Week 4 — Stereo Reconstruction

Slides from A. Zisserman & S. Lazebnik



Overview

« Single camera geometry
« Recap of Homogenous coordinates
* Perspective projection model
« Camera calibration

« Stereo Reconstruction
» Epipolar geometry
« Stereo correspondence
* Triangulation



Single camera geometry
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Projection
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Projective Geometry

* Recovery of structure from one image is inherently
ambiguous

« Today focus on geometry that maps world to camera
Image

X?




Recall: Pinhole camera model
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* Principal axis: line from the camera center
perpendicular to the image plane

 Normalized (camera) coordinate system: camera
center is at the origin and the principal axis is the z-axis




Recall: Pinhole camera model
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Recap: Homogeneous coordinates

® P 4
* Is this a linear transformation? (x,y,2) = (f ; ,f ;)

* no—division by z is nonlinear

Trick: add one more coordinate:

T
X

(@, y) = Y

Y Y (z,y,2) =
1 y
L - I 1 ]
homogeneous image homogeneous scene
coordinates coordinates

Converting from homogeneous coordinates
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Principal point
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Principal point (p): point where principal axis intersects the

» 7

N principal axis

image plane (origin of normalized coordinate system)

Normalized coordinate system: origin is at the principal point

Image coordinate system: origin is in the corner
How to go from normalized coordinate system to image

coordinate system?




Principal point offset

v, - PO — principal point: (px,py)
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Principal point offset
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Pixel coordinates

Pixel size:

* m, pixels per meter in horizontal direction,
m,, pixels per meter in vertical direction

pixels/m m pixels




Camera rotation and translation

z * In general, the camera
coordinate frame will
be related to the world

0 >~y  coordinate frame by a
rotation and a
X translation
X.. =R[X-C

coords. of camera center
in world frame

coords. of point
in camera frame

coords. of a point
in world frame (nonhomogeneous)



Camera rotation and translation

In non-homogeneous
coordinates:

~~/

X.. =R(X-C)

'R —RCl{X) [R =RC]
0 1 0 1

x=K[1|0}X,, =K|[R|-RCX ~ P=K[R|t] t=-RC

Note: C is the null space of the camera projection matrix (PC=0)



Camera parameters

 Intrinsic parameters

* Principal point coordinates

Focal length

Pixel magnification factors

Skew (non-rectangular pixels)

Radial distortion

radial distortion

correction

o

O

linear image

- >




Camera parameters

 Intrinsic parameters
* Principal point coordinates
* Focal length
« Pixel magnification factors
« Skew (non-rectangular pixels)
* Radial distortion
» EXxtrinsic parameters

 Rotation and translation relative to world coordinate
system



Camera calibration

* Given n points with known 3D coordinates X; and known
iImage projections x; estimate the camera parameters

X

P?



Camera calibration

X
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Two linearly independent equations




Camera calibration

0 Xy -yXp
X{ OT —XIX{ /Pl\
P,I=0 Ap
0" X, -»X, (P
X0 -xX

|
S

n

P has 11 degrees of freedom (12 parameters, but
scale is arbitrary)

* One 2D/3D correspondence gives us two linearly
Independent equations

« Homogeneous least squares
* 6 correspondences needed for a minimal solution



Camera calibration

00 X; -pX
Xi 00 -xXp|(B)
P,[=0 Ap=0
0" X, -»X, |\P,
X0 -xX

n n

* Note: for coplanar points that satisfy I1X=0,
we will get degenerate solutions (I11,0,0), (0,I1,0), or
(0,0,IT)



Camera calibration

« Once we’ ve recovered the numerical form of the camera
matrix, we still have to figure out the intrinsic and

extrinsic parameters

e This is a matrix decomposition problem, not an
estimation problem (see F&P sec. 3.2, 3.3)



Alternative: multi-plane calibration
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Images courtesy Jean-Yves Bouguet, Intel Corp.

