Model
Bo etal
Sohn etal

6 training examples

Caltech 256
Zeiler & Fergus, Visualizing and Understanding Convolutional Networks, arXiv 1311.2901, 2013

The Details

• Operations in each layer

• Architecture

• Training

• Results

Components of Each Layer

Pixels /
Features

Filter with
learned dictionary

Spatial local
max pooling

Non-linearity

Output Features

Filtering

• Convolution
– Filter is learned during training
– Same filter at each location

Input Feature Map

.

.

.

Filtering

• Local
– Each unit layer above
look at local window

– But no weight tying

Input

Filters

• E.g. face recognition

Filtering

• Tiled
– Filters repeat every n
– More filters than

convolution for given
features

Input

Filters Feature maps

Non-Linearity

• Rectified linear function
– Applied per-pixel
– output = max(0,input)

Input feature map Output feature map

Black	=	negative;	white	=	positive	values Only	non-negative	values

Non-Linearity

• Other choices:
– Tanh
– Sigmoid: 1/(1+exp(-x))
– PReLU

f (y) = y

y

f (y)

f (y) = y

f (y) = ay

y

f (y)

f (y) = 0

Figure 1. ReLU vs. PReLU. For PReLU, the coefficient of the
negative part is not constant and is adaptively learned.

2. Approach
In this section, we first present the PReLU activation

function (Sec. 2.1). Then we derive our initialization
method for deep rectifier networks (Sec. 2.2). Lastly we
discuss our architecture designs (Sec. 2.3).

2.1. Parametric Rectifiers
We show that replacing the parameter-free ReLU activa-

tion by a learned parametric activation unit improves clas-
sification accuracy1.

Definition

Formally, we consider an activation function defined as:

f(yi) =

(
yi, if yi > 0

aiyi, if yi  0

. (1)

Here yi is the input of the nonlinear activation f on the ith
channel, and ai is a coefficient controlling the slope of the
negative part. The subscript i in ai indicates that we allow
the nonlinear activation to vary on different channels. When
ai = 0, it becomes ReLU; when ai is a learnable parameter,
we refer to Eqn.(1) as Parametric ReLU (PReLU). Figure 1
shows the shapes of ReLU and PReLU. Eqn.(1) is equiva-
lent to f(yi) = max(0, yi) + ai min(0, yi).

If ai is a small and fixed value, PReLU becomes the
Leaky ReLU (LReLU) in [20] (ai = 0.01). The motiva-
tion of LReLU is to avoid zero gradients. Experiments in
[20] show that LReLU has negligible impact on accuracy
compared with ReLU. On the contrary, our method adap-
tively learns the PReLU parameters jointly with the whole
model. We hope for end-to-end training that will lead to
more specialized activations.

PReLU introduces a very small number of extra param-
eters. The number of extra parameters is equal to the total
number of channels, which is negligible when considering
the total number of weights. So we expect no extra risk
of overfitting. We also consider a channel-shared variant:

1Concurrent with our work, Agostinelli et al. [1] also investigated
learning activation functions and showed improvement on other tasks.

f(yi) = max(0, yi) + amin(0, yi) where the coefficient is
shared by all channels of one layer. This variant only intro-
duces a single extra parameter into each layer.

Optimization

PReLU can be trained using backpropagation [17] and opti-
mized simultaneously with other layers. The update formu-
lations of {ai} are simply derived from the chain rule. The
gradient of ai for one layer is:

@E
@ai

=

X

yi

@E
@f(yi)

@f(yi)

@ai
, (2)

where E represents the objective function. The term @E
@f(yi)

is the gradient propagated from the deeper layer. The gradi-
ent of the activation is given by:

@f(yi)

@ai
=

(
0, if yi > 0

yi, if yi  0

. (3)

The summation
P

yi
runs over all positions of the feature

map. For the channel-shared variant, the gradient of a is
@E
@a =

P
i

P
yi

@E
@f(yi)

@f(yi)
@a , where

P
i sums over all chan-

nels of the layer. The time complexity due to PReLU is
negligible for both forward and backward propagation.

