Object Detection

Lecture 5

Object Detection

Image Classification (what?)

Object Detection (what + where?)

Detection with ConvNets

• So far, all about classification

• What about localizing objects within the scene?

Groundtruth: tv or monitor tv or monitor (2) tv or monitor (3) person remote control remote control (2)

Two General Approaches

- 1. Examine very position / scale
 - E.g. Overfeat: Integrated recognition, localization and detection using convolutional networks, Sermanet et al., ICLR 2014

- Use some kind of proposal mechanism to attend to a set of possible regions
 - E.g. Region-CNN [Rich feature hierarchies for accurate object detection and semantic segmentation, Girshick et al., CVPR 2014]

Sliding Window with ConvNet

Sliding Window with ConvNet

<u>22</u>4

Input Window

Sliding Window with ConvNet

Input Window

No need to compute two separate windows --- Just one big input window

Multi-Scale Sliding Window ConvNet

Multi-Scale Sliding Window ConvNet

OverFeat – Output before NMS

Overfeat Detection Results

[Sermanet et al. ICLR 2014]

Top predictions: trombone (confidence 26.8) oboe (confidence 17.5) oboe (confidence 11.5) ILSVRC2012_val_00000614.JPEG

Groundtruth:

person hat with a wide brim hat with a wide brim (2) hat with a wide brim (3) oboe oboe (2) saxophone trombone person (2) person (3) person (4)

Top predictions: watercraft (confidence 72.2) watercraft (confidence 2.1)

Groundtruth: watercraft watercraft (2)

. Quem come doce caga azedo

Top predictions: microwave (confidence 5.6) refrigerator (confidence 2.5)

ILSVRC2012 val 00000519.IPEG

a. Quem come doce caga azedi

Groundtruth: bowl microwave

Top predictions: tennis ball (confidence 3.5) banana (confidence 2.4) banana (confidence 2.1) hotdog (confidence 2.0) banana (confidence 1.9)

ILSVRC2012_val_00000320.JPEG

Two General Approaches

- 1. Examine very position / scale
 - E.g. Overfeat: Integrated recognition, localization and detection using convolutional networks, Sermanet et al., ICLR 2014

- Use some kind of proposal mechanism to attend to a set of possible regions
 - E.g. Region-CNN [Rich feature hierarchies for accurate object detection and semantic segmentation, Girshick et al., CVPR 2014]

Reproducible research – get the code!

Fast R-CNN

Ross Girshick

Facebook AI Research (FAIR)

Work done at Microsoft Research

Fast Region-based ConvNets (R-CNNs) for Object Detection

Figure adapted from Kaiming He

Object detection renaissance (2013-present)

Object detection renaissance (2013-present)

Object detection renaissance (2013-present)

Region-based convnets (R-CNNs)

- R-CNN (aka "slow R-CNN") [Girshick et al. CVPR14]
- SPP-net [He et al. ECCV14]

Regions of Interest (Rol) from a proposal method (~2k)

Girshick et al. CVPR14.

Girshick et al. CVPR14.

Post hoc component

Apply bounding-box regressors

• Ad hoc training objectives

- Fine-tune network with softmax classifier (log loss)
- Train post-hoc linear SVMs (hinge loss)
- Train post-hoc bounding-box regressors (squared loss)

- Ad hoc training objectives
 - Fine-tune network with softmax classifier (log loss)
 - Train post-hoc linear SVMs (hinge loss)
 - Train post-hoc bounding-box regressors (squared loss)
- Training is slow (84h), takes a lot of disk space

- Ad hoc training objectives
 - Fine-tune network with softmax classifier (log loss)
 - Train post-hoc linear SVMs (hinge loss)
 - Train post-hoc bounding-box regressions (least squares)
- Training is slow (84h), takes a lot of disk space
- Inference (detection) is slow
 - 47s / image with VGG16 [Simonyan & Zisserman. ICLR15]
 - Fixed by SPP-net [He et al. ECCV14]

~2000 ConvNet forward passes per image

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition". ECCV 2014.