Advantage
* Only requires a plane
« Don’t have to know positions/orientations
 Good code available online!
— Intel’ s OpenCV library: http://www.intel.com/research/mrl/research/opencv/

— Matlab version by Jean-Yves Bouget:
http://www.vision.caltech.edu/bouguetj/calib_doc/index.html

— Zhengyou Zhang’ s web site: http://research.microsoft.com/~zhang/Calib/




Stereo Reconstruction

Shape (3D) from two (or more) images

known
camera
viewpoints
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Example

images

shape

surface
reflectance



Scenarios

The two images can arise from
* A stereo rig consisting of two cameras
* the two images are acquired simultaneously

or

* A single moving camera (static scene)
» the two images are acquired sequentially

The two scenarios are geometrically equivalent
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The objective

Given two images of a scene acquired by known cameras compute the

3D position of the scene (structure recovery)

Basic principle: triangulate from corresponding image points

* Determine 3D point at intersection of two back-projected rays



Corresponding points are images of the same scene point

Triangulation

C o
The back-projected points generate rays which intersect at the
3D scene point



An algorithm for stereo reconstruction

1. For each point in the first image determine the
corresponding point in the second image

(this is a search problem)

2. For each pair of matched points determine the 3D
point by triangulation

(this is an estimation problem)



The correspondence problem

Given a point x in one image find the corresponding point in the other
image

This appears to be a 2D search problem, but it is reduced to a 1D search
by the epipolar constraint



Outline

1. Epipolar geometry

 the geometry of two cameras
* reduces the correspondence problem to a line search

2. Stereo correspondence algorithms

3. Triangulation



Notation

The two cameras are P and P’, and a 3D point X is imaged as

x = PX x'=P'x

P : 3 x4 matrix
X : 4-vector

X . 3-vector

Warning

for equations involving homogeneous quantities ‘=" means ‘equal up to
scale’



Epipolar geometry



Epipolar geometry

Given an image point in one view, where is the corresponding point
in the other view?

/ epipolar line

C \‘ \)<epipole‘ C’

baseline

« Apointin one view “generates” an epipolar line in the other view
* The corresponding point lies on this line



Epipolar line

Epipolar constraint

* Reduces correspondence problem to 1D search along an
epipolar line



Epipolar geometry continued

Epipolar geometry is a consequence of the coplanarity of the camera
centres and scene point

The camera centres, corresponding points and scene point lie
in a single plane, known as the epipolar plane



Nomenclature

__— right epipolar line
left epipolar line —

cC O ¢!

« The epipolar line I' is the image of the ray through x

* The epipole e is the point of intersection of the line joining the camera centres
with the image plane

e this line is the baseline for a stereo rig, and

e the translation vector for a moving camera

- The epipole is the image of the centre of the other camera: e = PC', ¢ =P'C



The epipolar pencil

X

.|

\ /

As the position of the 3D point X varies, the epipolar planes “rotate” about
the baseline. This family of planes is known as an epipolar pencil. All
epipolar lines intersect at the epipole.

(a pencil is a one parameter family)



The epipolar pencil

baseline

As the position of the 3D point X varies, the epipolar planes “rotate” about
the baseline. This family of planes is known as an epipolar pencil. All
epipolar lines intersect at the epipole.

(a pencil is a one parameter family)



Epipolar geometry example I: parallel cameras

Epipolar geometry depends only on the relative pose (position and
orientation) and internal parameters of the two cameras, i.e. the position of

the camera centres and image planes. It does not depend on the scene
structure (3D points external to the camera).



Epipolar geometry example II: converging cameras

/

Note, epipolar lines are in general not parallel



Homogeneous notation for lines

Recall that a point (z,y) in 2D is represented by the homogeneous
3-vector x = (21, 20,%3) |, where © = x1 /3,y = x2/x3

A line in 2D is represented by the homogeneous 3-vector

I
1= I

I3
which is the line Iyz + loy + I3 = 0.

Example represent the line y = 1 as a homogeneous vector.

Write the line as —y+ 1 = 0 then Iy = 0,l, = —-1,i13 = 1, and
1=(0,—-1,1)".

Note that u(l1x + oy +13) = 0 represents the same line (only the ratio
of the homogeneous line coordinates is significant).

