Self-Supervised Learning in
Vision
Lecture 6

Rob Fergus

Slides from Ishan Misra, Naiyan Wang & many others.



Success story of supervision

ImageNet Challenge

Classification Results (CLS)
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Success story of supervision: Pre-training

* Features from networks pre-trained on ImageNet can be used
for a varlety ofdlferent downstream tasks

ConvNet
Images from ImageNet ONVINE

Pre-train :
( ) Learn a representation
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— husky, terrier, tench, ...



Success story of supervision: Recipe for good solutions
* Pre-train on a large supervised dataset.

* Collect a dataset of "supervised" images
* Train a ConvNet
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Can we get labels for all
data?
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Can we get labels for all
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Can we get labels for all
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Can we get labels for all
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Can we get labels for all
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Can we get labels for all

1E+13

data?
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Can we get labels for all

dm’;?about complex concepts?
e \Video?

e Labelling cannot scale to the size of the data we generate
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Rare concepts?
Objects in Vision Dataset (LabelMe)
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Different Domains?

facebook
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Arguments for Unsupervised Learning

* Want to be able to exploit unlabeled data
* Vast amount of it often available
* Essentially free

* Good regularizer for supervised learning
* Helps generalization
* Transfer learning
» Zero/one/few - shot learning



Unsupervised Learning

* Biological argument [from G. Hinton]:
* Qur brains have 10715 connections
* We live for 1079 secs
* Need 1076 bits/sec
* |Insufficient information from occasional high level label

* Only source with enough information is input itself

* Challenging problem: big focus on many DL groups



Historical Note

* Deep Learning revival started in ~2006
* Hinton & Salakhudinov Science paper on RBMs

* Unsupervised Deep Learning was focus from 2006-2012

* |In ~2012 great results in vision, speech with supervised methods
appeared

* |nitially less interest in unsupervised learning
* By focus once more on unsupervised learning



Overview of Unsupervised Perspectives

* Given just data {X}
* Unlike supervised learning there are no provided labels {Y}

1. Density modeling, i.e. build model of p(X)
* Enables sampling of new data
* Evaluate probability of a data point
* Can be conditional model, e.g. p(X t | X {t-1},...)
* Requires (deep) generative architectures [HARD]

* Generating pixels not necessarily optimal for learning representations
for downstream tasks



1. Density Modeling

o Have access to & ~ pgqie(x) through training set
o Want to learn a model z ~ p,oder(T)

@ Want p,,04e1 t0 be similar to pgyuiqa:
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Emily Denton Deep generative models of natural images



2. “Self supervised” learning

* Also unsupervised but...
* Find supervision signal y within the input data

* This signal is then used as a target in discriminative model:
y: X — )

x — y(x)

* Allows the use of standard supervised learning losses and
architectures

min % > o), y(@:)

* Pre-training of representation for subsequent task

* Typically involves some insight into domain to pick y



Class Project

* Everyone must come and discuss proposed ideas with me at some point
during office hours.

* Simple option is to reimplement existing approach/paper.
* Cannot just copy existing repo, but can use it for debugging.
* Alternatively, you can extend existing approach/paper.
* Can use existing repo, but extension must be significant
* More ambitious (more marks): Implement new idea from scratch
* Can use existing models/code but must have significant novelty
* Project abstracts due Oct 15th (email to me).
 Email paragraph summarizing your project plan to fergus@cs.nyu.edu.

* Please be sure to include the names of people on your project.


https://mailto:fergus@cs.nyu.edu/

Class Project details

Team of 2-3 people [1 person not allowed; 3 is hard max]
PyTorch preferred

Project video:
- 2 minute clip explaining your project
- Voice over slides

Project Report
- Format: 4-8 page conference paper style report on your project (please don't waffle)
- Intro (with refs to related work) [~1 page]

- Method (be sure to cite any code/pre-trained models) [~2 pages]

- Experiments (must have plots/results figures; also should have baselines; ideally some kind of ablation experiments
too) [~2-4 pages]

- Discuss (brief) [~0.5 pages

- See examples: http://openaccess.thecvf.com/CVPR2018.py
- Zip of source code or link to Github (please ensure you give access to robfergus)



Class Project details (2)

.Deadline is Thursday Dec 17th midnight [Hard deadline]
- Feel free to turn in earlier
- Will try to grade them and compute final grades by Christmas

e Grading (49% of total grade for class)

- Novelty / Technical difficulty of problem [15%]
- Quality of Results [15%]

- Quality of implementation [5%]

- Quality of writeup & video presentation [14%]
- How many people in your group



Class Project General Advice

- Please make sure you have *something* working, even if you don’t
achieve overall goal

- Even a small part of an ambitious project can be OK

- So please have a safe plan B option in mind

- Expect all projects to train something, i.e. must use b-prop at some point
- Just evaluating existing models is NOT OK.

- Cluster gets busy at end of semester -- please don’t leave it all to last
moment.



Self-supervised learning in computer vision

Ishan Misra

Artificial Intelligence Research With slides from Andrew Zisserman, Carl
Doersch



What is "self” supervision?

* Obtain labels from the data itself by using a "semi-automatic" process
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What is "self" supervision?

* Obtain labels from the data itself by using a "semi-automatic" process

Supervised Unsupervised Self-Supervised

- implausible label - limited power - derives label from a
co-occuring input to
‘cow” another modality
Target /;\\
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Word2vec

 Fill in the blanks

Softmax classifier
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word2vec - Mikolov et al.

facebook Image by Julian Gilyadov
Artificial Intelligence Research 27



Success of self-supervised learning in NLP

* Fillin the blanks is a powerful signal to learn representations

* Sentence/Word representations: BERT - Devlin et al., 2018
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Why self supervision?

* Helps us learn using observations and interactions
* Does not require exhaustive annotation of concepts
* Leverage multiple modalities or structure in the domain

facebook
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Range of selt-supervised systems

richer data
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Range of selt-supervised systems

videos

richer data

¢ Doersch et al. ¢ Wang et al. (2015)
(2015) e Misra et al. (2016)
— ) e Pathak et al. (2017)

e Zhang et al. (2016) rachakeeal. (2017

o
~ ‘ —
e Zhang et al. (2017)




ange of self-supervised systems
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Range of selt-supervised systems

. actions
videos sound & depth
richer data
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Self-supervision in computer vision

* Using images
* Using video
* Using video and sound

facebook
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From Images: Relative position of patches

DD <& 8 possible locations

mn LI | U | =
----------- "

CNN CNN

A A

Sample Second Patch
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Unsupervised visual representation learning by context prediction, Carl Doersch, Abhinav Gupta, Alexei A. Efros, ICCV 2015



From Images: Relative position of patches

facebook
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Unsupervised visual representation learning by context prediction, Carl Doersch, Abhinav Gupta, Alexei A. Efros, ICCV 2015



