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Success story of supervision
ImageNet Challenge
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Images from ImageNet
(Pre-train)

ConvNet

Learn a representation

husky, terrier, tench, ...

• Features from networks pre-trained on ImageNet can be used 
for a variety of different downstream tasks

Success story of supervision: Pre-training
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• Pre-train on a large supervised dataset.
• Collect a dataset of "supervised" images
• Train a ConvNet

Success story of supervision: Recipe for good solutions
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Can we get labels for all 
data?
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Can we get labels for all 
data?

0E+00

3E+05

5E+05

8E+05

1E+06

1E+06

Bounding Boxes
Stats from Pawan Kumar at Oxford

Dog, chair, pizza, donut
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Can we get labels for all 
data?

0E+00

4E+06

7E+06

1E+07

1E+07

2E+07

Bounding Boxes Image Level

Dog, chair, pizza, donut
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Can we get labels for all 
data?

0E+00

4E+11

7E+11

1E+12

1E+12

2E+12

Bounding Boxes Image Level Internet Photos
forbes.com
https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/

http://forbes.com
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Can we get labels for all 
data?

1E+00
1E+01
1E+02
1E+03
1E+04
1E+05
1E+06
1E+07
1E+08
1E+09
1E+10
1E+11
1E+12
1E+13

Bounding Boxes Image Level Internet Photos
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Can we get labels for all 
data?

1E+00
1E+01
1E+02
1E+03
1E+04
1E+05
1E+06
1E+07
1E+08
1E+09
1E+10
1E+11
1E+12
1E+13

Bounding Boxes Image Level Internet PhotosReal World

ImageNet (14 million images) needed 22 human years to label
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• What about complex concepts?
• Video?

• Labelling cannot scale to the size of the data we generate

Can we get labels for all 
data?
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Rare concepts?

Slide credit: Rob Fergus

10% of the classes account 
for 93% of the data
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Different Domains?

ImageNet pre-training may not work



Arguments for Unsupervised Learning

• Want to be able to exploit unlabeled data
• Vast amount of it often available
• Essentially free

• Good regularizer for supervised learning
• Helps generalization
• Transfer learning
• Zero/one/few - shot learning



Unsupervised Learning
• Biological argument [from G. Hinton]:
• Our brains have 10^15 connections
• We live for 10^9 secs
• Need 10^6 bits/sec
• Insufficient information from occasional high level label
• Only source with enough information is input itself

• Challenging problem: big focus on many DL groups



Historical Note

• Deep Learning revival started in ~2006
• Hinton & Salakhudinov Science paper on RBMs

• Unsupervised Deep Learning was focus from 2006-2012

• In ~2012 great results in vision, speech with supervised methods 
appeared
• Initially less interest in unsupervised learning
• By focus once more on unsupervised learning



Overview of Unsupervised Perspectives

• Given just data {X}
• Unlike supervised learning there are no provided labels {Y}

1.  Density modeling, i.e. build model of p(X)
• Enables sampling of new data 
• Evaluate probability of a data point
• Can be conditional model, e.g. p(X_t | X_{t-1},…)
• Requires (deep) generative architectures [HARD]
• Generating pixels not necessarily optimal for learning representations 

for downstream tasks 



1. Density Modeling
Motivation

Background
Recent algorithms

Evaluating generative models
Extensions

Have access to x ⇠ pdata(x) through training set

Want to learn a model x ⇠ pmodel(x)

Want pmodel to be similar to pdata:

Samples from true data
distribution have high
likelihood under pmodel

Samples drawn from
pmodel reflect structure
of pdata

Emily Denton Deep generative models of natural images



2. “Self supervised” learning
• Also unsupervised but…
• Find supervision signal y within the input data
• This signal is then used as a target in discriminative model:

• Allows the use of standard supervised learning losses and 
architectures

• Pre-training of representation for subsequent task
• Typically involves some insight into domain to pick y



Class Project

• Everyone must come and discuss proposed ideas with me at some point 
during office hours.
• Simple option is to reimplement existing approach/paper.
• Cannot just copy existing repo, but can use it for debugging.

• Alternatively, you can extend existing approach/paper.
• Can use existing repo, but extension must be significant

• More ambitious (more marks): Implement new idea from scratch
• Can use existing models/code but must have significant novelty

• Project abstracts due Oct 15th (email to me).
• Email paragraph summarizing your project plan to fergus@cs.nyu.edu.
• Please be sure to include the names of people on your project.

https://mailto:fergus@cs.nyu.edu/


Class Project details
Team of 2-3 people [1 person not allowed; 3 is hard max]
PyTorch preferred

Project video:
- 2 minute clip explaining your project
- Voice over slides

Project Report
- Format: 4-8 page conference paper style report on your project (please don't waffle)
- Intro (with refs to related work) [~1 page]
- Method (be sure to cite any code/pre-trained models) [~2 pages]
- Experiments (must have plots/results figures; also should have baselines; ideally some kind of ablation experiments 
too) [~2-4 pages]
- Discuss (brief) [~0.5 pages
- See examples: http://openaccess.thecvf.com/CVPR2018.py
- Zip of source code or link to Github (please ensure you give access to robfergus)



Class Project details (2) 

•Deadline is Thursday Dec 17th midnight [Hard deadline]
- Feel free to turn in earlier
- Will try to grade them and compute final grades by Christmas

• Grading (49% of total grade for class)
- Novelty / Technical difficulty of problem [15%]
- Quality of Results [15%]
- Quality of implementation [5%]
- Quality of writeup & video presentation [14%]
- How many people in your group



Class Project General Advice

- Please make sure you have *something* working, even if you don’t 
achieve overall goal
- Even a small part of an ambitious project can be OK
- So please have a safe plan B option in mind
- Expect all projects to train something, i.e. must use b-prop at some point
- Just evaluating existing models is NOT OK.
- Cluster gets busy at end of semester -- please don’t leave it all to last 

moment.