Writing both the point and line in homogeneous coordinates gives

llxl —|— ZQLCQ —I— l3$3 =0

e pointonline Lx=0 or 1'x=0 or x'l=0



* The line 1 through the two points pand qis 1=p xq ]

Proof /

lp=(pxq)p= lgq=(pxq)q=

* The intersection of two lines 1 and m is the point x =1x m

Example: compute the point of intersection of the two lines 1 and m
in the figure below

0 —1
1= —1 m = 0 Y1
1 2
1

which is the point (2,1)



Matrix representation of the vector cross product

The vector product v xx can be represented as a matrix multiplication

U3 — V32
VX X=|v3xr; —vz3 | = [V]xx
V1T9 — V211
where
0 —UV3 V9
Vix=1|v3 0 —u
—V92 U 0

o V] is a 3 x 3 skew-symmetric matrix of rank 2.

e v is the null-vector of [v],, since v x v = [v]xv = 0.



Example: compute the cross product of | and m

0
1= -1
1

X =I1xm = [l]xm =

Note

RO

I

o O

o O

= = O

[V]x =
—11/ -1
0 0
0 |\ 2

0
=10

v2




Algebraic representation of epipolar geometry

We know that the epipolar geometry defines a mapping

X — l/

| |

point in first epipolar line in
image second image

e the map ony depends on the cameras P,P’ (not on
structure)

e it will be shown that the map is linear and can be
written as I’ = Fx, where F is a 3 x 3 matrix called
the fundamental matrix



Derivation of the algebraic expression ! = Fx

Outline ,P/
Step 1: for a point x in the first image

back project a ray with camera P

Step 2: choose two points on the ray and

project into the second image with camera =

~

Step 3: compute the line through the two
image points using the relation I = pPXq

~

T



* choose camera matrices

P=K|R |t
KR t]

internal . .
) . rotation translation
calibration

from world to camera
coordinate frame

* first camera P — K [ I ‘ 0]

world coordinate frame aligned with first camera

« second camera P, — K, [R, ‘ t]

R, t



Step 1: for a point x in the first image
back project a ray with cameraP = K[ I | O]

A point x back projects to a ray

X xT
y — zK_1 Y — ZK_1X
Z 1

where Z is the point’s depth, since

X(z) = ( ZK;lx )

satisfies

PX(z) = K[I | 0]X(2) = x

7

:.



Step 2: choose two points on the ray and
project into the second image with camera =

Consider two points on the ray X(z) = (

« 7 = 0 is the camera centre (?)

—1
e Z. = 0 is the point at infinity (K Ox)

Project these two points into the second view

P’ (‘1)) =K'[R | t] (?) =K't P’ (K_O]X

zK—1x
1



Step 3: compute the line through the two
image points using the relation I = pXq b

\‘, T *
Compute the line through the points 1’ = (K't) x (K'RK'x)

Using the identity (Ma) x (Mb) =M~ T(axb) where M~ = M~ 1)T = M ")~1

' =x~T (t X (RK_1X)) = If’_T[t]xRKjlx F is the fundamental matrix
Y

F

'=Fx F=K"T[t](RK™'

Points x and x’ correspond (x <+ x’) then x'Tl' = 0 1/

x'TFx = ( /;(//




Example I: compute the fundamental matrix for a parallel camera stereo rig

P =K[I | O] P'=K'R | t] \ P

(£f00] ty
K=K=10Ff0 R=I t=|0
1001] 0

F=K""[t]RK™

LS

(1/f 0 0]l[oo o |[1/f 0 o] [00 O]
= 0 1/f0[|00 —t,|| O 1/f0|=]00-1
0 0 1]||0¢t O || 0O 0 1] |01 O

000 | (=
xTFx=(2'y'1)|00-1||y|[=0
010 |\1

* reduces to y =y, i.e. raster correspondence (horizontal scan-lines)



Fis a rank 2 matrix -

The epipole e is the null-space vector (kernel)
of F (exercise), i.e. Fe =0

In this case

SO that

Geometric interpretation ?

e

/S



Example II: compute F for a forward translating camera

P =K[I|O]

Fr
|

1

|
O~ O

P'=K'R | t]

K'—T[t] «<RK~!
/f 0 0]

0 1/f O
0 0 1

-1 i
0
0

o OO

P
N\
N

-
O O
1/f O
0 1|

/

[




' =

From 1 = Fx the epipolar line for the point
x = (z,y,1)" is
—1 X

o =0

0
0 y | =
0

O
O 1

The points (z,y,1)T and (0,0,1)T lie on this
line

first image second image










Summary: Properties of the Fundamental matrix

F is a rank 2 homogeneous matrix with 7 degrees
of freedom.

