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Recurrent Neural Nets

(C) Dhruv Batra 2Image Credit: Andrej Karpathy



(C) Dhruv Batra 3

Input: No 

sequence

Output: No 

sequence

Example: 

“standard” 

classification / 

regression 

problems

Input: No sequence

Output: Sequence

Example: 

Im2Caption

Input: Sequence

Output: No 

sequence

Example: sentence 

classification, 
multiple-choice 

question answering

Input: Sequence

Output: Sequence

Example: machine translation, video captioning, open-

ended question answering, video question answering

Image Credit: Andrej Karpathy

Recurrent Neural Nets



Synonyms
• Recurrent Neural Networks (RNNs)

• Types:
– “Vanilla” RNNs
– Long Short Term Memory (LSTMs)
– Gated Recurrent Units (GRUs)
– …

• Algorithms
– BackProp Through Time (BPTT)

(C) Dhruv Batra 4



What’s wrong with MLPs/ConvNets?

• Problem 1: Can’t model sequences

– Fixed-sized Inputs & Outputs

– No temporal structure

• Problem 2: Pure feed-forward processing

– No “memory”, no feedback

(C) Dhruv Batra 5Image Credit: Alex Graves, book



Sequences are everywhere…

(C) Dhruv Batra 6Image Credit: Alex Graves and Kevin Gimpel
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Even where you might not expect a sequence… 

Image Credit: Vinyals et al.



Recurrent Neural Network

x

RNN

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Recurrent Neural Network

x

RNN

y
usually want to 
predict a vector at 
some time steps

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Recurrent Neural Network

x

RNN

y
We can process a sequence of vectors x by 
applying a recurrence formula at every time step:

new state old state input vector at 
some time step

some function
with parameters W

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Recurrent Neural Network

x

RNN

y
We can process a sequence of vectors x by 
applying a recurrence formula at every time step:

Notice: the same function and the same set 
of parameters are used at every time step.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



(Vanilla) Recurrent Neural Network

x

RNN

y

The state consists of a single “hidden” vector h:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

ht = tanh(Whhht�1 +Wxhxt + bh)

yt = Whyht + by



h0 fW h1

x1

RNN: Computational Graph

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



h0 fW h1 fW h2

x2x1

RNN: Computational Graph

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



h0 fW h1 fW h2 fW h3

x3

…
x2x1

RNN: Computational Graph

hT

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



h0 fW h1 fW h2 fW h3

x3

…
x2x1W

RNN: Computational Graph

Re-use the same weight matrix at every time-step

hT

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



h0 fW h1 fW h2 fW h3

x3

yT

…
x2x1W

RNN: Computational Graph: Many to Many

hT

y3y2y1

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



h0 fW h1 fW h2 fW h3

x3

yT

…
x2x1W

RNN: Computational Graph: Many to Many

hT

y3y2y1 L1 L2 L3 LT

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



h0 fW h1 fW h2 fW h3

x3

yT

…
x2x1W

RNN: Computational Graph: Many to Many

hT

y3y2y1 L1 L2 L3 LT

L

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



h0 fW h1 fW h2 fW h3

x3

y

…

x2x1
W

RNN: Computational Graph: Many to One

hT

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



h0 fW h1 fW h2 fW h3

yT

…

x
W

RNN: Computational Graph: One to Many

hT

y3y2y1

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Sequence to Sequence: Many-to-one + one-to-
many

h0 fW h1 fW h2 fW h3

x3

… 

x2x1W1

hT

Many to one: Encode input 
sequence in a single vector

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Sequence to Sequence: Many-to-one + one-to-
many

y1 y2

… 

Many to one: Encode input 
sequence in a single vector

One to many: Produce output 
sequence from single input vector

fW h1 fW h2 fW

W2

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

h0 fW h1 fW h2 fW h3

x3

… 

x2x1W1

hT



Backpropagation through time
Loss

Forward through entire sequence to 
compute loss, then backward through 
entire sequence to compute gradient

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Truncated Backpropagation through time
Loss

Run forward and backward 
through chunks of the 
sequence instead of whole 
sequence

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Truncated Backpropagation through time
Loss

Carry hidden states 
forward in time forever, 
but only backpropagate 
for some smaller 
number of steps