We adopt the momentum method when updating ai:

�ai := µ�ai + ✏

@E
@ai

. (4)

Here µ is the momentum and ✏ is the learning rate. It is
worth noticing that we do not use weight decay (l2 regular-
ization) when updating ai. A weight decay tends to push ai

to zero, and thus biases PReLU toward ReLU. Even without
regularization, the learned coefficients rarely have a magni-
tude larger than 1 in our experiments. Further, we do not
constrain the range of ai so that the activation function may
be non-monotonic. We use ai = 0.25 as the initialization
throughout this paper.

Comparison Experiments

We conducted comparisons on a deep but efficient model
with 14 weight layers. The model was studied in [10]
(model E of [10]) and its architecture is described in Ta-
ble 1. We choose this model because it is sufficient for rep-
resenting a category of very deep models, as well as to make
the experiments feasible.

As a baseline, we train this model with ReLU applied
in the convolutional (conv) layers and the first two fully-
connected (fc) layers. The training implementation follows
[10]. The top-1 and top-5 errors are 33.82% and 13.34% on
ImageNet 2012, using 10-view testing (Table 2).

2

f (y) = y

y

f (y)

f (y) = y

f (y) = ay

y

f (y)

f (y) = 0

Figure 1. ReLU vs. PReLU. For PReLU, the coefficient of the
negative part is not constant and is adaptively learned.

2. Approach
In this section, we first present the PReLU activation

function (Sec. 2.1). Then we derive our initialization
method for deep rectifier networks (Sec. 2.2). Lastly we
discuss our architecture designs (Sec. 2.3).

2.1. Parametric Rectifiers
We show that replacing the parameter-free ReLU activa-

tion by a learned parametric activation unit improves clas-
sification accuracy1.

Definition

Formally, we consider an activation function defined as:

f(yi) =

(
yi, if yi > 0

aiyi, if yi  0

. (1)

Here yi is the input of the nonlinear activation f on the ith
channel, and ai is a coefficient controlling the slope of the
negative part. The subscript i in ai indicates that we allow
the nonlinear activation to vary on different channels. When
ai = 0, it becomes ReLU; when ai is a learnable parameter,
we refer to Eqn.(1) as Parametric ReLU (PReLU). Figure 1
shows the shapes of ReLU and PReLU. Eqn.(1) is equiva-
lent to f(yi) = max(0, yi) + ai min(0, yi).

If ai is a small and fixed value, PReLU becomes the
Leaky ReLU (LReLU) in [20] (ai = 0.01). The motiva-
tion of LReLU is to avoid zero gradients. Experiments in
[20] show that LReLU has negligible impact on accuracy
compared with ReLU. On the contrary, our method adap-
tively learns the PReLU parameters jointly with the whole
model. We hope for end-to-end training that will lead to
more specialized activations.

PReLU introduces a very small number of extra param-
eters. The number of extra parameters is equal to the total
number of channels, which is negligible when considering
the total number of weights. So we expect no extra risk
of overfitting. We also consider a channel-shared variant:

1Concurrent with our work, Agostinelli et al. [1] also investigated
learning activation functions and showed improvement on other tasks.

f(yi) = max(0, yi) + amin(0, yi) where the coefficient is
shared by all channels of one layer. This variant only intro-
duces a single extra parameter into each layer.

Optimization

PReLU can be trained using backpropagation [17] and opti-
mized simultaneously with other layers. The update formu-
lations of {ai} are simply derived from the chain rule. The
gradient of ai for one layer is:

@E
@ai

=

X

yi

@E
@f(yi)

@f(yi)

@ai
, (2)

where E represents the objective function. The term @E
@f(yi)

is the gradient propagated from the deeper layer. The gradi-
ent of the activation is given by:

@f(yi)

@ai
=

(
0, if yi > 0

yi, if yi  0

. (3)

The summation
P

yi
runs over all positions of the feature

map. For the channel-shared variant, the gradient of a is
@E
@a =

P
i

P
yi

@E
@f(yi)

@f(yi)
@a , where

P
i sums over all chan-

nels of the layer. The time complexity due to PReLU is
negligible for both forward and backward propagation.