Point correspondence:

if x and x’ are corresponding image points, then
x'TFx = 0.

Epipolar lines:

¢ I' = Fx is the epipolar line corresponding to x.

o 1=F"x' is the epipolar line corresponding to x’.

Epipoles:
¢ Fe = 0.

o Fle' = 0.

Computation from camera matrices P, P’:
P=K[I|O0], P =K[R|t], F=K~T[t]xRK™!



Admin Interlude

* Assignment 1 due Thursday Oct 12th

» Class tutor: Rohit Muthyala
e Email: rrm404@nyu.edu

» Grader: Utku Evci
* Email: ue225@nyu.edu



Stereo correspondence
algorithms



Problem statement

Given: two images and their associated cameras compute
corresponding image points.

Algorithms may be classified into two types:
1. Dense: compute a correspondence at every pixel
2. Sparse: compute correspondences only for features

The methods may be top down or bottom up



Top down matching

1. Group model (house, windows, etc) independently in
each image

2. Match points (vertices) between images



Bottom up matching

* epipolar geometry reduces the correspondence search from 2D
to a 1D search on corresponding epipolar lines

* 1D correspondence problem




Correspondence algorithms

Algorithms may be top down or bottom up — random dot stereograms
are an existence proof that bottom up algorithms are possible

From here on only consider bottom up algorithms

Algorithms may be classified into two types:
——1. Dense: compute a correspondence at every pixel «—
2. Sparse: compute correspondences only for features



Example image pair — parallel cameras




First image




Second image




Dense correspondence algorithm

Parallel camera example — epipolar lines are corresponding rasters

. epipolar
line

Search problem (geometric constraint): for each point in the left image, the
corresponding point in the right image lies on the epipolar line (1D ambiguity)

Disambiguating assumption (photometric constraint): the intensity
neighbourhood of corresponding points are similar across images

Measure similarity of neighbourhood intensity by cross-correlation



Intensity profiles

A\ ‘

e 250t
200 200}
150 [ m 150 ,r““’
100 100 H
s0p M v’M\ 501 M
0 L ' ' ' ' 0 L L L L L
0 100 200 300 400 500 0 100 200 300 400 500

* Clear correspondence between intensities, but also noise and ambiguity



Cross-correlation of neighbourhood regions

epipolar
line

regions A, B, write as vectors a, b
translate so that mean is zero

a—a—(a), b—>Db—(b)

cross correlation = a'll)) Invariant to I — ol + ,3
[af[b] (exercise)



left image band

right image band

Cross
correlation




Cross
correlation




Why is cross-correlation such a poor measure in the second case?

1. The neighbourhood region does not have a “distinctive” spatial intensity
distribution

2. Foreshortening effects

v NV

fronto-parallel surface slanting surface

iImaged length the same imaged lengths differ



Limitations of similarity constraint
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Results with window search

Data




Sketch of a dense correspondence algorithm

For each pixel in the left image

« compute the neighbourhood cross correlation along the
corresponding epipolar line in the right image

* the corresponding pixel is the one with the highest cross
correlation

Parameters
* size (scale) of neighbourhood
« search disparity

Other constraints
e uniqueness

« ordering
« smoothness of disparity field
Applicability

« textured scene, largely fronto-parallel



Stereo matching as energy minimization

MAP estimate of disparity image D: P(D|]1,]2) o P(]l,[2 |D)P(D)

—10gP(D|]1,]2) x —10gP(]1,12 |D)_10gP(D)