Self-supervised learning in computer vision

Ishan Misra

With slides from Andrew Zisserman, Carl 
Doersch
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• Obtain labels from the data itself by using a "semi-automatic" process

What is "self" supervision?
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• Obtain labels from the data itself by using a "semi-automatic" process

What is "self" supervision?

Image: Learning classification with Unlabeled Data - de Sa, 1994
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• Fill in the blanks

Word2vec

word2vec - Mikolov et al.
Image by Julian Gilyadov
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• Fill in the blanks is a powerful signal to learn representations

• Sentence/Word representations: BERT - Devlin et al., 2018

Success of self-supervised learning in NLP
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• Helps us learn using observations and interactions
• Does not require exhaustive annotation of concepts
• Leverage multiple modalities or structure in the domain

Why self supervision?



Range of self-supervised systems

images

• Doersch et al. 
(2015)

• Zhang et al. (2016)
• Zhang et al. (2017)
• Noroozi et al. 

(2016)
• Pathak et al. (2016)

richer data



Range of self-supervised systems

images

• Doersch et al. 
(2015)

• Zhang et al. (2016)
• Zhang et al. (2017)
• Noroozi et al. 

(2016)
• Pathak et al. (2016)

richer data

… …

videos

• Wang et al. (2015)
• Misra et al. (2016)
• Pathak et al. (2017)



Range of self-supervised systems

images

• Doersch et al. (2015)
• Zhang et al. (2016)
• Zhang et al. (2017)
• Noroozi et al. (2016)
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richer data

… …

videos

• Wang et al. (2015)
• Misra et al. (2016)
• Pathak et al. (2017)

sound & depth

• Owens et al. (2016)
• Zhang et al. (2017)
• Bansal et al. (2016)



Range of self-supervised systems

images

• Doersch et al. (2015)
• Zhang et al. (2016)
• Zhang et al. (2017)
• Norouzi et al. (2016)
• Pathak et al. (2016)

richer data

… …

videos

• Wang et al. (2015)
• Misra et al. (2016)
• Pathak et al. (2017)

sound & depth

• Owens et al. (2016)
• Zhang et al. (2017)
• Bansal et al. (2016)

actions

• Agarwal et al. (2015)
• Jayaraman et al. (2015)
• Pinto et al. (2016)
• Agarwal et al. (2016)
• Pinto et al. (2017)
• Pinto et al. (2016)
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• Using images
• Using video
• Using video and sound

Self-supervision in computer vision
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From Images: Relative position of patches

Unsupervised visual representation learning by context prediction, Carl Doersch, Abhinav Gupta, Alexei A. Efros, ICCV 2015
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From Images: Relative position of patches

Unsupervised visual representation learning by context prediction, Carl Doersch, Abhinav Gupta, Alexei A. Efros, ICCV 2015



37

Relative Position: Nearest Neighbors in features

Unsupervised visual representation learning by context prediction, Carl Doersch, Abhinav Gupta, Alexei A. Efros, ICCV 2015



Unsupervised Learning of Visual Representations
by Solving Jigsaw Puzzles, Noorozi et al. (2016)

[Noorozi et al. (2016)]



[Noorozi et al. (2016)]



[Noorozi et al. (2016)]



• Visualization of filters

Noroozi, M., & Favaro, P.  Unsupervised learning of visual representations by solving 
jigsaw puzzles. In ECCV 2016.



Feature Learning by Inpainting
[Context Encoders: Feature Learning by Inpainting, Pathak et al. (2016)]

[Pathak et al. (2016)]



Context Encoders

Encoder Decoder

• Encoder can be substituted with any network 
architecture like AlexNet etc.

• Decoder is a set of UpConv/deconv/frac-strided-
conv layers

[Pathak et al. (2016)]



Combined L2 + GAN loss

Input Image L2 Loss Adversarial Loss Joint Loss

[Pathak et al. (2016)]



Image colorization

Richard Zhang, Phillip Isola, Alexei (Alyosha) Efros
Colorful Image Colorization

slides from Zhang

http://richzhang.github.io/colorization/



Grayscale image: L channel Color information: ab channels

abL



abL

Concatenate (L,ab)Grayscale image: L channel

“Free” 
supervisory

signal

Semantics? Higher-
level abstraction?
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From Images: Predicting Rotations

Predicting Image Rotations - Gidaris et al., 2018

Which image has the correct rotation? 



[Dosovitskiy et al. ICLR 2014]

• 1 class = single image + its 
transformations

• Learn to classify each “class”

• Domain knowledge about 
appropriate transformations

• does not scale
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Many different self-supervision tasks, how to 
evaluate?

Context auto encoders - Pathak et al., 2016
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Self-supervised pre-training

Position/Colorization

Pre-train data ConvNet

Learn a representation
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Fine-tune on end task (Image Classification)

ConvNet

Plant, fridge, 
table, stove

Tests representation as well as how good the pre-training initialization is
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Fine-tune on end task

Initialization 
(ResNet101) End task

ImageNet top-5 accuracy VOC07 Detection mAP

ImageNet Supervised 85.1 74.2

Relative Position 59.2 66.8

Colorization 62.5 65.5

• Multi-task self-supervised visual learning, C Doersch, A Zisserman, ICCV 2017 
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Are they complementary?

Initialization
(ResNet101) End task

ImageNet top-5 accuracy VOC07 Detection mAP

ImageNet Supervised 85.1 74.2

Relative Position 59.2 66.8

Colorization 62.5 65.5

Relative Position + Colorization (Multi-task) 66.6 68.8

• Multi-task self-supervised visual learning, C Doersch, A Zisserman, ICCV 2017 
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Train linear classifiers on "fixed" features

ConvNet

Extract "fixed" features

Tests how good the representation is (linearly separable)
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• Using images
• Using video
• Using video and sound

Self-supervision in computer vision
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• Video is a "sequence" of frames
• How to get "self-supervision"?