Relative Position: Nearest Neighbors in features

Input Relatlve posmonmg Random Imtlallzatlon ImageNet AlexNet

R ), 3. A Ll rdtl

A

CNN

A |

facebook
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Unsupervised visual representation learning by context prediction, Carl Doersch, Abhinav Gupta, Alexei A. Efros, ICCV 2015



Unsupervised Learning of Visual Representations

by Solving Jigsaw Puzzles, Noorozi et al. (2016)

What do we learn when we solve a Jigsaw puzzle¢

=il

[Noorozi et al. (2016)]



Hash Set

iIndex table

Reorder patches

according to the selected
hash table

64 9,4,68,3,2,5,1,7

[Noorozi et al. (2016)]
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e Visualization of filters

Visualization
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conv4 activations convb activations conv1 filters

Visualization of the top 16 activations for 6 selected channels of the convolutional layers

Noroozi, M., & Favaro, P. Unsupervised learning of visual representations by solving
jigsaw puzzles. In ECCV 2016.



Feature Learning by Inpainting

[Context Encoders: Feature Learning by Inpainting, Pathak et al. (2016)]

[Pathak et al. (2016)]



Context Encoders

Encoder Decoder
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* Encoder can be substituted with any network
architecture like AlexNet etc.

* Decoder is a set of UpConv/deconv/frac-strided-
conv layers

[Pathak et al. (2016)]



Combined L2 + GAN loss

Input Image L2 Loss Adversarial Loss Joint Loss

[Pathak et al. (2016)]



Image colorization

Colortul Image Colorization

Richard Zhang, Phillip Isola, Alexei (Alyosha) Efros

slides from Zhang

http://richzhang.github.io/colorization/



Gravscale | image: L channel Colorinformation: ab channels
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From Images: Predicting Rotations

Which image has the correct rotation?

facebook
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Predicting Image Rotations - Gidaris et al., 2018
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' Dosovitskiy et al. ICLR 2014]

* 1 class = single image + its
transformations

* Learn to classify each “class”

* Domain knowledge about
appropriate transformations

e does not scale



Many different self-supervision tasks, how to
evaluate?

facebook
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Context auto encoders - Pathak et al., 2016



Self-supervised pre-training

— Position/Colorization

Pre-train data ConvNet

Learn a representation

facebook
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Fine-tune on end task (Image Classification)

Plant, fridge,
table, stove

—

ConvNet

Tests representation as well as how good the pre-training initialization is

facebook
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Fine-tune on end task

Initialization
GERN el

End task

ImageNet top-5 accuracy VOCO07 Detection mAP

ImageNet Supervised 85.1 /4.2

Relative Position 59.2 00.8

Colorization 62.5 65.5

facebook
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e Multi-task self-supervised visual learning, C Doersch, A Zisserman, ICCV 2017



Are they complementary?

Initialization
GERN el End task

ImageNet top-5 accuracy VOCO07 Detection mAP

ImageNet Supervised 85.1 /4.2

Relative Position 59.2 00.8

Colorization 62.5 65.5

Relative Position + Colorization (Multi-task) 066.6 03.8

facebook

Artificial Intelligence Research e Multi-task self-supervised visual learning, C Doersch, A Zisserman, ICCV 2017 >



Train linear classifiers on "fixed" features

Extract "fixed" features

1

ConvNet

Tests how good the representation is (linearly separable)

facebook
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Self-supervision in computer vision

* Using images
* Using video
* Using video and sound

facebook
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Video

* Video is a "sequence"” of frames
* How to get "self-supervision™? Time

e Predict order of frames
e Fill in the blanks

e Track objects and predict their position

"Sequence” of data

facebook
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Video

* Slow feature
* Neighborhood frames should have similar features

Us = {{(4,k),pjr) :@j,zx €U and pjr = L(0 < j —k <T)},

RQ(B,Z/{) — Z D(S(Ze(a:j)vZO(mk))pjk)
(]*k)EUQ

= > ik d(zej. 7o) + i max(d — d(ze;,761), 0),
(jak)EMQ

Mobahi, H., Collobert, R., & Weston, J. Deep learning from temporal coherence in video.
In ICML 20009.

Wiskott, L., & Sejnowski, T. J. (2002). Slow feature analysis: Unsupervised learning of
invariances. Neural computation, 14(4), 715-770.

[A Survey to Self-Supervised Learning, Naiyan Wang]



Video

* Slow and steady feature
* Not only similar, but also smooth
* Extend to triplet setting (Not triplet loss!)

: Steady feature embedding
El M I
mmen BBl |
I
I
I

unlabeled videos t=1

< e H“- -------------

1

.
-
»

Us = {{(I,m,n), Pimn) : 1y Tm, Tn €U and Pimn =10 <m —-Il=n—-—m <T)}.

R3(9,Z/{) — Z D(S(ZOZ — ZOmy ZOm — ZéOn; plmn)a

(l,m,n)éblg

Jayaraman, D., & Grauman, K. Slow and steady feature analysis: higher order temporal
coherence in video. In CVPR 2016.

[A Survey to Self-Supervised Learning, Naiyan Wang]



From video: shuffle and learn

Temporally Correct order

Original video

Temporally Incorrect order
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Shuffle and Learn — I. Misra, L. Zitnick, M. Hebert — ECCV 2016
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From video: shuffle and learn

Given a start and an end, can this point lie in between?

facebook
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rticialinteligence Researc Shuffle and Learn — . Misra, L. Zitnick, M. Hebert —- ECCV 2016



From video: shuffle and learn

Input Tuple

=

concatenation

facebook
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fc8

Correct/Incorrect
Tuple

classification

Cross Entropy Loss

Shuffle and Learn — I. Misra, L. Zitnick, M. Hebert — ECCV 2016
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From viden: chiiffla and learn

Query

facebook
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Nearest Neighbors of Query Frame (fc7 features)

ImageNet

Shuffle & Learn

o{:!-ﬂ?fm

-
) -~ o~
i —

i 38

Random

Contral Jamalica

»

o' '.,J

"

— o,

Shuffle and Learn — I. Misra, L. Zitnick, M. Hebert — ECCV 2016
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From video: shuffle and learn

Fine-tune on Human Keypoint Estimation

facebook
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Shuffle and Learn — I. Misra, L. Zitnick, M. Hebert — ECCV 2016
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From video: shuffle and learn

Fine-tune on Human Keypoint Estimation

Initialization

End task

(AlexNet)

FLIC Dataset Keypoints
AUC

ImageNet Supervised 51.3

Shuffle and Learn 49.6

facebook
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MPII Dataset Keypoints
AUC