E = aEdata(]19]29D) + /J)Esmooth(D)
Ey = S 0,0 =W, i+ D)) | B = 2 £IDG) -D<J'>>|
- neighbors i, j




Stereo matching as energy minimization

B
¢

E = aEdata(]19]29D)+/))Esmooth(D)

Epa= ) (W () =W,(i + D)) |Eqmoon = p(D(i) - D(j))|

7 neighbors i, j

« Energy functions of this form can be minimized using
graph cuts

Y. Boykov, O. Veksler, and R. Zabih,
Fast Approximate Energy Minimization via Graph Cuts, PAMI 2001




Graph cuts solution

Graph cuts Ground truth

Y. Boykov, O. Veksler, and R. Zabih,
Fast Approximate Energy Minimization via Graph Cuts, PAMI 2001

For the latest and greatest: http://www.middlebury.edu/stereo/




Example dense correspondence algorithm

left image right image




3D reconstruction

right image depth map
iIntensity = depth




Texture mapped 3D triangulation




Pentagon example

range map



Rectification

For converging cameras

« epipolar lines are not parallel




Project images onto plane parallel to baseline

epipolar plane



Rectification continued

Convert converging cameras to parallel camera
geometry by an image mapping

N

AN
N
AN

N

Image mapping is a 2D homography (projective transformation)

H—= KRK ! (exercise)



Rectification continued

Convert converging cameras to parallel camera
geometry by an image mapping

N N
N

Image mapping is a 2D homography (projective transformation)

AN
N
AN

H — KRK ™1 (exercise)



original stereo pair

rectified stereo pair




Example: depth and disparity for a parallel camera stereo rig

(f00] t,
K=K=10Ff0 R=I t=]0
001 0
! | "
Then, yY = y, and the disparity d = v — = er
Derivation
r X ¢ X+t
f  Z f  Z
fof oz
Note

* image movement (disparity) is inversely proportional to depth Z
as z— oo, d—0

* depth is inversely proportional to disparity




Triangulation



1. Vector solution

.

C C!

Compute the mid-point of the shortest line between the
two rays



2. Linear triangulation (algebraic solution)

Use the equations x = PX and x’ = P'X to solve for X

For the first camera: 1 P P3| [P
P=|pnpnpspu|=|p""
3T

| P31 P32 P33 P34 P
where p'" are the rows of P

e climinate unknown scale in Ax = PX by forming a cross
product x x (PX) =0

z(p’'X) — (p''X) =0
y(p*TX) — (pTX) = 0
z(p?"X) —y(p'TX) =0

e rearrange as (first two equations only)

[xp?)T_plT X — o

yp?)'l' _ pQT




Similarly for the second camera:
:U’p'3T _ pllT ]
X=0
[ y/p/?)“l' _ p/2T
Collecting together gives
AX =0

where A is the 4 x 4 matrix

[ :Up3T _ PlT ]
A= %p,?;:__ piTT
rp- —P
] yrp/?)T _ p/2'|' |

from which X can be solved up to scale.

Problem: does not minimize anything meaningful

Advantage: extends to more than two views



3. Minimizing a geometric/statistical error

The idea is to estimate a 3D point X which exactly satisfies the supplied
camera geometry, so it projects as

)’E:PX )’E,:P/)/i

and the aim is to estimate X from the image measurements x and x’.

~

X

Xo ~@X
>/ﬂ’ 2
. N

C e e’ C

min

< Clxx) =d(x,%)" +d(x, x)’

where d(*, %) is the Euclidean distance between the points.



* It can be shown that if the measurement noise is
Gaussian mean zero, ~ N(0,0°) , then minimizing
geometric error is the Maximum Likelihood Estimate of X

* The minimization appears to be over three parameters
(the position X), but the problem can be reduced to a
minimization over one parameter



Different formulation of the problem

The minimization problem may be formulated differently:
e Minimize
d(x,1)* + d(x',1')*

el and I' range over all choices of corresponding epipolar lines.
e x is the closest point on the line 1 to x.

e Same for X'.




Minimization method

« Parametrize the pencil of epipolar lines in the first image by ¢,
such that the epipolar line is 1(z)

» Using F compute the corresponding epipolar line in the second
image I (?)