We adopt the momentum method when updating ai:

�ai := µ�ai + ✏

@E
@ai

. (4)

Here µ is the momentum and ✏ is the learning rate. It is
worth noticing that we do not use weight decay (l2 regular-
ization) when updating ai. A weight decay tends to push ai

to zero, and thus biases PReLU toward ReLU. Even without
regularization, the learned coefficients rarely have a magni-
tude larger than 1 in our experiments. Further, we do not
constrain the range of ai so that the activation function may
be non-monotonic. We use ai = 0.25 as the initialization
throughout this paper.

Comparison Experiments

We conducted comparisons on a deep but efficient model
with 14 weight layers. The model was studied in [10]
(model E of [10]) and its architecture is described in Ta-
ble 1. We choose this model because it is sufficient for rep-
resenting a category of very deep models, as well as to make
the experiments feasible.

As a baseline, we train this model with ReLU applied
in the convolutional (conv) layers and the first two fully-
connected (fc) layers. The training implementation follows
[10]. The top-1 and top-5 errors are 33.82% and 13.34% on
ImageNet 2012, using 10-view testing (Table 2).

2

[Delving Deep into Rectifiers:
Surpassing Human-Level
Performance on ImageNet
Classification, Kaiming He et
al. arXiv:1502.01852v1.pdf,
Feb 2015]

Pooling

• Spatial Pooling
– Non-overlapping / overlapping regions
– Sum or max
– Boureau et al. ICML’10 for theoretical analysis

Max

Sum

Pooling

Feature
Map 1

Pooled
Map 1

Feature
Map 4

Pooled
Map 2

• Pooling across feature groups
• Additional form of inter-feature competition
• MaxOut Networks [Goodfellow et al. ICML 2013]

Role of Pooling

• Spatial pooling
– Invariance to small transformations
– Larger receptive fields

(see more of input)

Zeiler, Fergus [arXiv 2013]

Videos from: http://ai.stanford.edu/~quocle/TCNNweb

Visualization technique from
[Le et al. NIPS’10]:

Components of Each Layer

Pixels /
Features

Filter with
learned dictionary

Spatial local
max pooling

Non-linearity

Output
Features

[Optional]
Normalization

across data/features

Normalization

FiltersInput

• Contrast normalization across features
• See Divisive Normalization in Neuroscience

• Contrast normalization (across feature maps)
– Local mean = 0, local std. = 1, “Local” à 7x7 Gaussian
– Equalizes the features maps

Normalization

Feature Maps
Feature Maps

After Contrast Normalization

Role of Feature Normalization

• Introduces local competition between features
– “Explaining away” in graphical models
– Just like top-down models
– But more local mechanism

• Also helps to scale activations at each layer better for learning
– Makes energy surface more isotropic
– So each gradient step makes more progress

• Empirically, seems to help a bit (1-2%) on ImageNet
• Most recent models don’t seem to have use though

Normalization across Data

• Batch Normalization
[Batch Normalization: Accelerating Deep Network Training by Reducing Internal
Covariate Shift, Sergey Ioffe, Christian Szegedy, arXiv:1502.03167]

vector, and X be the set of these inputs over the training
data set. The normalization can then be written as a trans-
formation

x̂ = Norm(x,X)

which depends not only on the given training example x
but on all examples X – each of which depends on Θ if
x is generated by another layer. For backpropagation, we
would need to compute the Jacobians

∂Norm(x,X)

∂x
and

∂Norm(x,X)

∂X
;

ignoring the latter term would lead to the explosion de-
scribed above. Within this framework, whitening the layer
inputs is expensive, as it requires computing the covari-
ance matrix Cov[x] = Ex∈X [xxT] − E[x]E[x]T and its
inverse square root, to produce the whitened activations
Cov[x]−1/2(x − E[x]), as well as the derivatives of these
transforms for backpropagation. This motivates us to seek
an alternative that performs input normalization in a way
that is differentiable and does not require the analysis of
the entire training set after every parameter update.
Some of the previous approaches (e.g.