• Predict order of frames
• Fill in the blanks
• Track objects and predict their position

Video



Video

• Slow feature
• Neighborhood frames should have similar features

Wiskott, L., & Sejnowski, T. J. (2002). Slow feature analysis: Unsupervised learning of 
invariances. Neural computation, 14(4), 715-770.

Mobahi, H., Collobert, R., & Weston, J. Deep learning from temporal coherence in video. 
In ICML 2009.

[A Survey to Self-Supervised Learning, Naiyan Wang]



Video
• Slow and steady feature
• Not only similar, but also smooth
• Extend to triplet setting (Not triplet loss!)

Jayaraman, D., & Grauman, K. Slow and steady feature analysis: higher order temporal 
coherence in video. In CVPR 2016.

[A Survey to Self-Supervised Learning, Naiyan Wang]
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From video: shuffle and learn

Shuffle and Learn – I. Misra, L. Zitnick, M. Hebert – ECCV 2016 
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From video: shuffle and learn

Shuffle and Learn – I. Misra, L. Zitnick, M. Hebert – ECCV 2016 
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From video: shuffle and learn

Shuffle and Learn – I. Misra, L. Zitnick, M. Hebert – ECCV 2016 
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From video: shuffle and learn

Shuffle and Learn – I. Misra, L. Zitnick, M. Hebert – ECCV 2016 
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From video: shuffle and learn

Shuffle and Learn – I. Misra, L. Zitnick, M. Hebert – ECCV 2016 

Fine-tune on Human Keypoint Estimation
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From video: shuffle and learn

Shuffle and Learn – I. Misra, L. Zitnick, M. Hebert – ECCV 2016 

Fine-tune on Human Keypoint Estimation

Initialization
(AlexNet) End task

FLIC Dataset Keypoints
AUC

MPII Dataset Keypoints
AUC

ImageNet Supervised 51.3 47.6

Shuffle and Learn 49.6 47.2
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From video: encoding more structure

Odd-one-out networks - Fernando, Bilen, Gavves, Gould in ICCV 2017



Unsupervised Learning of Visual Representations 
using Videos, Wang & Gupta 2015

Idea: Object Tracking in Videos

[Wang & Gupta 2015]



Approach

[Wang & Gupta 2015]

• Use object tracking in 
videos

• Classify if  patches belong 
to the same track or not



Patch Mining In Videos

• Track 8M patches in 100K videos from YouTube.

• Use off-the-shelf tracking algorithms with no learning.

Patch
Pairs

Patch
Pairs

[Wang & Gupta 2015]



VOC 2007 Detection Performance
(pretraining for R-CNN)

No PretrainingLayoutImageNet

%
 A

ve
ra

ge
 P

re
ci

sio
n

68.6

61.7

42.4

VGG (16-layer)

60.5

Tracking

[Wang & Gupta 2015]



Object Movement 
• The world is rigid, or at least piecewise rigid
• Motion provide evidence of how pixels move together
• The pixels move together are likely to form an object

Pathak, D., Girshick, R., Dollár, P., Darrell, T., & Hariharan, B. Learning Features by 
Watching Objects Move. In CVPR 2017.

[A Survey to Self-Supervised Learning, Naiyan Wang]
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• Using images
• Using video
• Using video and sound

Self-supervision in computer vision
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Audio-Visual co-supervision

“Objects that Sound”, Arandjelović and Zisserman, ICCV 2017 & ECCV 2018 
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Audio-Visual co-supervision

“Objects that Sound”, Arandjelović and Zisserman, ICCV 2017 & ECCV 2018 
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Audio-Visual co-supervision

“Objects that Sound”, Arandjelović and Zisserman, ICCV 2017 & ECCV 2018 
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Audio-Visual co-supervision

“Objects that Sound”, Arandjelović and Zisserman, ICCV 2017 & ECCV 2018 

What can be learnt?

• Good representations – Visual features

– Audio features 

• Intra- and cross-modal retrieval

– Aligned audio and visual embeddings 

• “What is making the sound?”

– Learn to localize objects that sound 
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Audio-Visual co-supervision

“Objects that Sound”, Arandjelović and Zisserman, ICCV 2017 & ECCV 2018 



AudioImage

Common 
sources

Visual + Audio
[Ambient Sound Provides Supervision for Visual Learning, 
[Owens et al. (2016)]



Audio label

conv
5

256 
filters

13

Top responses (unit #90 
of 256)

Unit visualizations



Audio label

conv
5

256 
filters

13

Unit visualizations



Audio label

conv
5

256 
filters

13

Unit visualizations



Cross-Modality
• Ego-motion
• “We move in order to see and we see in order to move” - J.J 

Gibson
• Ego-motion data is easy to collect
• Siamese CNN to predict camera translation & Rotation along 3-

axises. (Visual Odometry)

Agrawal, P., Carreira, J., & Malik, J. Learning to see by moving. In ICCV 2015

[A Survey to Self-Supervised Learning, Naiyan Wang]



Cross-Modality

• Ego-mo`on
• Learning features that are equivariant to ego-mo`on

Jayaraman, D., & Grauman, K. Learning image representations tied to ego-motion. 
In ICCV 2015

[A Survey to Self-Supervised Learning, Naiyan Wang]



Cross-Modality

• Ego-motion
• Siamese networks with contrastive loss
• M_g is the transformation matrix specified by the external sensors

Jayaraman, D., & Grauman, K. Learning image representations tied to ego-motion. 
In ICCV 2015

[A Survey to Self-Supervised Learning, Naiyan Wang]



Cross-Modality
• Acous`cs -> RGB
• Similar events should have similar sound.
• Naturally cluster the videos.