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Truncated Backpropagation through time
Loss

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Example: 
Character-level
Language Model

Vocabulary:
[h,e,l,o]

Example training
sequence:
“hello”

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Example: 
Character-level
Language Model

Vocabulary:
[h,e,l,o]

Example training
sequence:
“hello”

ht = tanh(Whhht�1 +Wxhxt + bh)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Example: 
Character-level
Language Model

Vocabulary:
[h,e,l,o]

Example training
sequence:
“hello”

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Example: 
Character-level
Language Model
Sampling

Vocabulary:
[h,e,l,o]

At test-time sample 
characters one at a 
time, feed back to 
model
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Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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min-char-rnn.py gist: 112 lines of Python

(https://gist.github.com/karpathy/d4dee
566867f8291f086)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://gist.github.com/karpathy/d4dee566867f8291f086
https://gist.github.com/karpathy/d4dee566867f8291f086


x

RNN

y

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



train more

train more

train more

at first:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



time

depth

Multilayer RNNs

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



ht-1

xt

W

stack

tanh

ht

Vanilla RNN Gradient Flow Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



ht-1

xt

W

stack

tanh

ht

Vanilla RNN Gradient Flow
Backpropagation from ht
to ht-1 multiplies by W 
(actually Whh

T)

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Vanilla RNN Gradient Flow

h0 h1 h2 h3 h4

x1 x2 x3 x4

Computing gradient 
of h0 involves many 
factors of W
(and repeated tanh)

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Vanilla RNN Gradient Flow

h0 h1 h2 h3 h4

x1 x2 x3 x4

Largest singular value > 1: 
Exploding gradients

Largest singular value < 1:
Vanishing gradients

Computing gradient 
of h0 involves many 
factors of W
(and repeated tanh)

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Vanilla RNN Gradient Flow

h0 h1 h2 h3 h4

x1 x2 x3 x4

Largest singular value > 1: 
Exploding gradients

Largest singular value < 1:
Vanishing gradients

Gradient clipping: Scale 
gradient if its norm is too bigComputing gradient 

of h0 involves many 
factors of W
(and repeated tanh)

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Vanilla RNN Gradient Flow

h0 h1 h2 h3 h4

x1 x2 x3 x4

Computing gradient 
of h0 involves many 
factors of W
(and repeated tanh)

Largest singular value > 1: 
Exploding gradients

Largest singular value < 1:
Vanishing gradients Change RNN architecture

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Long Short Term Memory (LSTM)

Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation 
1997

Vanilla RNN LSTM

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Meet LSTMs

(C) Dhruv Batra 46Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)



LSTMs Intuition: Memory
• Cell State / Memory

(C) Dhruv Batra 47Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)



LSTMs Intuition: Forget Gate
• Should we continue to remember this “bit” of 

information or not?

(C) Dhruv Batra 48Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)



LSTMs Intuition: Input Gate
• Should we update this “bit” of information or not?

– If so, with what?

(C) Dhruv Batra 49Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)



LSTMs Intuition: Memory Update

• Forget that + memorize this

(C) Dhruv Batra 50Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)



LSTMs Intuition: Output Gate
• Should we output this “bit” of information to “deeper” 

layers?

(C) Dhruv Batra 51Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)



LSTMs Intuition: Additive Updates

(C) Dhruv Batra 52Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)

Backpropagation from 

ct to ct-1 only 

elementwise 

multiplication by f, no 

matrix multiply by W



LSTMs Intuition: Additive Updates

(C) Dhruv Batra 53Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)

Uninterrupted gradient flow!



LSTMs Intuition: Additive Updates

(C) Dhruv Batra 54Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)

Uninterrupted gradient flow!
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LSTMs

• A pretty sophisticated cell

(C) Dhruv Batra 55Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)



Neural Image Captioning

(C) Dhruv Batra 56

Convolution Layer
+ Non-Linearity

Pooling Layer Convolution Layer
+ Non-Linearity

Pooling Layer Fully-Connected MLP

Image Embedding (VGGNet)
4096-dim



Neural Image Captioning
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Convolution Layer
+ Non-Linearity

Pooling Layer Convolution Layer
+ Non-Linearity

Pooling Layer Fully-Connected MLP

4096-dim

Image Embedding (VGGNet)



Neural Image Captioning
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Neural Image Captioning
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Sequence Model Factor Graph

(C) Dhruv Batra 60

y1 y2 y3 y4 y5

. . .