(Lyu & Simoncelli, 2008)) use statistics computed
over a single training example, or, in the case of image
networks, over different feature maps at a given location.
However, this changes the representation ability of a
network by discarding the absolute scale of activations.
We want to a preserve the information in the network, by
normalizing the activations in a training example relative
to the statistics of the entire training data.

3 Normalization via Mini-Batch
Statistics

Since the full whitening of each layer’s inputs is costly
and not everywhere differentiable, we make two neces-
sary simplifications. The first is that instead of whitening
the features in layer inputs and outputs jointly, we will
normalize each scalar feature independently, by making it
have the mean of zero and the variance of 1. For a layer
with d-dimensional input x = (x(1) . . . x(d)), we will nor-
malize each dimension

x̂(k) =
x(k) − E[x(k)]√

Var[x(k)]

where the expectation and variance are computed over the
training data set. As shown in (LeCun et al., 1998b), such
normalization speeds up convergence, even when the fea-
tures are not decorrelated.
Note that simply normalizing each input of a layer may

change what the layer can represent. For instance, nor-
malizing the inputs of a sigmoid would constrain them to
the linear regime of the nonlinearity. To address this, we
make sure that the transformation inserted in the network
can represent the identity transform. To accomplish this,

we introduce, for each activation x(k), a pair of parameters
γ(k),β(k), which scale and shift the normalized value:

y(k) = γ(k)x̂(k) + β(k).

These parameters are learned along with the original
model parameters, and restore the representation power
of the network. Indeed, by setting γ(k) =

√
Var[x(k)] and

β(k) = E[x(k)], we could recover the original activations,
if that were the optimal thing to do.
In the batch setting where each training step is based on

the entire training set, we would use the whole set to nor-
malize activations. However, this is impractical when us-
ing stochastic optimization. Therefore, we make the sec-
ond simplification: since we use mini-batches in stochas-
tic gradient training, each mini-batch produces estimates
of the mean and variance of each activation. This way, the
statistics used for normalization can fully participate in
the gradient backpropagation. Note that the use of mini-
batches is enabled by computation of per-dimension vari-
ances rather than joint covariances; in the joint case, reg-
ularization would be required since the mini-batch size is
likely to be smaller than the number of activations being
whitened, resulting in singular covariance matrices.
Consider a mini-batch B of size m. Since the normal-

ization is applied to each activation independently, let us
focus on a particular activation x(k) and omit k for clarity.
We havem values of this activation in the mini-batch,

B = {x1...m}.

Let the normalized values be x̂1...m, and their linear trans-
formations be y1...m. We refer to the transform

BNγ,β : x1...m → y1...m

as the Batch Normalizing Transform. We present the BN
Transform in Algorithm 1. In the algorithm, ϵ is a constant
added to the mini-batch variance for numerical stability.

Input: Values of x over a mini-batch: B = {x1...m};
Parameters to be learned: γ, β

Output: {yi = BNγ,β(xi)}

µB ←
1

m

m∑

i=1

xi // mini-batch mean

σ2
B ←

1

m

m∑

i=1

(xi − µB)
2 // mini-batch variance

x̂i ←
xi − µB√
σ2
B
+ ϵ

// normalize

yi ← γx̂i + β ≡ BNγ,β(xi) // scale and shift

Algorithm 1: Batch Normalizing Transform, applied to
activation x over a mini-batch.

The BN transform can be added to a network to manip-
ulate any activation. In the notation y = BNγ,β(x), we

3

5M 10M 15M 20M 25M 30M
0.4

0.5

0.6

0.7

0.8

Inception
BN−Baseline
BN−x5
BN−x30
BN−x5−Sigmoid
Steps to match Inception

Figure 2: Single crop validation accuracy of Inception
and its batch-normalized variants, vs. the number of
training steps.