Owens, A., Wu, J., McDermott, J. H., Freeman, W. T., & Torralba, A. Ambient sound 
provides supervision for visual learning. In ECCV 2016

[A Survey to Self-Supervised Learning, Naiyan Wang]



Cross-Modality

• Features for grasping
• Verify whether we could grasp the center of a patch at a given 

angle

Pinto, L., & Gupta, A. Supersizing self-supervision: Learning to grasp from 50k tries and 
700 robot hours. In ICRA 2016

[A Survey to Self-Supervised Learning, Naiyan Wang]



Evaluation

• Evaluate on general high-level vision tasks (classifica`on, detec`on)
• Be cau`on of different sehngs!

Pathak, D., Girshick, R., Dollár, P., Darrell, T., & Hariharan, B. Learning Features by 
Watching Objects Move. In CVPR 2017.

[A Survey to Self-Supervised Learning, Naiyan Wang]



Main issue with all these methods

• All these models rely on expert knowledge

• Need to define y(x) for each new domain

• Not clear how to select a y(x) that is a good target to learn all-purpose 
features



Unsupervised Learning by Predic3ng Noise 

Piotr Bojanowski, Armand Joulin

ICML 2017



Unsupervised Learning by Predicting Noise 

Target space

Features AssignmentImages

cj

Pf(X)

CNN

• Inspired by Dosovitskiy et al. 

• Learn mapping from images 
to a sphere

• Fix targets on sphere

• Simultaneously:
• Learn the mapping
• Op=mize the assignment 

between images and targets

[Bojanowski & Joulin, ICML 2017]



Deep Discriminative Clustering

• We are given a set of n images

• We want to learn a visual features f without using labels

• We use the L2 loss 

[Bojanowski & Joulin, ICML 2017]



Label Collapse Problem

• Op`miza`on over Y would lead to a collapse

• Repulsive costs are tricky to use

• Can impose constraints on Y but hard to op`mize

[Bojanowski & Joulin, ICML 2017]



Fixing the Target RepresentaYon

• Instead, we fix the target representa`on
• Allow a reassignment between targets and images

• Targets C are uniformly sampled on the sphere

• Final objec`ve func`on
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

[Bojanowski & Joulin, ICML 2017]



OpYmizaYon

• We minimize our cost function in an on-line fashion
• We use the following algorithm:

Require: T batches of images, �0 > 0

for t = {1, . . . , T} do
Obtain batch b and representations r
Compute f✓(Xb)

Compute P ⇤
by minimizing w.r.t. P

Compute r✓L(✓) using P ⇤

Update ✓  ✓ � �tr✓L(✓)
end for

[Bojanowski & Joulin, ICML 2017]



OpYmizing the PermutaYon Matrix

• At theta fixed, the permutation is obtained by solving

• Which is a linear program on the set of permutation matrices
• We can use the Hungarian algorithm 

[Bojanowski & Joulin, ICML 2017]



Experimental Setup

• AlexNet architecture

• Learn unsupervised features on ImageNet training 
set

• Retrain a classifier on top for a target transfer task, 
i.e. PASCAL VOC Classification / Detection

[Bojanowski & Joulin, ICML 2017]



Baselines
• Self supervised models
• Wang & Gupta – Temporal coherence in videos
• Doersch et al. – Predict context patches
• Zhang et al. – Predict color
• Norouzi & Favaro – Solve jigsaw puzzles 

• Unsupervised model
• GAN
• Auto-encoder
• BI-GAN (Donahue et al.)

[Bojanowski & Joulin, ICML 2017]



Pascal VOC - results

Classification Detection

Trained layers fc6-8 all all

ImageNet labels 78.9 79.9 56.8

Agrawal et al. 31.0 54.2 43.9
Pathak et al. 34.6 56.5 44.5
Wang & Gupta 55.6 63.1 47.4
Doersch et al. 55.1 65.3 51.1
Zhang et al. 61.5 65.6 46.9

Autoencoder 16.0 53.8 41.9
GAN 40.5 56.4 -
BiGAN 52.3 60.1 46.9

NAT 56.7 65.3 49.4

• compare  favorably to SOTA

• Poor performance of AE / 
GAN

[Bojanowski & Joulin, ICML 2017]



Nearest Neighbor Queries

[Bojanowski & Joulin, ICML 2017]



Bojanowski & Joulin Summary
• Simple unsupervised approach

• No domain expert knowledge

• Scales to very large datasets

• Close to supervised pipeline

• SOTA performance (at the Hme) amongst 
unsupervised methods



Contras(ve Predic(ve Coding
Aaron van den Oord, Yazhe Li, Oriol Vinyals

Google DeepMind

https://arxiv.org/pdf/1807.03748.pdf



Model Overview

genc genc genc genc genc genc genc genc

gargargargar

xt xt+1 xt+2 xt+3 xt+4xt�1xt�2xt�3

ct

zt+4zt+3zt+2zt+1zt

Predictions

Figure 1: Overview of Contrastive Predictive Coding, the proposed representation learning approach.
Although this figure shows audio as input, we use the same setup for images, text and reinforcement
learning.

shown useful [10, 11]. We hypothesize that these approaches are fruitful partly because the context
from which we predict related values are often conditionally dependent on the same shared high-level
latent information. And by casting this as a prediction problem, we automatically infer these features
of interest to representation learning.

In this paper we propose the following: first, we compress high-dimensional data into a much more
compact latent embedding space in which conditional predictions are easier to model. Secondly, we
use powerful autoregressive models in this latent space to make predictions many steps in the future.
Finally, we rely on Noise-Contrastive Estimation [12] for the loss function in similar ways that have
been used for learning word embeddings in natural language models, allowing for the whole model
to be trained end-to-end. We apply the resulting model, Contrastive Predictive Coding (CPC) to
widely different data modalities, images, speech, natural language and reinforcement learning, and
show that the same mechanism learns interesting high-level information on each of these domains,
outperforming other approaches.