47.6

47.2

Shuffle and Learn — I. Misra, L. Zitnick, M. Hebert — ECCV 2016
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From video: encoding more structure

facebook
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Predicted odd
element

=

“r

fc8

fc7

Fusion Layer

fcb
convd

_QQ[iyJ_

Video-clip Encoder

Odd-one-out networks - Fernando, Bilen, Gavves, Gould in ICCV 2017
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Unsupervised Learning of Visual Representations

using Videos, Wang & Gupta 2015

[dea: Object Tracking in Videos

?’"J..-Li\ _ {

iy,
@

[Wang & Gupta 2015]



* Use object tracking in

(@) Unsupervised Tracking in Videos

videos

Learning to Rank

N

Conv Conv Conv
Net Net Net

’
]
- N . - l
\ = . 1
'\3 ~ - ————]
S F
-~ B - A 4
- " - -
LB __J
-
ey , '.1. - s |
- - ’
I
- » -y
I
-

* C(lassity it patches belong

to the same track or not

Query  Tracked Neggtive D: Distance in deep feature space
(First Frame) (Last Frame) (Random)
(b) Samese-triplet Network (c) Ranking Objective

[Wang & Gupta 2015]



Patch Mining In Videos

* Track 8M patches in 100K videos from YouTube.

* Use oft-the-shelf tracking algorithms with no learning.

Patch

Pairs

Patch

‘ ";‘:‘ | Pairs

[Wang & Gupta 2015]




% Average Precision

VOC 2007 Detection Performance
(pretraining for R-CNN)

VGG (16-layer)

ImageNet Layout| Tracking No Pretraining

[Wang & Gupta 2015]



Object Movement

* The world is rigid, or at least piecewise rigid
* Motion provide evidence of how pixels move together
* The pixels move together are likely to form an object

ik \ e A A A v,
[ . K : ! N/ ,v,‘ » ) A\ =
wale pmmien z?&?é\% =5 ;,.'.‘hr%ﬁ@(ﬁ ( ?g&
1. Collect videos 2. Segment using motion 3. Train ConvNet

Pathak, D., Girshick, R., Dollar, P., Darrell, T., & Hariharan, B. Learning Features by
Watching Objects Move. In CVPR 2017.

[A Survey to Self-Supervised Learning, Naiyan Wang]|



Self-supervision in computer vision

* Using images
* Using video
* Using video and sound

facebook
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Audio-Visual co-supervision

Train a network to predict if image and audio clip correspond

Correspond?

facebook
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“Objects that Sound”, Arandjelovi¢ and Zisserman, ICCV 2017 & ECCV 2018



Audio-Visual co-supervision

positive

drum drum
guitar | | guitar
facebook

Artificial Intelligence Research
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“Objects that Sound”, Arandjelovi¢ and Zisserman, ICCV 2017 & ECCV 2018



Audio-Visual co-supervision

facebook
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Visual embedding

Corresponds: yes/no?

L2 normalization
128

L2 normalization
128

poold 16x12
I1x1x512

poold 14x14
I1x1x512

Vision subnetwork

Audio subnetwork

—

t log-spectrogram

A

1 second 48kHz audio

Audio embedding

“Objects that Sound”, Arandjelovi¢ and Zisserman, ICCV 2017 & ECCV 2018
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Audio-Visual co-supervisionWhat o be

Corresponds: yes/no?

learnt?

* Good representations — Visual features

— Audio features

Visual embedding Audio embedding

L2 normalization L2 normalization
128 128

5 ¥
o o
:‘E; Ppns2 Ppans12 é * Intra- and cross-modal retrieval
2 et | = — Aligned audio and visual embeddings
l4x14x512
I 257x!00x1
224x224x3 -

* “What 1s making the sound?”

t log-spectrogram

> — Learn to localize objects that sound

1 second 48kHz audio

facebook
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“Objects that Sound”, Arandjelovi¢ and Zisserman, ICCV 2017 & ECCV 2018



Audio-Visual co-supervision
What would make this sound?

»
54
—
I - -.'
- -
-
’4 ’ t
- " Y

Note, no video (motion) information is used

facebook
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“Objects that Sound”, Arandjelovi¢ and Zisserman, ICCV 2017 & ECCV 2018



Visual + Audio

[Ambient Sound Provides Supervision for Visual Learning,
[Owens et al. (20106)]
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Unit visualizations

Top responses (unit #90
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Cross-Modality

* Ego-motion
e “\We move in order to see and we see in order to move” - J.J
Gibson

* Ego-motion data is easy to collect

* Siamese CNN to predict camera translation & Rotation along 3-
aXISES. (Vlsual Base-CNN Stream-1

’“*L“-L»»'“ _
- |F. || F,
*

[A Survey to Self-Supervised Learning, Naiyan Wang]

uoljewJojsuel |

L,l-»l_z L Ll\-!)

: | S )

Base-CNN Stream-2 : Top-CNN

Agrawal, P., Carreira, J., & Malik, J. Learning to see by moving. In ICCV 2015



Cross-Modality

* Ego-motion

* Learning features that are equivariant to ego-motion

yaw change
o

forward distance

Jayaraman, D., & Grauman, K. Learning image representations tied to ego-motion.
In ICCV 2015

[A Survey to Self-Supervised Learning, Naiyan Wang]|



Cross-Modality

* Ego-motion
* Siamese networks with contrastive loss
* M gis the transformation matrix specified by the external sensors

(0", M™) = arg min Z d, (M,zg(x;),2e(;), pij)
OM g

dy(a,b,c) =1(c =g)d(a,b)+1(c # g) max(d — d(a,b),0),

Jayaraman, D., & Grauman, K. Learning image representations tied to ego-motion.
In ICCV 2015

[A Survey to Self-Supervised Learning, Naiyan Wang]



Cross-Modality

e Acoustics -> RGB

e Similar events should have similar sound.
e Naturallv clugter the wdeog

’ i Audio cluster
o — prediction
3 v

Freq.chamnd —

Owens, A., Wu, J., McDermott, J. H., Freeman, W. T., & Torralba, A. Ambient sound
provides supervision for visual learning. In ECCV 2016

[A Survey to Self-Supervised Learning, Naiyan Wang]|



Cross-Modality

* Features for grasping
* Verify whether we could grasp the center of a patch at a given

Approach Execute random  Verify grasp
random object grasp SUCCess

a b

Pinto, L., & Gupta, A. Supersizing self-supervision: Learning to grasp from 50k tries and
700 robot hours. In ICRA 2016

[A Survey to Self-Supervised Learning, Naiyan Wang]



Fvaluation

* Evaluate on general high-level vision tasks (classification, detection)
* Be caution of different settings!