Model Steps to 72.2% Max accuracy
Inception 31.0 · 106 72.2%
BN-Baseline 13.3 · 106 72.7%
BN-x5 2.1 · 106 73.0%
BN-x30 2.7 · 106 74.8%

BN-x5-Sigmoid 69.8%

Figure 3: For Inception and the batch-normalized
variants, the number of training steps required to
reach the maximum accuracy of Inception (72.2%),
and the maximum accuracy achieved by the net-
work.

4.2.2 Single-Network Classification

We evaluated the following networks, all trained on the
LSVRC2012 training data, and tested on the validation
data:
Inception: the network described at the beginning of

Section 4.2, trained with the initial learning rate of 0.0015.
BN-Baseline: Same as Inception with Batch Normal-

ization before each nonlinearity.
BN-x5: Inception with Batch Normalization and the

modifications in Sec. 4.2.1. The initial learning rate was
increased by a factor of 5, to 0.0075. The same learning
rate increase with original Inception caused the model pa-
rameters to reach machine infinity.
BN-x30: Like BN-x5, but with the initial learning rate

0.045 (30 times that of Inception).
BN-x5-Sigmoid: Like BN-x5, but with sigmoid non-

linearity g(t) = 1
1+exp(−x) instead of ReLU. We also at-

tempted to train the original Inception with sigmoid, but
the model remained at the accuracy equivalent to chance.
In Figure 2, we show the validation accuracy of the

networks, as a function of the number of training steps.
Inception reached the accuracy of 72.2% after 31 · 106
training steps. The Figure 3 shows, for each network,
the number of training steps required to reach the same
72.2% accuracy, as well as the maximum validation accu-
racy reached by the network and the number of steps to
reach it.
By only using Batch Normalization (BN-Baseline), we

match the accuracy of Inception in less than half the num-
ber of training steps. By applying the modifications in
Sec. 4.2.1, we significantly increase the training speed of
the network. BN-x5 needs 14 times fewer steps than In-
ception to reach the 72.2% accuracy. Interestingly, in-
creasing the learning rate further (BN-x30) causes the
model to train somewhat slower initially, but allows it to
reach a higher final accuracy. It reaches 74.8% after 6·106
steps, i.e. 5 times fewer steps than required by Inception
to reach 72.2%.
We also verified that the reduction in internal covari-

ate shift allows deep networks with Batch Normalization

to be trained when sigmoid is used as the nonlinearity,
despite the well-known difficulty of training such net-
works. Indeed, BN-x5-Sigmoid achieves the accuracy of
69.8%. Without Batch Normalization, Inception with sig-
moid never achieves better than 1/1000 accuracy.

4.2.3 Ensemble Classification

The current reported best results on the ImageNet Large
Scale Visual Recognition Competition are reached by the
Deep Image ensemble of traditional models (Wu et al.,
2015) and the ensemble model of (He et al., 2015). The
latter reports the top-5 error of 4.94%, as evaluated by the
ILSVRC server. Here we report a top-5 validation error of
4.9%, and test error of 4.82% (according to the ILSVRC
server). This improves upon the previous best result, and
exceeds the estimated accuracy of human raters according
to (Russakovsky et al., 2014).
For our ensemble, we used 6 networks. Each was based

on BN-x30, modified via some of the following: increased
initial weights in the convolutional layers; using Dropout
(with the Dropout probability of 5% or 10%, vs. 40%
for the original Inception); and using non-convolutional,
per-activation Batch Normalization with last hidden lay-
ers of the model. Each network achieved its maximum
accuracy after about 6 · 106 training steps. The ensemble
prediction was based on the arithmetic average of class
probabilities predicted by the constituent networks. The
details of ensemble and multicrop inference are similar to
(Szegedy et al., 2014).
We demonstrate in Fig. 4 that batch normalization al-

lows us to set new state-of-the-art by a healthy margin on
the ImageNet classification challenge benchmarks.