2 Contrastive Predicting Coding

We start this section by motivating and giving intuitions behind our approach. Next, we introduce the
architecture of Contrastive Predictive Coding (CPC). After that we explain the loss function that is
based on Noise-Contrastive Estimation. Lastly, we discuss related work to CPC.

2.1 Motivation and Intuitions

The main intuition behind our model is to learn the representations that encode the underlying shared
information between different parts of the (high-dimensional) signal. At the same time it discards
low-level information and noise that is more local. In time series and high-dimensional modeling,
approaches that use next step prediction exploit the local smoothness of the signal. When predicting
further in the future, the amount of shared information becomes much lower, and the model needs
to infer more global structure. These ’slow features’ [13] that span many time steps are often more
interesting (e.g., phonemes and intonation in speech, objects in images, or the story line in books.).

One of the challenges of predicting high-dimensional data is that unimodal losses such as mean-
squared error and cross-entropy are not very useful, and powerful conditional generative models which
need to reconstruct every detail in the data are usually required. But these models are computationally
intense, and waste capacity at modeling the complex relationships in the data x, often ignoring the
context c. For example, images may contain thousands of bits of information while the high-level
latent variables such as the class label contain much less information (10 bits for 1,024 categories).
This suggests that modeling p(x|c) directly may not be optimal for the purpose of extracting shared
information between x and c. When predicting future information we instead encode the target x
(future) and context c (present) into a compact distributed vector representations (via non-linear

2



CPC Principle

• Encode the target x (future) and context c (present) into a compact 
distributed vector representa`ons (via non-linear learned mappings) in 
a way that maximally preserves the mutual informa`on of the original 
signals x and c defined as 

• By maximizing the mutual informa`on between the encoded 
representa`ons (which is bounded by the MI between the input 
signals), we extract the underlying latent variables the inputs have in 
common. 

learned mappings) in a way that maximally preserves the mutual information of the original signals x
and c defined as

I(x; c) =
X

x,c

p(x, c) log
p(x|c)
p(x)

. (1)

By maximizing the mutual information between the encoded representations (which is bounded
by the MI between the input signals), we extract the underlying latent variables the inputs have in
commmon.

2.2 Contrastive Predictive Coding

Figure 1 shows the architecture of Contrastive Predictive Coding models. First, a non-linear encoder
genc maps the input sequence of observations xt to a sequence of latent representations zt = genc(xt),
potentially with a lower temporal resolution. Next, an autoregressive model gar summarizes all zt in
the latent space and produces a context latent representation ct = gar(zt).

As argued in the previous section we do not predict future observations xt+k directly with a generative
model pk(xt+k|ct). Instead we model a density ratio which preserves the mutual information between
xt+k and ct (Equation 1) as follows (see next sub-section for further details):

fk(xt+k, ct) /
p(xt+k|ct)

p(xt+k)
(2)

where / stands for ’proportional to’ (i.e. up to a multiplicative constant). Note that the density ratio
f can be unnormalized (does not have to integrate to 1). Although any positive real score can be used
here, we use a simple log-bilinear model:

fk(xt+k, ct) = exp
⇣
zT
t+kWkct

⌘
, (3)

In our experiments a linear transformation WT
k ct is used for the prediction with a different Wk for
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In the proposed model, either of zt and ct could be used as representation for downstream tasks.
The autoregressive model output ct can be used if extra context from the past is useful. One such
example is speech recognition, where the receptive field of zt might not contain enough information
to capture phonetic content. In other cases, where no additional context is required, zt might instead
be better. If the downstream task requires one representation for the whole sequence, as in e.g. image
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shown as follows.
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CPC applied to Audio

Figure 2: t-SNE visualization of audio (speech)
representations for a subset of 10 speakers (out
of 251). Every color represents a different
speaker.

Figure 3: Average accuracy of predicting the
positive sample in the contrastive loss for 1 to 20
latent steps in the future of a speech waveform.
The model predicts up to 200ms in the future as
every step consists of 10ms of audio.

Method ACC

Phone classification

Random initialization 27.6
MFCC features 39.7
CPC 64.6
Supervised 74.6

Speaker classification

Random initialization 1.87
MFCC features 17.6
CPC 97.4
Supervised 98.5

Table 1: LibriSpeech phone and speaker
classification results. For phone classifi-
cation there are 41 possible classes and
for speaker classification 251. All mod-
els used the same architecture and the
same audio input sizes.

Method ACC

#steps predicted

2 steps 28.5
4 steps 57.6
8 steps 63.6
12 steps 64.6
16 steps 63.8
Negative samples from

Mixed speaker 64.6
Same speaker 65.5
Mixed speaker (excl.) 57.3
Same speaker (excl.) 64.6
Current sequence only 65.2

Table 2: LibriSpeech phone classifica-
tion ablation experiments. More details
can be found in Section 3.1.

labels and our train/test split available for download on Google Drive2. The dataset contains speech
from 251 different speakers.

The encoder architecture genc used in our experiments consists of a strided convolutional neural
network that runs directly on the 16KHz PCM audio waveform. We use five convolutional layers
with strides [5, 4, 2, 2, 2], filter-sizes [10, 8, 4, 4, 4] and 512 hidden units with ReLU activations. The
total downsampling factor of the network is 160 so that there is a feature vector for every 10ms of
speech, which is also the rate of the phoneme sequence labels obtained with Kaldi. We then use a
GRU RNN [16] for the autoregressive part of the model, gar with 256 dimensional hidden state. The
output of the GRU at every timestep is used as the context c from which we predict 12 timesteps in
the future using the contrastive loss. We train on sampled audio windows of length 20480. We use
the Adam optimizer [31] with a learning rate of 2e-4, and use 8 GPUs each with a minibatch of 8
examples from which the negative samples in the contrastive loss are drawn. The model is trained
until convergence, which happens roughly at 300,000 updates.

Figure 3 shows the accuracy of the model to predict latents in the future, from 1 to 20 timesteps. We
report the average number of times the logit for the positive sample is higher than for the negative
samples in the probabilistic contrastive loss. This figure also shows that the objective is neither trivial
nor impossible, and as expected the prediction task becomes harder as the target is further away.