Full train set 150 image set
Method All >cl >c2 >c3 >c4 >cS All >cl >c2 >c3 >c4 >cS #wins
Supervised
Imagenet 56.5 570 57.1 57.1 55.6 525 17.7 19.1 19.7 20.3 209 19.6 NA
Sup. Masks (Ours) 51.7 51.8 527 522 520 475 13.6 13.8 15.5 17.6 18.1 15.1 NA
Unsupervised
Jigsawi [20] 490 50.0 489 477 458 37.1 5.9 8.7 8.8 10.1 9.9 7.9 NA
Kmeans [ 7] 428 422 403 37.1 324  26.0 4.1 4.9 5.0 4.5 4.2 4.0 0
Egomotion [ ] 374 369 344 289 241 17.1 - - - - - - 0
Inpainting [55] 39.1 364 34.1 204 248 13.4 — - - - - — 0
Tracking-gray [0] 435 446 446 442 415 357 3.7 5.7 7.4 9.0 04 9.0 0
Sounds [ 7] 429 423 40.6 37.1 320 26.5 54 5.1 5.0 4.8 4.0 3.5 0
BiGAN [10] 449 446 447 424 384 294 4.9 6.1 7.3 7.6 7.1 4.6 0
Colorization [5 ] 445 449 447 444 426 38.0 6.1 7.9 8.6 10.6 10.7 9.9 0
Split-Brain Auto [57] 43.8 456 456 46.1 44.1 37.6 3.5 7.9 9.6 10.2 11.0 10.0 0
Context [*] 499 488 444 443 421 33.2 6.7 10.2 9.2 9.5 04 8.7 3
Context-videos' [#] 478 479 466 472 443 334 6.6 9.2 10.7 12.2 11.2 9.0 |
Motion Masks (Ours) 486 482 483 470 458 403 10.2 10.2 11.7 12.5 13.3 11.0 9

Pathak, D., Girshick, R., Dollar, P., Darrell, T., & Hariharan, B. Learning Features by
Watching Objects Move. In CVPR 2017.

[A Survey to Self-Supervised Learning, Naiyan Wang]



Main issue with all these methods

* All these models rely on expert knowledge
* Need to define y(x) for each new domain

* Not clear how to select a y(x) that is a good target to learn all-purpose
features



Unsupervised Learning by Predicting Noise

Piotr Bojanowski, Armand Joulin

ICML 2017



Unsupervised Learning by Predicting Noise
[Bojanowski & Joulin, ICML 2017]

Target space * Inspired by Dosovitskiy et al.
Cj
Q * Learn mapping from images
| | $ to a sphere
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000 ]
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~ J * Fix targe
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f(X) P

Features Assignment

* Simultaneously:

* Learn the mapping

* Optimize the assighment
between images and targets



Deep Discriminative Clustering

* We are given a set of n images

{x1,...,2,}

* We want to learn a visual features f without using labels

1l
mem - ; Hiﬂ f(f@(i’?i)a yz)

A |
minmin — || fo(X) — Y||7
0 Y 2n
e We use the L2 loss

[Bojanowski & Joulin, ICML 2017]



Label Collapse Problem

* Optimization over Y would lead to a collapse
* Repulsive costs are tricky to use

* Can impose constraints on Y but hard to optimize

[Bojanowski & Joulin, ICML 2017]



Fixing the Target Representation

* Instead, we fix the target representation
* Allow a reassignment between targets and images

Y = PC P={Pc{0,1})"** | P1=1,P'1 =1}

* Targets C are uniformly sampled on the sphere
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[Bojanowski & Joulin, ICML 2017]



Optimization

e We minimize our cost function in an on-line fashion
* We use the following algorithm:

Require: T batches of images, A\g > 0
fort={1,...,T} do
Obtain batch b and representations r
Compute fy(Xp)
Compute P* by minimizing w.r.t. P
Compute VyL(0) using P*
Update 6 < 0 — A\; Vo L(6)

end for

[Bojanowski & Joulin, ICML 2017]



Optimizing the Permutation Matrix

* At theta fixed, the permutation is obtained by solving

max Tr (PCfo(X) ") .

* Which is a linear program on the set of permutation matrices

* We can use the Hungarian algorithm

O(nb?)

[Bojanowski & Joulin, ICML 2017]



Experimental Setup

’ ' \’ 128 /20_48 ms eeeee
13 \
‘ 13 der se; densé
pooling 2048 2048

e AlexNet architecture

* Learn unsupervised features on ImageNet training
set

* Retrain a classifier on top for a target transfer task,

i.e. PASCAL VOC Classification / Detection
[Bojanowski & Joulin, ICML 2017]



Baselines

* Self supervised models
* Wang & Gupta — Temporal coherence in videos
* Doersch et al. — Predict context patches
 Zhang et al. — Predict color

* Norouzi & Favaro — Solve jigsaw puzzles

* Unsupervised model
* GAN

e Auto-encoder
* BI-GAN (Donahue et al.)

[Bojanowski & Joulin, ICML 2017]



Pascal VOC - results

Classification Detection

Trained layers fc6-8 all all
ImageNet labels 78.9  79.9 56.8
Agrawal et al. 31.0  54.2 43.9
Pathak et al. 34.6 56.5 44.5
Wang & Gupta  55.6  63.1 47.4
Doersch et al. 55.1 65.3 51.1
Zhang et al. 61.5 65.6 46.9
Autoencoder 16.0 53.8 41.9
GAN 40.5 56.4 -

BiGAN 52.3  60.1 46.9
NAT 56.7  65.3 49.4

e compare favorably to SOTA

* Poor performance of AE /

GAN

[Bojanowski & Joulin, ICML 2017]



Nearest Neighbor Queries

[Bojanowski & Joulin, ICML 2017]



Bojanowski & Joulin Summary

* Simple unsupervised approach
* No domain expert knowledge
* Scales to very large datasets

* Close to supervised pipeline

* SOTA performance (at the time) amongst
unsupervised methods



Contrastive Predictive Coding

Aaron van den Oord, Yazhe Li, Oriol Vinyals
Google DeepMind

https://arxiv.org/pdf/1807.03748.pdf



Model Overview

Ct Predictions
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CPC Principle

* Encode the target x (future) and context c (present) into a compact
distributed vector representations (via non-linear learned mappings) in
a way that maximally preserves the mutual information of the original
signals x and c defined as

I(x;c) = ;p(m,C) log p}gilj)
* By maximizing the mutual information between the encoded
representations (which is bounded by the M| between the input
signals), we extract the underlying latent variables the inputs have in
common.