Classify regions with SVMs SVMs Fully-connected layers FCs Spatial Pyramid Pooling (SPP) layer "conv5" feature map of image Regions of -Interest (Rols) from a proposal Forward *whole* image through ConvNet method ConvNet Input image

He et al. ECCV14.

He et al. ECCV14.

What's good about SPP-net?

• Fixes one issue with R-CNN: makes testing fast

What's wrong with SPP-net?

- Inherits the rest of R-CNN's problems
 - Ad hoc training objectives
 - Training is slow (25h), takes a lot of disk space

What's wrong with SPP-net?

- Inherits the rest of R-CNN's problems
 - Ad hoc training objectives
 - Training is slow (though faster), takes a lot of disk space
- Introduces a new problem: cannot update parameters below SPP layer during training

SPP-net: the main limitation

He et al. ECCV14.

Post hoc component

Fast R-CNN

• Fast test-time, like SPP-net

Fast R-CNN

- Fast test-time, like SPP-net
- One network, trained in one stage

Fast R-CNN

- Fast test-time, like SPP-net
- One network, trained in one stage
- Higher mean average precision than slow R-CNN and SPP-net

Fast R-CNN (training)

Fast R-CNN (training)

Multi-task loss

Fast R-CNN (training)

Obstacle #1: Differentiable Rol pooling

Region of Interest (RoI) pooling must be (sub-) differentiable to train conv layers

Slow R-CNN and SPP-net use region-wise sampling to make mini-batches

- Sample 128 example Rols uniformly at random
- Examples will come from different images with high probability

Note the receptive field for one example Rol is often very large

• Worst case: the receptive field is the entire image

Worst case cost per mini-batch (crude model of computational complexity)

input size for Fast R-CNN

input size for slow R-CNN

128*600*1000 / (128*224 *224) = 12x more computation than slow R-CNN

Solution: use hierarchical sampling to build minibatches

Solution: use hierarchical sampling to build minibatches

 Sample a small number of images (2)

Solution: use hierarchical sampling to build minibatches

- Sample a small number of images (2)
- Sample many examples from each image (64)

Use the test-time trick from SPP-net during training

• Share computation between overlapping examples from the same image

Cost per mini-batch compared to slow R-CNN (same crude cost model)

• 2*600*1000 / (128*224*224) = 0.19x less computation than slow R-CNN

Main results

	Fast R-CNN	R-CNN [1]	SPP-net [2]
Train time (h)	9.5	84	25
- Speedup	8.8x	1x	3.4x
Test time / image	0.32s	47.0s	2.3s
Test speedup	146x	1x	20x
mAP	66.9%	66.0%	63.1%

Timings exclude object proposal time, which is equal for all methods. All methods use VGG16 from Simonyan and Zisserman.

[1] Girshick et al. CVPR14.[2] He et al. ECCV14.

Main results

	Fast R-CNN	R-CNN [1]	SPP-net [2]
Train time (h)	9.5	84	25
- Speedup	8.8x	1x	3.4x
Test time / image	0.32s	47.0s	2.3s
Test speedup	146x	1x	20x
mAP	66.9%	66.0%	63.1%

Timings exclude object proposal time, which is equal for all methods. All methods use VGG16 from Simonyan and Zisserman.

[1] Girshick et al. CVPR14.[2] He et al. ECCV14.

Main results

	Fast R-CNN	R-CNN [1]	SPP-net [2]
Train time (h)	9.5	84	25
- Speedup	8.8x	1x	3.4x
Test time / image	0.32s	47.0s	2.3s
Test speedup	146x	1x	20x
mAP	66.9%	66.0%	63.1%

Timings exclude object proposal time, which is equal for all methods. All methods use VGG16 from Simonyan and Zisserman.