- Express the distance function d(x,1)* +d(x',1')’ explicitly as a
function of ¢

* Find the value of t that minimizes the distance function

« Solution is a 6" degree polynomial in ¢




Typical Stereo Algorithm

» Define a matching cost function.

» Sum of absolute differences.
» The census transform.

» For each patch in the left image, search, along the epipolar
line, for the patch in the right image with the smallest
matching cost.




Zbontar & LeCun, Computing the Stereo Matching Cost with a
Convolutional Neural Network, CVPR 2015.

» Learn the matching cost function.

» Construct a binary classification dataset.
» Use supervised learning.

Left patch Right patch Label

Good match

Bad match




Constructing the Dataset

>

One training example comprises two patches, one from the left
and one from the right image:

< Prin(P): PR n(a) >

PL. (p) is a n x n patch from the left image,
centered at p = (x, y)

The true disparity d is obtained from stereo datasets (KITTI
and Middlebury).

Positive example: q = (x — d, y)

Negative example: q = (x — d + Oneg, ¥)
> Oneg Chosen randomly from [—Npi, —Nio] U [No, Nhi].

Nio, Nv;, and n are hyperparameters of the method.



The Accurate Architecture

Similarity score

A

Fully-connected, Sigmoid
Fully-connected, ReLU

Fully-connected, ReLU
Fully-connected, ReLU

Concatenate
Convolution, ReLLU Convolution, ReLU
Convolution, ReLLU Convolution, ReLLU
Convolution, ReLU Convolution, ReLU

X X

Left input patch Righ input patch



The Fast Architecture

Similarity score

A

Dot product

Normalize

Normalize

Convolution

Convolution

Convolution, ReLU

Convolution, ReLU

Convolution, ReLU

Convolution, ReLU

i

Left input patch

i

Right input patch




The Matching Cost

» Left input image:

» The fast architecture:
e T s

B

e accurate a




The Stereo Method

» Our stereo method was influenced by Mei et al. (2011). On
Building an Accurate Stereo Matching System on Graphics
Hardware.

» Consists of the following steps:

1.

AN

Cross-Based Cost Aggregation (Zhang et al., 2009)
Semiglobal Matching (Hirschmiiller, 2008)
Left-right consistency check

Subpixel enhancement

Median filter

Bilateral filter

» These steps are not new, but are necessary to achieve good
results.



Cross-Based Cost Aggregation

Zhang et al. (2009). Cross-based local stereo matching using
orthogonal integral images.

top arm
q horizontal arms of q
left arm | Pi P right arm

bottom arm



Cross-Based Cost Aggregation

» Left input image:




Semiglobal Matching

Hirschmiiller (2008). Stereo processing by semiglobal matching and
mutual information.

E(0) = 3 C(p. D)

p

+ > P-1{|D(p) — D(q)| = 1}

qQceNp

+Z%HWWﬂWH0

qeN,



Semiglobal Matching

» Left input image:




The KITTI Stereo Dataset

> Geiger et al. (2012). Vision meets Robotics: The KITTI Dataset.
> Menze, Geiger (2015). Object Scene Flow for Autonomous Vehicles.

3607 Velodyne Laserscanner

» Ground truth is obtained by a LIDAR sensor.
» ~200 training and ~200 test image pairs at 1240 x 376.



The Middlebury Stereo Dataset

> Scharstein et al. (2014). High-resolution stereo datasets with
subpixel-accurate ground truth.

» Ground truth is obtained by structured light.
» 60 training and 15 test image pairs at up to 3000 x 2000.



Runtime

» KITTI: 1242 x 350 at 228 disparity levels.
» Middlebury: 1500 x 1000 at 200 disparity levels.
» Tiny: 320 x 240 at 32 disparity levels.

KITTI Middlebury  Tiny

Fast Architecture 0.78 2.03 0.06
Accurate Architecture 67.1 84.8 1.9

Table: Time, in seconds, for processing an image pair.