5 Conclusion
We have presented a novel mechanism for dramatically
accelerating the training of deep networks. It is based on
the premise that covariate shift, which is known to com-
plicate the training of machine learning systems, also ap-

7

References

• [Slide 5]
• P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan, Object Detection with

Discriminatively Trained Part Based Models,IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol. 32, No. 9, September 2010

• Zheng Song*, Qiang Chen*, Zhongyang Huang, Yang Hua, and Shuicheng Yan. Contextual-
izing Object Detection and Classification. In CVPR'11. (* indicates equal contribution) [No.
1 performance in VOC'10 classification task]

• [Slide 6]
• Finding the Weakest Link in Person Detectors, D. Parikh, and C. L. Zitnick, CVPR, 2011.
• [Slide 7]
• Gehler and Nowozin, On Feature Combination for Multiclass Object Classification,

ICCV’09
• [Slide 8]

• http://www.amazon.com/Vision-David-Marr/dp/0716712849
• [Slide 10]
• Yoshua Bengio and Yann LeCun: Scaling learning algorithms towards AI, in Bottou, L. and

Chapelle, O. and DeCoste, D. and Weston, J. (Eds), Large-Scale Kernel Machines, MIT
Press, 2007

References

• [Slide 11]
• S. Lazebnik, C. Schmid, and J. Ponce, Beyond Bags of Features: Spatial Pyramid Matching

for Recognizing Natural Scene Categories, CVPR 2006
• [Slide 12]
• Christoph H. Lampert, Hannes Nickisch, Stefan Harmeling: "Learning To Detect Unseen

Object Classes by Between-Class Attribute Transfer", IEEE Computer Vision and Pattern
Recognition (CVPR), Miami, FL, 2009

• [Slide 14] Riesenhuber, M. & Poggio, T. (1999). Hierarchical Models of Object Recognition
in Cortex. Nature Neuroscience 2: 1019-1025.

• http://www.scholarpedia.org/article/Neocognitron
• K. Fukushima: "Neocognitron: A self-organizing neural network model for a mechanism of

pattern recognition unaffected by shift in position", Biological Cybernetics, 36[4], pp. 193-
202 (April 1980).

• Y. LeCun, L. Bottou, Y. Bengio and P. Haffner: Gradient-Based Learning Applied to
Document Recognition, Proceedings of the IEEE, 86(11):2278-2324, November 1998

References

• [Slide 30]
• Y-Lan Boureau, Jean Ponce, and Yann LeCun, A theoretical analysis of feature

pooling in vision algorithms, Proc. International Conference on Machine learning
(ICML'10), 2010

• [Slide 31]
• Q.V. Le, J. Ngiam, Z. Chen, D. Chia, P. Koh, A.Y. Ng , Tiled Convolutional

Neural Networks. NIPS, 2010
• http://ai.stanford.edu/~quocle/TCNNweb
• Matthew D. Zeiler, Graham W. Taylor, and Rob Fergus, Adaptive

Deconvolutional Networks for Mid and High Level Feature Learning,
International Conference on Computer Vision(November 6-13, 2011)

• [Slide 32]
• Yuanhao Chen, Long Zhu, Chenxi Lin, Alan Yuille, Hongjiang Zhang. Rapid

Inference on a Novel AND/OR graph for Object Detection, Segmentation and
Parsing. NIPS 2007.

References

• [Slide 35]
• P. Smolensky, Parallel Distributed Processing: Volume 1: Foundations, D. E.