[1] Girshick et al. CVPR14.[2] He et al. ECCV14.

Further test-time speedups

Fully connected layers take 45% of the forward pass time

Further test-time speedups

Compress these layers with truncated SVD

J. Xue, J. Li, and Y. Gong.

Restructuring of deep neural network acoustic models with singular value decomposition. *Interspeech*, 2013.

Further test-time speedups

Other findings

End-to-end training matters

	Fast R-CNN (VGG16)			
Fine-tune layers	\geq fc6	\geq conv3_1	\geq conv2_1	
VOC07 mAP	61.4%	66.9%	67.2%	
Test time per image	0.32s	0.32s	0.32s	
			1.4x slower training	

	Fast R-CNN (VGG16)			
Multi-task training?		Υ		Υ
Stage-wise training?			Υ	
Test-time bbox reg.			Υ	Y
VOC07 mAP	62.6%	63.4%	64.0%	66.9%

	Fast R-CNN (VGG16)			
Multi-task training?		Υ		Υ
Stage-wise training?			Υ	
Test-time bbox reg.			Υ	Υ
VOC07 mAP	62.6%	63.4%	64.0%	66.9%

Trained without a bbox regressor

	Fast R-CNN (VGG16)			
Multi-task training?		Υ		Υ
Stage-wise training?			Υ	
Test-time bbox reg.			Υ	Υ
VOC07 mAP	62.6%	63.4%	64.0%	66.9%

Trained with a bbox regressor, but it's disabled at test time

	Fast R-CNN (VGG16)			
Multi-task training?		Υ		Y
Stage-wise training?			Υ	
Test-time bbox reg.			Υ	Y
VOC07 mAP	62.6%	63.4%	64.0%	66.9%

Post hoc bbox regressor, used at test time

	Fast R-CNN (VGG16)			
Multi-task training?		Υ		Υ
Stage-wise training?			Υ	
Test-time bbox reg.			Υ	Υ
VOC07 mAP	62.6%	63.4%	64.0%	66.9%

Multi-task objective, using bbox regressors at test time
More proposals is harmful

What's still wrong?

- Out-of-network region proposals
 - Selective search: 2s / im; EdgeBoxes: 0.2s / im
- Fortunately, we have a solution
 - Our follow-up work was presented last week at NIPS

Shaoqing Ren, Kaiming He, Ross Girshick & Jian Sun. "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks." NIPS 2015.

Object Detection: Faster R-CNN

- Faster R-CNN
 - Solely based on CNN
 - No external modules
 - Each step is end-to-end

Shaoqing Ren, Kaiming He, Ross Girshick, & Jian Sun. "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks". NIPS 2015.

Region Proposal Network

- Slide a small window on the feature map
- Build a small network for:
 - classifying object or not-object, and
 - regressing bbox locations
- Position of the sliding window provides localization information with reference to the image
- Box regression provides finer localization information with reference to this sliding window

Anchors as references

- Anchors: pre-defined reference boxes
 - Box regression is with reference to anchors: regressing an anchor box to a ground-truth box
 - Object probability is with reference to anchors, e.g.:
 - anchors as positive samples: if IoU > 0.7 or IoU is max
 - anchors as negative samples: if IoU < 0.3

Shaoqing Ren, Kaiming He, Ross Girshick, & Jian Sun. "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks". NIPS 2015.

Anchors as references

- Anchors: pre-defined reference boxes
- Multi-scale/size anchors:
 - multiple anchors are used at each position: e.g., 3 scales (128², 256², 512²) and 3 aspect ratios (2:1, 1:1, 1:2) yield 9 anchors
 - each anchor has its own prediction function
 - single-scale features, multi-scale predictions

Region Proposal Network

• RPN is fully convolutional [Long et al. 2015] *n* anchors *4n* coordinates *n* scores RPN is trained end-to-end 256-d • RPN shares convolutional feature maps with the detection network (covered in Ross's section)

Shaoqing Ren, Kaiming He, Ross Girshick, & Jian Sun. "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks". NIPS 2015.