Results on the Middlebury stereo dataset

o @ ‘ vision.middlebury.edu/sterec, X
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Results on the Middlebury stereo dataset

o @ ‘ vision.middlebury.edu/stereo,; X

e

C | (@ vision.middlebury.edu/stereo/eval3/

Date

i
01/24/17

031017
051216
101916
041216
05/28/M16
01A9M16
08/28M15
11/03M15
091316
01/2116
01/26M16
070316
111416

bad 2.0 (%)
Mame

Jan
3DMST

MC-CNN+TC

Reference (3DMST)

L. Li, X. Yu, 5. Zhang, X. Zhao, and L. Zhang. 3D cost aggregation with
multiple minimum spanning trees for stereo matching. Submitted to Applied
Optics 2017,

Description

We propose a cost aggregation method that efficiently weave together MST-
based support region filtering and PatchMatch-based 3D label search. We
use the raw matr:hing cost of MC-CNN.

Parameters

PMSC
LW-CNM
MeshStereoE
APAP-Stereo
NTDE
MC-CNN-acrt
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84712 73517 50721 7181 47111 16818 B4715 7372 697 ¢
10,413 11.4 12 3183 BA1017 6.0814 20912 82413 6948 400z
11.0 14 7.80 18 45615 10227 56213 9.754 B.31 14 9.1914 839 13



Results on the Middlebury stereo dataset

o @ ‘ vision.middlebury.edu/stereo, X

& | (@ vision.middlebury.edu/stereo/eval3/

bad 2.0 (%] Reference (3DMST) —
Date Name | L. Li. X.Yu, S. Zhang, X. Zhao, and L. Zhang. 3D cost aggregation with saF
n-u.h:nln. e s s, A i e ma fae atmean s mbsbhiomeas O ieoaibte ol fm & owemlio sl
C Reference (MC-CNN+TDSR)

5. Drouyer, 5. Beucher, M. Bilodeau, M. Moreaud, and L. Sorbier. Sparse
stereo disparity map densification using hierarchical image segmentation.
13th International Symposium on Mathematical Morphology.

Description
We used hierarchical image segmentation to refine and complete a sparse

disgar'rty map obtained usim the MC-CNMN method.

01/2417

lc o=

MC-CNN+TC

b
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Other approaches
to obtaining 3D
structure



Active stereo with structured light

* Project “structured” light patterns onto the object
« simplifies the correspondence problem
» Allows us to use only one camera

camera

[

projector

L. Zhang, B. Curless, and S. M. Seitz.
Rapid Shape Acquisition Using Color Structured Light and Multi-pass Dynamic
Programming. 3DPVT 2002




Active stereo with structured light

Surface

v
/4

/7
&/

[Iluminant

L. Zhang, B. Curless, and S. M. Seitz.
Rapid Shape Acquisition Using Color Structured Light and Multi-pass Dynamic
Programming. 3DPVT 2002




Microsoft Kinect

MOTORIZED TILT

"MULTI-ARRAY MIC



Laser scanning

Object

Direction of travel

Laser sheet

%\ CCD image plane

Q” " Cylindrical lens 4
Laser CCD

Digital Michelangelo Project
http://graphics.stanford.edu/projects/mich/

« Optical triangulation
» Project a single stripe of laser light
« Scan it across the surface of the object
« This is a very precise version of structured light scanning

Source: S. Seitz



Laser scanned models

The Digital Michelangelo Project, Levoy et al.

Source: S. Seitz



Laser scanned models

The Digital Michelangelo Project, Levoy et al.

Source: S. Seitz



Laser scanned models

The Digital Michelangelo Project, Levoy et al.

Source: S. Seitz



Laser scanned models

The Digital Michelangelo Project, Levoy et al.

Source: S. Seitz



Laser scanned models

The Digital Michelangelo Project, Levoy et al.

: S. Seitz

Source



Aligning range images

« A single range scan is not sufficient to describe a
complex surface

B. Curless and M. Levoy,

A Volumetric Method for Building Complex Models from Range Images, SIGGRAPH
100R




Aligning range images

« A single range scan is not sufficient to describe a
complex surface

* Need techniques to register multiple range images

* ... which brings us to multi-view stereo