CPC Mode|

* Do NOT predict future observations x,,, directly with a generative
model py(X,. | ¢,

* Instead we model a density ratio which preserves the mutual
information between x,,, and ¢, (prev eqn):

P(Ti4k|ct)
P(Ti4k)

fk ($t+l~m Ct) X

T
Where: fk ($t+ka Ct) — EXP (Zt+kaCt)7



Nolise Contrastive Estimation LOSS

* Givenaset X=1{x,,...Xy}0of Nrandom samples containing one

positive sample from p(x,,, |c, ) and N - 1 negative samples from the
proposal’ distribution p(x,,, ), we optimize

LN = — K lOg
X ijeX fk(xjvct)

Optimizing this loss will result in f(x.,, , ¢, ) estimating the density
ratio in prev slide.

* Not always clear in expts where the N random samples come from
* E.g. same/different sequence? Narrow window?




C.F. Vision SSL approaches

Unsupervised Visual Representation

Learning by Context Prediction

‘Doersch et al. ICCV 2015]

[Wang & Gupta 2015]
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CPC applied to Audio

Method ACC
Phone classification

Random initialization 27.6
MEFECC features 39.77
CPC 64.6
Supervised 74.6
Speaker classification
Random initialization 1.87
MEFCC features 17.6
CPC 97.4
Supervised 98.5

Table 1: LibriSpeech phone and speaker
classification results. For phone classifi-
cation there are 41 possible classes and
for speaker classification 251. All mod-
els used the same architecture and the
same audio input sizes.

Method ACC
#steps predicted

2 steps 28.5
4 steps 57.6
8 steps 63.6
12 steps 64.6
16 steps 63.8
Negative samples from

Mixed speaker 64.6
Same speaker 65.5
Mixed speaker (excl.) 57.3
Same speaker (excl.) 64.6
Current sequence only 65.2

Table 2: LibriSpeech phone classifica-
tion ablation experiments. More details
can be found in Section 3.1.

Figure 2: t-SNE visualization of audio (speech)
representations for a subset of 10 speakers (out
of 251). Every color represents a different
speaker.

Figure 3: Average accuracy of predicting the
positive sample in the contrastive loss for 1 to 20
latent steps in the future of a speech waveform.
The model predicts up to 200ms in the future as
every step consists of 10ms of audio.



CPC applied to images

Method Top-1 ACC
Gar - output Using AlexNet convS
dn - output Video [27] 29.8
— Cr Relative Position [11] 30.4
1] BiGan [34] 34.8
/)’.;’,' Colorization [10] 35.2
64 px i _/_/—{'/'/' Jigsaw [28] * 38.1
“t4-2 “”':;_//'// Predict: Using ResNet-V2
?T% ] R Motion Segmentation [35] 27.6
s D e Exemplar [35] 31.5
| 50% overlap | Relative Position [35] 36.2
256 px, | Colorization [35] 39.6
4 input image | CPC 48.7

Table 3: ImageNet top-1 unsupervised classifi-
cation results. *Jigsaw 1s not directly compa-
rable to the other AlexNet results because of
architectural differences.



Google Research

SimCLR: A Simple Framework for Contrastive
Learning of Visual Representations

.....

Ting Chen

Simon

Kornblith

Mohammad Norouzi ®

Geoffrey Hinton

Gooqgle Research, Brain Team
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The proposed SIMCLR framework

A simple idea: maximizing the agreement of representations
under data transformation, using a contrastive loss in the

latent/feature space. Matintize Agreement

o b
h; +Representation— h;
¢ A

Figure 2. A framework for contrastive representation learning.
Two separate stochastic data augmentations ¢, ~ T are applied
to each example to obtain two correlated views. A base encoder
network f(-) with a projection head g(-) is trained to maximize
agreement in latent representations via a contrastive loss.
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The proposed SIMCLR framework

We use random crop and color distortion for augmentation.

Examples of augmentation applied to the left most images:

Maximize Agreement

<y - > z’
9(°) T T 9(-)
h; +Representation— h;
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The proposed SIMCLR framework

g(h) is a projection network that project
representation to a latent space.

(’(')T T(’(') We use a 2-layer non-linear MLP (fully
N T connected net).

h; <Representation— h,

4 .

' > hidden laver
f() £ | i
e ldi(-i::f’——/ - output layver
——
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The proposed SIMCLR framework

Maximize agreement using a contrastive task:

Given {x_k} where two different examples x_|i
and x_j are a positive pair, identify x_J in
{x Kk} {kl=i} for x_i.

Maximize Agreement
2y - z,

h; +—Representation— h;
t A

Original image crop 1 crop 2 contrastive image

Let sim(u,v) = uv'v/|ul|||v|

Loss function: i
exp(sim(z;, 2;)/7)
bij = —log —x

k1 Lk €XP(sim(z;, 2¢)/7)
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Data Augmentation for Contrastive
Representation Learning
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We study a set of transformations...

Systematically study a set of augmentation

(a) Original (b) Crop and resize

(f) Rotate {90°, 180°, 270°} (g) Cutout (h) Gaussian noise (1) Gaussian blur (J) Sobel filtering

* Note that we only test these for ablation, the augmentation policy used to train our models only involves random crop (with flip and resize) + color distortion + Gaussian blur.
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Composition of augmentations are crucial

Composition of crop and color stands out!

Crop

-50

Cutout

Color

Sobel

Noise

1st transformation

Blur

Rotate

A\ !
c)ove \go\(’e %\\)(

\%

o
2nd transformation (a) Without color distortion. (b) With color distortion.

Figure 5. Linear evaluation (ImageNet top-1 accuracy) under in-
dividual or composition of data augmentations, applied only to
one branch. For all columns but the last, diagonal entries corre-
spond to single transformation, and off-diagonals correspond to
composition of two transformations (applied sequentially). The
last column reflects the average over the row.

Figure 6. Histograms of pixel intensities (over all channels) for
different crops of two different images (1.e. two rows). The image
for the first row 1s from Figure 4. All axes have the same range.
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Encoder and Projection Head
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A nonlinear projection head improves the representation quality of
the layer before it

We compaﬁ.esot le,@,!!mg!ﬁl after average pooling of ResNet):
BN Linear
O Identity ma:o:g;émear

® Linear projﬁch@n \;gb 2 @b
e Nonlinear projeCHBHhaRttH°EHIe additional hidden layer (and RelLU activatic

Figure 8. Linear evaluation of pretraining with different projection
heads. The dimension of h (before projection) is 2048.
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A nonlinear projection head improves the representation quality of
the layer before it

To understand why this happens, we measure information in h and z=g(h)

: Representation
What to predict? Random guess
g : h  g(h)
Color vs grayscale 80 99.5 97.4
~ Rotation 25 67.6 256 |
Orig. vs corrupted 50 993 59.6
Orig. vs Sobel filtered 50 96.6 56.3

Table 3. Accuracy of training additional MLPs on different repre-
sentations to predict the transformation applied. Other than crop
and color augmentation, we additionally and independently add
rotation (one of {0°,90°,180°, 270°}), Gaussian noise, and So-
bel filtering transformation during the pretraining for the last three
rows. Both h and g(h) are of the same dimensionality, i.e. 2048.