Rumelhart, J. L. McClelland, Eds. (MIT Press, Cambridge, 1986), pp. 194–281.
• G. E. Hinton, Neural Comput. 14, 1711 (2002).
• [Slide 36]
• M. Ranzato, Y. Boureau, Y. LeCun. "Sparse Feature Learning for Deep Belief

Networks". Advances in Neural Information Processing Systems 20 (NIPS 2007).
• [Slide 39]
• Hinton, G. E. and Salakhutdinov, R. R., Reducing the dimensionality of data with

neural networks. Science, Vol. 313. no. 5786, pp. 504 - 507, 28 July 2006.
• [Slide 41]
• A. Torralba, K. P. Murphy and W. T. Freeman, Contextual Models for Object

Detection using Boosted Random Fields, Adv. in Neural Information Processing
Systems 17 (NIPS), pp. 1401-1408, 2005.

References

• [Slide 42]
• Ruslan Salakhutdinov and Geoffrey Hinton, Deep Boltzmann Machines, 12th

International Conference on Artificial Intelligence and Statistics (2009).
• [Slide 44]
• P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan, Object Detection with

Discriminatively Trained Part Based Models,IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol. 32, No. 9, September 2010

• Long Zhu, Yuanhao Chen, Alan Yuille, William Freeman. Latent Hierarchical
Structural Learning for Object Detection. CVPR 2010.

• [Slide 45]
• Matthew D. Zeiler, Graham W. Taylor, and Rob Fergus, Adaptive

Deconvolutional Networks for Mid and High Level Feature Learning,
International Conference on Computer Vision(November 6-13, 2011)

References

• [Slide 48]
• S.C. Zhu and D. Mumford, A Stochastic Grammar of Images, Foundations and

Trends in Computer Graphics and Vision, Vol.2, No.4, pp 259-362, 2006.
• [Slide 49]
• R. Girshick, P. Felzenszwalb, D. McAllester, Object Detection with Grammar

Models, NIPS 2011
• [Slide 50]
• P. Felzenszwalb, D. Huttenlocher, Pictorial Structures for Object Recognition,

International Journal of Computer Vision, Vol. 61, No. 1, January 2005
• M. Fischler and R. Elschlager. The Representation and Matching of Pictoral

Structures. (1973)
• [Slide 51]
• S. Fidler, M. Boben, A. Leonardis. A coarse-to-fine Taxonomy of Constellations

for Fast Multi-class Object Detection. ECCV 2010.
• S. Fidler and A. Leonardis. Towards Scalable Representations of Object

Categories: Learning a Hierarchy of Parts. CVPR 2007.

References

• [Slide 52]
• Long Zhu, Chenxi Lin, Haoda Huang, Yuanhao Chen, Alan Yuille. Unsupervised Structure

Learning: Hierarchical Recursive Composition, Suspicious Coincidence and Competitive
Exclusion. ECCV 2008.

• [Slide 53]
• Hinton, G. E., Krizhevsky, A. and Wang, S, Transforming Auto-encoders. ICANN-11:

International Conference on Artificial Neural Networks, 2011
• Matthew D. Zeiler, Graham W. Taylor, and Rob Fergus, Adaptive Deconvolutional

Networks for Mid and High Level Feature Learning, International Conference on Computer
Vision(November 6-13, 2011)

• [Slide 54]
• Q.V. Le, M.A. Ranzato, R. Monga, M. Devin, K. Chen, G.S. Corrado, J. Dean, A.Y. Ng.,

Building high-level features using large scale unsupervised learning. ICML, 2012.
• [Slide 55]
• Ruslan Salakhutdinov and Geoffrey Hinton, Deep Boltzmann Machines, 12th International

Conference on Artificial Intelligence and Statistics (2009).

References

• [Slide 56]
• http://www.image-net.org/challenges/LSVRC/2010/
• Q.V. Le, M.A. Ranzato, R. Monga, M. Devin, K.

Chen, G.S. Corrado, J. Dean, A.Y. Ng., Building
high-level features using large scale unsupervised
learning. ICML, 2012.

• Q.V. Le, W.Y. Zou, S.Y. Yeung, A.Y. Ng., Learning
hierarchical spatio-temporal features for action
recognition with independent subspace analysis,
CVPR 2011