2https://drive.google.com/drive/folders/1BhJ2umKH3whguxMwifaKtSra0TgAbtfb
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CPC applied to images
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Figure 4: Visualization of Contrastive Predictive Coding for images (2D adaptation of Figure 1).

To understand the representations extracted by CPC, we measure the phone prediction performance
with a linear classifier trained on top of these features, which shows how linearly separable the
relevant classes are under these features. We extract the outputs of the GRU (256 dimensional), i.e.
ct, for the whole dataset after model convergence and train a multi-class linear logistic regression
classifier. The results are shown in Table 1 (top). We compare the accuracy with three baselines:
representations from a random initialized model (i.e., genc and gar are untrained), MFCC features,
and a model that is trained end-to-end supervised with the labeled data. These two models have the
same architecture as the one used to extract the CPC representations. The fully supervised model
serves as an indication for what is achievable with this architecture. We also found that not all the
information encoded is linearly accessible. When we used a single hidden layer instead the accuracy
increases from 64.6 to 72.5, which is closer to the accuracy of the fully supervised model.

Table 2 gives an overview of two ablation studies of CPC for phone classification. In the first set
we vary the number of steps the model predicts showing that predicting multiple steps is important
for learning useful features. In the second set we compare different strategies for drawing negative
sample, all predicting 12 steps (which gave the best result in the first ablation). In the mixed speaker
experiment the negative samples contain examples of different speakers (first row), in contrast to
same speaker experiment (second row). In the third and fourth experiment we exclude the current
sequence to draw negative samples from (so only other examples in the minibatch are present in X)
and in the last experiment we only draw negative samples within the sequence (thus all samples are
from the same speaker).

Beyond phone classification, Table 1 (bottom) shows the accuracy of performing speaker identity
(out of 251) with a linear classifier from the same representation (we do not average utterances over
time). Interestingly, CPCs capture both speaker identity and speech contents, as demonstrated by
the good accuracies attained with a simple linear classifier, which also gets close to the oracle, fully
supervised networks.

Additionally, Figure 2 shows a t-SNE visualization [32] of how discriminative the embeddings are
for speaker voice-characteristics. It is important to note that the window size (maximum context size
for the GRU) has a big impact on the performance, and longer segments would give better results.
Our model had a maximum of 20480 timesteps to process, which is slightly longer than a second.

3.2 Vision

In our visual representation experiments we use the ILSVRC ImageNet competition dataset [33].
The ImageNet dataset has been used to evaluate unsupervised vision models by many authors
[27, 11, 34, 10, 28, 35]. We follow the same setup as [35] and use a ResNet v2 101 architecture [36]
as the image encoder genc to extract CPC representations (note that this encoder is not pretrained).
We did not use Batch-Norm [37]. After unsupervised training, a linear layer is trained to measure
classification accuracy on ImageNet labels.
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Method Top-1 ACC

Using AlexNet conv5

Video [27] 29.8
Relative Position [11] 30.4
BiGan [34] 34.8
Colorization [10] 35.2
Jigsaw [28] * 38.1

Using ResNet-V2

Motion Segmentation [35] 27.6
Exemplar [35] 31.5
Relative Position [35] 36.2
Colorization [35] 39.6
CPC 48.7

Table 3: ImageNet top-1 unsupervised classifi-
cation results. *Jigsaw is not directly compa-
rable to the other AlexNet results because of
architectural differences.

Method Top-5 ACC

Motion Segmentation (MS) 48.3
Exemplar (Ex) 53.1
Relative Position (RP) 59.2
Colorization (Col) 62.5
Combination of

MS + Ex + RP + Col 69.3
CPC 73.6

Table 4: ImageNet top-5 unsupervised classi-
fication results. Previous results with MS, Ex,
RP and Col were taken from [35] and are the
best reported results on this task.

Method MR CR Subj MPQA TREC

Paragraph-vector [39] 74.8 78.1 90.5 74.2 91.8
Skip-thought vector [25] 75.5 79.3 92.1 86.9 91.4
Skip-thought + LN [40] 79.5 82.6 93.4 89.0 -

CPC 76.9 80.1 91.2 87.7 96.8

Table 5: Classification accuracy on five common NLP benchmarks. We follow the same transfer
learning setup from Skip-thought vectors [25] and use the BookCorpus dataset as source. [39] is an
unsupervised approach to learning sentence-level representations. [25] is an alternative unsupervised
learning approach. [40] is the same skip-thought model with layer normalization trained for 1M
iterations.

Our model consists of a simple sentence encoder genc (a 1D-convolution + ReLU + mean-pooling)
that embeds a whole sentence into a 2400-dimension vector z, followed by a GRU (2400 hidden
units) which predicts up to 3 future sentence embeddings with the contrastive loss to form c. We used
Adam optimizer with a learning rate of 2e-4 trained on 8 GPUs, each with a batch size of 64. We
found that more advanced sentence encoders did not significantly improve the results, which may be
due to the simplicity of the transfer tasks (e.g., in MPQA most datapoints consists of one or a few
words), and the fact that bag-of-words models usually perform well on many NLP tasks [47].

Results on evaluation tasks are shown in Table 5 where we compare our model against other models
that have been used using the same datasets. The performance of our method is very similar to the
skip-thought vector model, with the advantage that it does not require a powerful LSTM as word-level
decoder, therefore much faster to train. Although this is a standard transfer learning benchmark, we
found that models that learn better relationships in the childeren books did not necessarily perform
better on the target tasks (which are very different: movie reviews etc). We note that better [48, 26]
results have been published on these target datasets, by transfer learning from a different source task.