Contrastive loss can remove/damping rotation information in the last
layer when the model is asked to identify rotated variant of an image.
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Loss Function and Batch Size
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Normalized cross entropv loss with adiustable temperature worl

Name Negative loss function Gradient w.r.t. u

T, .+ T
NT-Xent uw' vt /T — log R —— exp(u’v/7) | (1 eXp(%(:) [T jrot — 3 _ eXp(}(;’) [T) [y~

Margin  NT-Logi. Margin (sh) NT-Logi.(sh) NT-Xent
50.9 51.6 w)f >/.9 63.9

Table 4. Linear evaluation (top 1) for models trained with different
loss functions. “sh™ means using semi-hard negative mining.
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NT-Xent loss needs N and

Name Negative loss function Gradient w.r.t. w

exp(ul vt /1 exp(ul v /1 —
NT-Xent uTv+/T—logzve{er,v_}exp(uTv/T) (1 p(Z(u) [T)Y [t =) p(Z(u) [7) [
L2 normalization with temperature scaling makes a betterloss.

® Contrastive accuracy is not correlated with linear evaluation when 12
norm and/or temperature are changed.

f2 norm? T Entropy Contrast. task acc. | Top 1
0.05 1.0 90.5 59.7

Yes 0.1 4.5 87.8 64 .4
0.5 8.2 68.2 60.7

1 8.3 59.1 58.0

N 10 0.5 91.7 372

g 100 | 0.5 92.1 57.0

Table 5. Linear evaluation for models trained with different choices
of /5 norm and temperature 7 for NT-Xent loss. The contrastive
distribution 1s over 4096 examples.
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Contrastive learning benefits from larger batch sizes and

70.0

Batch size

67.5
N 256
512
1024
2048
4096
8192

62.5
—
8-60.0
|..-
57.5
55.0
52.5
50.0 EEmEEs EEmEed

100 200 300 400 500 600 700 800 900 1000
Training epochs

Figure 9. Linear evaluation models (ResNet-50) trained with dif-
ferent batch size and epochs. Each bar 1s a single run from scratch.
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Linear evaluation

7% relative improvement over previous SOTA (cpc v2), matching
fully-supervised ResNet-50.

Method Architecture Param. Topl Top5 % Supervised g FHSimCLR (4x)
Methods using ResNet-50: L £ . *SimCLR (2x)
Local Age. ResNet-50 24 60.2 - o oCPCV2-L
MoCo ResNet-50 24 606 - 8 ol - -
PIRL ResNet-50 24 636 - = *SimCLR ocMC 40
CPC v2 ResNet-50 24 638 853 2 *PIRL-c2x AMDIM
Ours ResNet-50 24 69.3  89.0 — 65 iR _entMoCo (2X)
Mathods iing, other &roh s | SR

elthods using other archirectures: - ) :
Rotation RevNet-50 (4 x) 86 554 - ? 60 QMOCO °BigBIGAN
BigBiGAN  RevNet-50 (4x) 86 613  81.9 < LA
AMDIM Custom-ResNet 626 68.1 . &
CMC ResNet-50 (2x) 188 68.4  88.2 E 55 , eRotation
MoCo ResNet-50 (4x) 375 686 - einstDisc
CPC v2 ResNet-161 (*) 305 71.5 90.1 25 50 100 200 400 626
Ours ResNet-50 (2x) 94 742 920 Number of Parameters (Millions)
Ours ResNet-50 (4 x) 375 76.5 93.2

Figure 1. ImageNet top-1 accuracy of linear classifiers trained
Table 6. lll'lﬂgCNCt accuracies of linear classifiers trained on repre- on representations learned with different Self.supervised methods
sentations learned with different self-supervised methods. (pretrained on ImageNet). Our method, SimCLR, is shown in bold.
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Semi-supervised learning

10% relative improvement over previous SOTA (cpc v2), outperforms
AlexNet with 100X fewer labels.

Label fraction
Method Architecture 1 % 10%
Top 5

Methods using other label-propagation:

Pseudo-label ResNet50 51.6 82.4
VAT+Entropy Min. ResNet50 470 834
UDA (w. RandAug) ResNet50) - 88.5
FixMatch (w. RandAug) ResNet50 - 89.1
S4L (Rot+VAT+En. M.) ResNet50 (4 x) - 01.2
Methods using representation learning only:

InstDisc ResNet50 39.2 17.4
BigBiGAN RevNet-50 (4x) 55.2 78.8
PIRL ResNet-50 57.2 83.8
CPC v2 ResNet-161(x*) 77.9 91.2
Ours ResNet-50 L) 87.8
Ours ResNet-50(2x) 83.0 91.2
Qurs ResNet-50 (4x) 85.8 92.6

Table 7. ImageNet accuracy of models trained with few labels.
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Transfer learning

When fine-tuned, SImCLR significantly outperforms the supervised baseline

on 9 datasets, whereas the supervised baseline is superior on only 2*.On
the remaining 9 datasets, the models are statistically tied.

Food CIFARIO CIFARIOO Birdsnap SUN397 Cars Aircraft VOC2007 DTD Pets Caltech-101 Flowers

Linear evaluation:

Self-supervised 76.9 95.3 80.2 48.4 659 600 61.2 84.2 78.9 89.2 93.9 95.0
Supervised 192 95.7 81.2 56.4 649 688 638 83.8 78.7 92.3 94.1 94.2
Fine-tuned:

Self-supervised 89.4 98.6 89.0 78.2 68.1 92,1 87.0 86.6 77.8 92.1 94.1 97.6
Supervised 88.7 98.3 88.7 77.8 670 914 88.0 86.5 78.8 93.2 94.2 98.0
Random init 88.3 96.0 81.9 77.0 537 91.3 848 69.4 64.1 82.7 125 92.5

Table 8. Comparison of transfer learning performance of our self-supervised approach with supervised baselines across 12 natural image
classification datasets, for ResNet-50 (4 x ) models pretrained on ImageNet. Results not significantly worse than the best (p > .05,
permutation test) are shown in bold. See Appendix B.6 for experimental details and results with standard ResNet-50.

* The two datasets, where the supervised ImageNet pretrained model is better, are Pets and Flowers, which share a portion of labels with ImageNet.
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Conclusio

I§ SimCLR is a simple yet effective self-supervised learning
framework, advancing state-of-the-art by a large margin.

@ The superior performance of SimCLR is not due to any single design
choice, but a combination of design choices.

® OQOur studies reveal several important factors that enable

effective representation learning, which could help future
research.

Code & checkpoints available in github.com/qoogle-research/simclir.


https://github.com/google-research/simclr
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Bonus
What happens when we "super-size” self-supervised
learning?