P (yt | y1, . . . , yt�1)



Beam Search Demo
• http://dbs.cloudcv.org/captioning&mode=interactive

(C) Dhruv Batra 61

http://dbs.cloudcv.org/captioning&mode=interactive


Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung

Image Captioning

Figure from Karpathy et a, “Deep

Visual-Semantic Alignments for Generating  

Image Descriptions”, CVPR 2015; figure  

copyright IEEE, 2015.

Reproduced for educational purposes.

• Many recent works on this:

• Baidu/UCLA: Explain Images with Multimodal Recurrent Neural Networks

• Toronto: Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models

• Berkeley: Long-term Recurrent Convolutional Networks for Visual Recognition and Description

• Google: Show and Tell: A Neural Image Caption Generator

• Stanford: Deep Visual-Semantic Alignments for Generating Image Description

• UML/UT:  Translating Videos to Natural Language Using Deep Recurrent Neural Networks

• Microsoft/CMU:  Learning a Recurrent Visual Representation for Image Caption Generation

• Microsoft:  From Captions to Visual Concepts and Back



Convolutional Neural Network

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung

Recurrent Neural Network

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



test image

This image is CC0 public domain

https://pixabay.com/en/straw-hat-man-sea-sunlight-sunset-70696/
https://creativecommons.org/publicdomain/zero/1.0/deed.en


test image



test image

X



test image

x0
<STA  
RT>

<START>



h0

x0
<STA  
RT>

y0

<START>

test image

before:
h = tanh(Wxh * x + Whh * h)

now:
h = tanh(Wxh * x + Whh * h + Wih * v)

v

Wih



h0

y0

test image

sample!

x0
<STA  
RT>

straw

<START>



h0

y0

test image

h1

y1

x0
<STA  
RT>

straw

<START>



h0

y0

test image

h1

y1

sample!

x0
<STA  
RT>

straw hat

<START>



h0

y0

test image

h1

y1

h2

y2

x0
<STA  
RT>

straw hat

<START>



h0

y0

test image

h1

y1

h2

y2

sample
<END> token
=> finish.

x0
<STA  
RT>

straw hat

<START>



A cat sitting on a  
suitcase on the floor

A cat is sitting on a tree  
branch

A dog is running in the  
grass with a frisbee

A white teddy bear sitting in  
the grass

Two people walking on  
the beach with surfboards

Two giraffes standing in a  
grassy field

A man riding a dirt bike on  
a dirt track

Image Captioning: Example Results

A tennis player in action  
on the court

Captions generated using neuraltalk2 
All images are CC0 Public domain:

cat suitcase, cat tree, dog, bear,

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung

surfers, tennis, giraffe, motorcycle

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://github.com/karpathy/neuraltalk2
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/luggage-antique-cat-1643010/
https://pixabay.com/en/cat-kitten-tree-green-summer-1647775/
https://pixabay.com/en/adorable-animal-canine-cute-dog-1849992/
https://pixabay.com/en/teddy-plush-bears-cute-teddy-bear-1623436/
https://pixabay.com/en/beach-beach-sports-blur-blurry-1853903/
https://pixabay.com/en/tennis-head-ramos-vinolas-clay-934841/
https://pixabay.com/en/giraffe-animals-wildlife-africa-2064520/
https://pixabay.com/en/moto-cross-motorbike-sports-jump-214928/


Image Captioning: Failure Cases

A woman is holding a  
cat in her hand

A woman standing on a  
beach holding a surfboard

A person holding a  
computer mouse on a desk

A bird is perched on  
a tree branch

A man in a  
baseball uniform  
throwing a ball

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung

Captions generated using neuraltalk2 
All images are CC0 Public domain: fur 
coat, handstand, spider web, baseball

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://github.com/karpathy/neuraltalk2
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/woman-female-model-portrait-adult-983967/
https://pixabay.com/en/woman-female-model-portrait-adult-983967/
https://pixabay.com/en/handstand-lake-meditation-496008/
https://pixabay.com/en/spider-web-tree-branches-pattern-617769/
https://pixabay.com/en/baseball-player-shortstop-infield-1045263/


More Image Captioning Examples

From Captions to Visual Concepts and Back, Hao Fang∗ Saurabh Gupta∗ Forrest Iandola∗ Rupesh K. Srivastava∗, Li Deng Piotr
Dollar, Jianfeng Gao Xiaodong He, Margaret Mitchell John C. Platt, C. Lawrence Zitnick, Geoffrey Zweig, CVPR 2015.