3.4 Reinforcement Learning

Finally, we evaluate the proposed unsupervised learning approach on five reinforcement learn-
ing in 3D environments of DeepMind Lab [50]: rooms_watermaze, explore_goal_locations_small,
seekavoid_arena_01, lasertag_three_opponents_small and rooms_keys_doors_puzzle.

This setup differs from the previous three. Here, we take the standard batched A2C [51] agent as
base model and add CPC as an auxiliary loss. We do not use a replay buffer, so the predictions have
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SimCLR: A Simple Framework for Contrastive  
Learning of VisualRepresentations



The proposed SimCLR framework
A simple idea: maximizing the agreement of representaZons 
under data  transformaZon, using a contrasZve loss in the 
latent/feature space. 



The proposed SimCLR framework
We use random crop and color distortion for augmentation.  

Examples of augmentation applied to the left most images:



The proposed SimCLR framework

f(x) is the base network that computes internal  
representation.

We use (unconstrained) ResNet in this work.  
However, it can be other networks.



The proposed SimCLR framework

g(h) is a projection network that project  
representation to a latent space.

We use a 2-layer non-linear MLP (fully  
connected net).



The proposed SimCLR framework
Maximize agreement using a contrastive task:

Given {x_k} where two different examples x_i  
and x_j are a positive pair, identify x_j in
{x_k}_{k!=i} for x_i.

Original image crop 1 crop 2 contrastive image

Loss function:



Data Augmentation for Contrastive  
Representation Learning



We study a set of transformations...
Systematically study a set of augmentation

* Note that we only test these for abla1on, the augmenta1on policy used to train our models only involves random crop (with flip and resize) + color distor1on + Gaussian blur.



Composition of augmentations are crucial
Composition of crop and color stands out!



Encoder and Projection Head



A nonlinear projection head improves the representation quality  of 
the layer before it

)

We compare three projecZon head g(.) (a]er average pooling of ResNet):

● IdenZty mapping
● Linear projecZon
● Nonlinear projecZon with one addiZonal hidden layer (and ReLU  acZvaZon

Even when non-linear projection is  used, the layer before the projection  head,h,is 



A nonlinear projection head improves the representation quality  of 
the layer before it

To understand why this happens, we measure information in h and z=g(h)

Contrastive loss can remove/damping rotation information in the last  
layer when the model is asked to identify rotated variant of an image.



Loss Function and Batch Size



Normalized cross entropy loss with adjustable temperature works  



NT-Xent loss needs N and
TWe compare variants of NT-Xent loss

● L2 normalization with temperature scaling makes a better loss.
● Contrastive accuracy is not correlated with linear evaluation when l2  

norm and/or temperature are changed.



Contrastive learning benefits from larger batch sizes and  longer



Linear evaluation
7% relative improvement over previous SOTA (cpc v2), matching  
fully-supervised ResNet-50.



Semi-supervised learning
10% relative improvement over previous SOTA (cpc v2), outperforms  
AlexNet with 100X fewer labels.



Transfer learning
When fine-tuned, SimCLR significantly outperforms the supervised  baseline 
on 5 datasets, whereas the supervised baseline is superior on only  2*. On
the remaining 5 datasets, the models are staZsZcally Zed.

* The two datasets, where the supervised ImageNet pretrained model is better, are Pets and Flowers, which share a portion of labels with ImageNet.



Conclusio
n● SimCLR is a simple yet effecZve self-supervised learning 

framework,  advancing state-of-the-art by a large margin. 
● The superior performance of SimCLR is not due to any single design  

choice, but a combination of design choices.
● Our studies reveal several important factors that enable 

effecZve  representaZon learning, which could help future
research.

Code & checkpoints available in github.com/google-research/simclr.

https://github.com/google-research/simclr
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Bonus
What happens when we "super-size" self-supervised 
learning?

Scaling and benchmarking self-supervised visual representation learning -

Goyal, Mahajan, Gupta*, Misra* - 2019 https://arxiv.org/abs/1905.01235

https://arxiv.org/abs/1905.01235
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• For ImageNet we have ~1M images and 1000 classes
• Each image has log2(1000) bits of informaZon
• Total = 1M x log2(1000)

• For self-supervised methods we have ~1M images
• Each image has lesser bits of informaZon - log2(B) 
• Total = 1M x log2(B)
• Increase 1M to 100M?
• Increase B to 10B?

Bits of informaLon 
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• Focus on exis[ng popular image-based self-supervised methods
• Scale along three axes

How large scale?

Models

Data Size

Problem
Complexity
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Specific self-supervision problems

Jigsaw puzzles
(Noorozi & Favaro, 2016)

Coloriza0on
(Zhang & Efros, 2016)

Images from the ImageNet dataset
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Jigsaw Puzzles

.

.

.

.

.

.

concat

Classify which permutation

• Use N=9 patches
• In prac7ce, use a subset of 

permuta7ons 
• E.g. 100 from 9!
• Each patch is processed 

independently
• N-way ConvNet (shared params)

• Problem Complexity
• Size of subset

Permuted 
image 
patches
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ColorizaLon

• Predict N=313 colors
• Binning LAB space
• Multi-modal loss

• Problem Complexity
• Number of colors
• Number of neighbors in 

multi-modal loss

At each pixel, classify which 
color bins
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• Scale two techniques - Jigsaw and Colorization
• Scale along three axes

How large scale?