Scaling and benchmarking self-supervised visual representation learning -

facebook Goyal, Mahajan, Gupta*, Misra* - 2019 https://arxiv.org/abs/1905.01235
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https://arxiv.org/abs/1905.01235

Bits of information

* For ImageNet we have 1M images and 1000 classes

* Each image has log,(1000) bits of information
* Total = 1M x log,(1000)

* For self-supervised methods we have 1M images

* Each image has lesser bits of information - log,(B)
* Total = 1M x log,(B)

* Increase 1M to 100M?

* Increase B to 10B?

facebook
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How large scale?

* Focus on existing popular image-based self-supervised methods
e Scale along three axes

Problem |
Complexity

/ Models

Data Size

facebook
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Specific self-supervision problems

- .
o, - | ' 4
'yl - $
/| ' i \
. v )
LW vy
. . .
\\
.

Jigsaw puzzles Colorization
(Noorozi & Favaro, 2016) (Zhang & Efros, 2016)

facebook
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Images from the ImageNet dataset



Jigsaw Puzzles

concat

T  Use N=9 patches

* |n practice, use a subset of
permutations

* E.g.100 from 9!

 Each patch is processed
— > Classify which permutation independently

 N-way ConvNet (shared params)

* Problem Complexity
* Size of subset

Permuted
Image
patches

facebook
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Colorization

* Predict N=313 colors
* Binning LAB space
e Multi-modal loss

_ At each pixel, classity which .
color bins

Problem Complexity
* Number of colors
* Number of neighbors in
multi-modal loss

facebook
Artificial Intelligence Research 136



How large scale?

* Scale two techniques - Jigsaw and Colorization
* Scale along three axes

Problem |
Complexity §

"Difficulty” Al
i odeils

AlexNet, ResNet-50

Data Size
YFCC - 100M

facebook
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Evaluating the representation

Extract "fixed" features

ConvNet

facebook
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"Investigation” task

* Train a Linear SVM on fixed feature representations

facebook
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"Investigation” task

* Train a Linear SVM on fixed feature representations
* Use the VOCO7 image classification task

dmnmgtable dog horse mbike person

4 bl Y o

plant sheep sofa train

facebook
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Scaling on Data Axis

"Models
AlexNet, ResNet-50

Data Size
YFCC - 100M

facebook
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Scaling on Data Axis

Jigsaw — VOCO7 Linear SVM
74

Gain for ResNet50: 10 points

58|

546/‘/N Gain for AlexNet: 2 points

-—@-—= ResNet50

50
=@ AlexNet
46 ! ! P T T T A : N I T T R
1.0 10.0 50.0100.0

Number of images |I| (10°)
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Scaling on Data Axis
Colorization — VOCO7 Linear SVM

14
70
a . _ .
66 L o« - Gain for ResNet50: 12 points
-~
-~
O 62 x’
& 7
58+ >
”
/, =l =0
— I
>4 k=" - Gain for AlexNet: 8 points
- =A== ResNet50
50 ”
- == AlexNet
46 ! P T R S T S B P B TR R
1.0 10.0 50.0 100.0

Number of images |I| (10°)
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Scaling on Problem Complexity

Problem
Complexity §
"Difficulty”

Models
AlexNet, ResNet-50

facebook
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Scaling on Problem Complexity Axis
Jigsaw — VOCO7 Linear SVM

66 |

62T Gain for ResNet50: 6 points
% 28 —=@-= ResNet50
& —@— AlexNet

54

././.\'/ Gain for AlexNet: 2 points
50+
46

100 701 2000 5000 10000
Number of permutations |P|
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Scaling on Problem Complexity Axis
Colorization — VOCO7 Linear SVM

006 |
02
- o8 = ResNet50
- =h==  AlexNet
54 Y
‘“~r"'\*~ _ATTT =
ot
50 |
A "
46 | | | | | | |

facebook 2 5 10 20 40 80 160 313
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Scaling on Data and Problem

Problem |
Complexity |

"Difficulty" - del
# Models

AlexNet, ResNet-50

Data Size
YFCC - 100M

facebook
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YFCC
Jigsaw — VOCO7 Linear SVM

141
70 > e
=@= ResNet50 YFCC-100M

66 I ResNet50 YFCC-1M
% Gains along both data and
c 621 problem

=@= AlexNet YFCC-100M axes are complementary
58 | AlexNet YFCC-1M
54%

50 ] | | |
100 701 2000 5000 10000

Number of permutations |P|
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Our Evaluation — many tasks

LR

person : 0 991

horse lm

: person s 0 977
‘éb*n ~
A ¢ ;

ek VIR
T~
.

Image classnﬁcahon Object detection 3D Understanding Navigation
FEW-ShOt |ea rning VOC'07 Surface Normals — NYUv?2 Gibson environment

ImageNet, Places-205, VOC’07, COCO

facebook
Artificial Intelligence Research 149

Images from the Places, VOCO07,
NYUv2 and Gibson datasets



Our Evaluation — fine-tuning vs. linear classifier

11

Fine-tune all layers Linear classifier

A good representation transfers with little training

facebook
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Object Detection

Image classification Object detection 3D Understanding Navigation
FEW-ShOt |ea rning VOC'07 Surface Normals — NYUv2 Gibson environment

ImageNet, Places-205, VOC’07, COCO

facebook
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Object Detection

e Fast R-CNN (Girshick et al., 2015)

 Same optimization parameters for all methods (including supervised)
* No “bells and whistles”

e UseVOC'07

“

{person : 0,991

horse | 0,992 | | e
. . , ' N

Sk VIR

: >
- g - - o -
~ . s - o -4 ol
D - N
- B - . - o -
g v RS o ~ 8 -
. . - o ” o »
o . ; - \ S - Ww-,
e ’ . - ~ . -
b “", g : N e A B .

facebook Object detection
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Image from the VOCO7 dataset



wﬁ_‘hm

‘____

VOCQO/ test set. Fine-tune all
Fast R-CNN ResNet50

Object Detection

Initialization Train Set

VOCO07+12

ImageNet Supervised /0.2

Places Supervised 6/.2 /4.5

within error

Jigsaw ImageNet-1k c1.4 08.3

70.4

Jigsaw ImageNet-22k 09.2

Jigsaw YFCC100M 00.6 /3.3
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wﬁ_‘hm

Object Detection - Training Rol heads only Uil

VOCOQO7 test set. Last layer
Fast R-CNN ResNet50

Initialization Train Set

VOCO07+12

ImageNet Supervised /5.8
Places Supervised 05.3 /3.1
, within error
Jigsaw ImageNet-1k 50.0 o4.7
Jigsaw ImageNet-22k o/.1 /3.0

Jigsaw YFCC100M 02.3 9.7

facebook
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Surface Normal Estimation

!

person : 0,391

RN

.