Engaging Image Captioning Via Personality 

Kurt Shuster, Samuel Humeau, Hexiang Hu, 
Antoine Bordes, Jason Weston



Standard (COCO) Image Captioning Models

Man in black shirt is playing guitar.



Standard (COCO) Image Captioning Models

Man in black shirt is playing guitar. A plate with a sandwich and salad on it.

Good for: testing if model understands image content       
Bad for:    engaging human reader



Standard (COCO) Image Captioning Models

Man in black shirt is playing guitar. A plate with a sandwich and salad on it.

Good for: testing if model understands image content       
Bad for:    engaging human reader

Want to be good at both 
of these!!!



What makes an utterance engaging? One answer: personality, emotion   
& style traits

(not always just neutral, factual tone)



Existing Work
Neutral, factual captions: 
• COCO (Chen et al., 2015)  and Flickr30k (Young et al., 2014) 

• Many models developed for them (discussed later).

Funny captions:
• wordplay (puns) (Chandrasekaran et al., 2017) 

• or training on data from humour websites (Yoshida et al., 2018). 

Using user features:
• location and age (Denton et al., 2015) 

• or knowledge of the reader’s active vocabulary (Park et al., 2017). 

Style transfer:
• unsupervised (Mathews et al., 2018). 

• Small datasets, e.g. Senticap (800 examples), (Mathews et al., 2016)

• romantic and humorous only - FlickrStyle10K , 10k examples - Gan et al. (2017) 



MIT Personality List  - 638 Traits



Step 1: build a dataset

Your personality: Sarcastic

Your comment:

Can this island get any
smaller?

• Selected 215 personality traits

• Images from YFFC100M 

• Collect captions via annotators



Examples from the dataset



Examples from the dataset



Step 1: Collect a large supervised dataset



Step 2: Build strong models

We make use of state-of-the-art in vision and language domains to build our models:

Image Encoder: 
• ResNeXt (Xie et al., 2016) trained on 3.5 billion Instagram pictures following Mahajan 

et al. (2018), which we call ResNeXt-IG-3.5B.  
• Shown to work very well on ImageNet classificaEon (but not capEoning).

Text Encoder:  
• Transformer (Vaswani et al., 2017) trained on 1.7 billion Reddit dialogue examples, 

following (Mazare ́ et al., 2018). 
• Shown to work very well for PersonaChat dialogue (but not capEoning).



Models: we consider both generative and retrieval models.
• Generative:  consider three widely used architectures:
• ShowTell (Vinyals et al., 2015)
• ShowAttTell (Xu et al., 2015)
• UpDown (Anderson et al., 2018)

Use ResNeXt-IG-3.5B and add learnt 
personality features to each decoder step



Models: we consider both generative and retrieval models.
• Generative:  consider three recent best architectures:
• ShowTell (Vinyals et al., 2015)
• ShowAttTell (Xu et al., 2015)
• UpDown (Anderson et al., 2018)

• Retrieval:                                    TransResNet

Use ResNeXt-IG-3.5B and add learnt 
personality features to each decoder step



Our generative models are good at understanding image content.



Our retrieval models are good at understanding image content.



Our generative models are good at using personality



Our retrieval models are good at using personality



Human evaluation studies: our best model is 
close to matching human performance





More examples of our best model



More examples of our best model



More examples of our best model



More examples of our best model



Human Evalua*on Examples



Typical VQA Models

(C) Dhruv Batra 103

Convolution Layer
+ Non-Linearity

Pooling Layer Convolution Layer
+ Non-Linearity

Pooling Layer Fully-Connected MLP

4096-dim

Embedding (VGGNet)

Embedding (LSTM)

Image

Question
“How   many   horses    are      in       this     image?”

Neural Network 
Softmax

over top K answers