Models

Data Size

Problem
Complexity

AlexNet, ResNet-50

"Difficulty"

YFCC - 100M
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EvaluaLng the representaLon

ConvNet

Extract "fixed" features
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• Train a Linear SVM on fixed feature representations

"InvesLgaLon" task
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• Train a Linear SVM on fixed feature representations
• Use the VOC07 image classification task

"InvesLgaLon" task
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Scaling on Data Axis

Models

Data Size

Problem
Complexity

YFCC - 100M

AlexNet, ResNet-50

"Difficulty"
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Scaling on Data Axis

Gain for ResNet50: 10 points

Gain for AlexNet: 2 points
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Scaling on Data Axis

Gain for ResNet50: 12 points

Gain for AlexNet: 8 points
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Scaling on Problem Complexity

Models

Data Size

Problem
Complexity

YFCC - 100M

AlexNet, ResNet-50

"Difficulty"
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Scaling on Problem Complexity Axis

Gain for ResNet50: 6 points

Gain for AlexNet: 2 points
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Scaling on Problem Complexity Axis
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Scaling on Data and Problem

Models

Data Size

Problem
Complexity

YFCC - 100M

AlexNet, ResNet-50

"Difficulty"
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Gains along both data and 
problem
axes are complementary
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Our EvaluaLon – many tasks

Image classificaZon
Few-shot learning

ImageNet, Places-205, VOC’07, COCO

Object detection
VOC’07

3D Understanding
Surface Normals – NYUv2

NavigaZon
Gibson environment

Images from the Places, VOC07,
NYUv2 and Gibson datasets
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Our Evaluation – fine-tuning vs. linear classifier

Fine-tune all layers Linear classifier

A good representation transfers with little training
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Image classificaZon
Few-shot learning

ImageNet, Places-205, VOC’07, COCO

Object detection
VOC’07

3D Understanding
Surface Normals – NYUv2

Navigation
Gibson environment

Object DetecLon
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Object Detection
• Fast R-CNN (Girshick et al., 2015)
• Same op7miza7on parameters for all methods (including supervised)
• No “bells and whistles”
• Use VOC’07

Object detecZon
Image from the VOC07 dataset
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Object DetecLon
VOC07 test set. 

Fast R-CNN ResNet50

Initialization Train Set

VOC07 VOC07+12

ImageNet Supervised 70.5 76.2

Places Supervised 67.2 74.5

Jigsaw ImageNet-1k 61.4 68.3

Jigsaw ImageNet-22k 69.2 75.4

Jigsaw YFCC100M 66.6 73.3

within error

Fine-tune all
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Object Detection - Training RoI heads only
VOC07 test set. 

Fast R-CNN ResNet50

Initialization Train Set

VOC07 VOC07+12

ImageNet Supervised 68.5 75.8

Places Supervised 65.3 73.1

Jigsaw ImageNet-1k 56.6 64.7

Jigsaw ImageNet-22k 67.1 73.0

Jigsaw YFCC100M 62.3 69.7

within error

Last layer
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Image classification
Few-shot learning

ImageNet, Places-205, VOC’07, COCO

Object detecZon
VOC’07

3D Understanding
Surface Normals – NYUv2

Navigation
Gibson environment

Surface Normal Estimation
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Surface Normal EsLmaLon
• Predict surface normals on NYU-v2
• Same optimization parameters for all methods (including supervised)
• PSPNet Architecture
• Train last few layers only (res5 onwards)

Image from the NYU dataset

Input Output
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Surface Normal Estimation

Initialization Median Error % correct within 
11.250

ImageNet Supervised 17.1 36.1

Places Supervised 14.2 41.8

Jigsaw ImageNet-1k 14.5 41.2

Jigsaw ImageNet-22k 13.4 43.7

Jigsaw YFCC100M 13.1 44.6

+8



158

Image classification
Few-shot learning

ImageNet, Places-205, VOC’07, COCO

Object detection
VOC’07

3D Understanding
Surface Normals – NYUv2

Navigation
Gibson environment

Surface Normal Estimation
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Visual NavigaLon
• Visual navigation in the Gibson environment
• Method from Sax et al., 2018
• Fixed ConvNet features

Gibson Environment



Visual Navigation
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Few-shot learning
Places-205, VOC’07

Object detection
VOC’07

3D Understanding
Surface Normals – NYUv2

NavigaZon
Gibson environment

Few shot learning
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Few shot learning
• k-shot learning
• Use VOC’07/Places205 classifica7on
• K labeled examples per class
• Train linear SVMs

Few-shot learning
Image from the Places dataset
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Few shot learning

Self-supervised representations are not as sample efficient
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Few shot learning - VOC07
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Few shot learning - Places205
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Image classification
Places-205, VOC’07

Object detection
VOC’07

3D Understanding
Surface Normals – NYUv2

Navigation
Gibson environment

Image Classification
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Linear SVMs on VOC07
VOC2007 SVM classificaZon. ResNet50

Init conv1 stage1 stage2 stage3 stage4

ImageNet supervised 24.49 47.75 60.54 80.36 87.95

ImageNet jigsaw 27.09 45.73 56.61 64.51 57.17

Imagenet14M jigsaw 23.46 46.72 58.52 71.76 64.92
YFCC100M jigsaw 18.98 46.71 57.77 71.21 64.34

• Deeper self supervised layers are less transferable
• Hypothesis – Problem is not “complex” enough.
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SGD-based Linear Classifiers on Places205
Places205 linear classification. ResNet50

Init conv1 stage1 stage2 stage3 stage4

ImageNet supervised 14.84 32.59 42.06 50.83 52.49

ImageNet jigsaw 15.079 28.753 36.825 41.232 34.364

Imagenet14M jigsaw 13.973 29.462 36.656 41.721 36.254

YFCC100M jigsaw 10.252 29.672 39.565 44.866 38.219

• Gap between ImageNet and self-supervised methods is smaller.
• Places has scenes while ImageNet is object centric
• YFCC is a good mixture of both.
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• Evaluation on multiple tasks is essential
• Evaluation with fixed features or at least same hyper-parameters
• Evaluate sample efficiency of representations

EvaluaLon: Main Lessons
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• Complex problems, big data and deeper models
• Current self-supervised methods do not seem to learn high level 

representations
• Sample efficiency

What's missing from self-supervised methods?



Thanks!

Image classification
Few-shot learning

ImageNet, Places-205, VOC’07, COCO

Object detection
VOC’07

3D Understanding
Surface Normals – NYUv2

NavigaZon
Gibson environment