; 3 . ' 5 .\" g b
0.352 pygus
. o s | /2

NS4 ™A |
icar ¢ 0,993 c \(l

(R

Image classification Object detection 3D Understanding Navigation
FEW-ShOt |ea rning VOC’'07 Surface Normals — NYUv2 Gibson environment

ImageNet, Places-205, VOC'07, COCO
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Surface Normal Estimation

 Predict surface normals on NYU-v2

 Same optimization parameters for all methods (including supervised)
* PSPNet Architecture

 Train last few layers only (res5 onwards)

facebook I n p u t
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Image from the NYU dataset



Surface Normal Estimation

% correct within
11.25°

Initialization Median Error

ImageNet Supervised 17.1 30.1

Places Supervised 14 .2 41.8

Jigsaw ImageNet-1k 14.5 41.2

Jigsaw ImageNet-22k 13.4 43.7

Jigsaw YFCC100M 13.1 44.6

facebook
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Surface Normal Estimation

o
Yy
: »
o

".\

car : 0,993

Image classification Object detection 3D Understanding Navigation
FeW-ShOt |ea rni ng VOC'07 Surface Normals — NYUv2 Gibson environment

ImageNet, Places-205, VOC'07, COCO
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Visual Navigation

* Visual navigation in the Gibson environment

e Method from Sax et al., 2018
* Fixed ConvNet features

2“5 Target Loc ‘tiqnjh "

e/~ s

\ ‘o & <
. ; 70 -‘7 k) :l |
L

; B.\.a "

% »

4 ” ;
Initial Location =
: 3
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Gibson Environment



Average Train Reward

Visual Navigation

— Jigsaw ImageNet-22k
res3

, ! ! !
0 1024 2048 3072 4096

Number of steps (102)

— Jigsaw YFCC-100M — |mageNet-1k Supervised — Random
res4

L l | 1
0 1024 2048 3072

Number of steps (102)

|
4096

resb

0 1024 2048 3072 4096
Number of steps (102)



Few shot learning

a3 7

Few-shot learning Object detection 3D Understanding ; Navigation

Places-205, VOC'07 VOC'07 Surface Normals — NYUv2 Gibson environment
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Few shot learning

* k-shot learning

e Use VOC’07/Places205 classification
 Klabeled examples per class
e Train linear SVMs

facg!)QOk | FEW-ShOt Iea rnlng
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Image from the Places dataset



Few shot learning

VOCO07 Places-205
60 |

80 I

ImageNet-1k Supervised Places205 Supervised

60
40

MAP

40

top-1 acc

Jigsaw YFCC-100M

20 |
Random
— 1T T 1 ] Random
01 2 4 8 16 32 64 96 00— 2 4 8 16 32 64 128
Num. Labeled samples Num. Labeled samples

facebook

Artiicial Intelligence Research Self-supervised representations are not as sample efficient



Few shot learning - VOCO7

VOCO7 low-shot convl

22.
16.5
11.
5.5
0.
k=1 k=2 k=4 k=8 k=16k=32k=64k=96
=—supervised convl==yfcc convl
VOCO7 low-shot conv4

80.

60.

40.

20.

0.

k=1 k=2 k=4 k=8

e=supervised conv4 ==yfcc conv4

k=16 k=32 k=64 k

VOCO7 low-shot conv2
50.

37.5
25.

12.5

k=1 k=2 k=4 k=8 k=16k=32k =64k =96

=—supervised conv2 =yfcc conv2

VOCO7 low-shot conv3
60.

45.
30.

15.

k=1 k=2 k=4 k=8 k=16 k=32 k=64 k=96

—supervised conv3=yfcc conv3

VOCO7 low-shot conv5

112.5

90.

67.5

45.

22.5

k=2 k=4 k=8

I
[ERY

96 k

k=16 k=32 k=64 k=96

e=supervised conv5==yfcc conv5
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Few shot learning - Places205

6.25

3.75
2.5
1.25

k=1 k=2 k=4 k=8 k=16k=32k=64 k=96

places205 low-shot svm convl

=—supervised convl==yfcc convl

40.

30.

20.

10.

18.
13.5

places205 low-shot svm conv4

k=2 k=4 k=8 k=16 k=32 k=64 k=96

e=supervised conv4 ==yfcc conv4d

places205 low-shot svm conv?2

places205 low-shot svm conv3
30.
22.5
15.
7.5

k=1 k=2 k=4 k=8 k=16 k=32 k=64 k=96 O
k=1 k=2 k=4 k=8 k=16 k=32 k=64 k=96
=—supervised conv2 ==yfcc conv2

—supervised conv3 =yfcc conv3

places205 low-shot svm conv5

50.
37.5
25.

12.5

k=1 k=2 k=4 k=8 k=16 k=32 k=64 k=96

e=supervised conv5==yfcc conv5 165



Image Classification

Image classification Object detection 3D Understanding Navigation
Places-205, VOC'07 VOC'07 Surface Normals — NYUv2 Gibson environment

facebook
Artificial Intelligence Research 166



Linear SVMs on VOCO7/

VOC2007 SVM classification. ResNet50

"

Init convl stagel stage2 stage3 staged
ImageNet supervised 24.49 47.75 60.54 80.36 87.95
ImageNet jigsaw 27.09 45.73 56.61 64.51 57.17
Imagenet14M jigsaw 23.46 46.72 58.52 71.76 64.92
YFCC100M jigsaw 18.98 46.71 57.77 71.21 64.34

Deeper self supervised layers are less transferable
Hypothesis — Problem is not “complex” enough.
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SGD-based Linear Classifiers on Places205

Places205 linear classification. ResNet50

Init convl stagel stage2 stage3 staged
ImageNet supervised 14.84 32.59 42.06 50.83 52.49
ImageNet jigsaw 15.079 28.753 36.825 41.232 34.364
Imagenet14M jigsaw 13.973 29.462 36.656 41.721 36.254
YFCC100M jigsaw 10.252 29.672 39.565 44.866 38.219

 Gap between ImageNet and self-supervised methods is smaller.

* Places has scenes while ImageNet is object centric

facebook e Y
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~CC is a good mixture of both.



Evaluation: Main Lessons

* Evaluation on multiple tasks is essential
* Evaluation with fixed features or at least same hyper-parameters
* Evaluate sample efficiency of representations
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What's missing from self-supervised methods?

* Complex problems, big data and deeper models

* Current self-supervised methods do not seem to learn high level
representations

 Sample efficiency
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Thanks!
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Image classification

Object detection 3D Understanding
Few-shot learning VOC'07

Navigation
Surface Normals — NYUv2
ImageNet, Places-205, VOC'07, COCO

Gibson environment
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