Shaoqing Ren, Kaiming He, Ross Girshick, & Jian Sun. "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks". NIPS 2015.

Fast R-CNN take-aways

- End-to-end training of deep ConvNets for detection
- Fast training times
- Open source for easy experimentation
 "I think [the Fast R-CNN] code is average-somewhat above average for what it is."
 — sporkles on r/MachineLearning
- A large number of ImageNet detection and COCO detection methods are built on Fast R-CNN Checkout the ImageNet / COCO Challenge workshop on Thursday!

Focal Loss for Dense Object Detection

Tsung-Yi Lin, Google Brain

Work done at Facebook AI Research with Priya Goyal, Ross Girshick, Kaiming He, Piotr Dollár

Viola and Jones (2001)

Image from OpenCV 3.3 website

Fast R-CNN

One-stage vs. Two-stage

- One-stage
 - Fast
 - Simple
- Two-stage
 - 10 40% better accuracy

https://arxiv.org/pdf/1611.10012.pdf

One-stage vs. Two-stage

Speed/accuracy trade-offs for modern convolutional object detectors, Huang et al., CVPR 2017

Toward dense detection

- YOLOv1 98 boxes
- YOLOv2 ~1k
- OverFeat ~1-2k
- SSD ~8-26k

• This work – ~100k

Class Imbalance

- Few training examples from foreground
- Most examples from background
 - Easy and uninformative
 - Distracting

Cross Entropy

Cross Entropy

Cross Entropy with Imbalance Data

- 100000 easy : 100 hard examples
- 40x bigger loss from easy examples

Focal Loss

$$CE(p_t) = -\log(p_t)$$
$$FL(p_t) = -(1 - p_t)^{\gamma}\log(p_t)$$

Focal Loss

Prior

• α-balanced Cross entropy

$$\operatorname{CE}(p_{\mathsf{t}}) = -\alpha_t \log(p_{\mathsf{t}})$$

• α-balanced Focal Loss

$$FL(p_t) = -\alpha_t (1 - p_t)^{\gamma} \log(p_t)$$

- γ: focus more on hard examples
- α: offset class imbalance of number of examples

Feature Pyramid Network

- Multiscale
- Semantically strong at all scales
- Fast to compute

Feature Pyramid Network for Object Detection, Lin et al., CVPR 2017

Architecture

- RetinaNet
 - FPN + 100k boxes
 - Focal loss

Loss Distribution under Focal Loss

Background Boxes

Loss Distribution under Focal Loss

Foreground Boxes

vs. Cross Entropy

• + 2.9 AP to α -balanced cross entropy

vs. OHEM

• +3.2 AP to best OHEM (ResNet-101 FPN)

	method	batch size	nms thr	AP	
	OHEM	128	.7	31.1	
	OHEM	256	.7	31.8	
	OHEM	512	.7	30.6	
C	OHEM	128	.5	32.8	-> Best OHEM
	OHEM	256	.5	31.0	
	OHEM	512	.5	27.6	
(OHEM 1:3	128	.5	31.1	-
(OHEM 1:3	256	.5	28.3	
_	OHEM 1:3	512	.5	24.0	
C	FL	n/a	n/a	36.0	🗲 Best Focal Loss

Online Hard Example Mining, Shrivastava et al., 2016

RetinaNet performance

Summary

- Identify class imbalance is the major issue for training onestage dense detector
- Propose Focal Loss to address class imbalance
- Achieve state-of-the-art accuracy and speed

ICCV 2017 Tutorial, Venice, Italy

Kaiming He

in collaboration with: Georgia Gkioxari, Piotr Dollár, and Ross Girshick Facebook AI Research (FAIR)

Introduction

Visual Perception Problems

A Challenging Problem...

Object Detection

Fast/Faster R-CNN
 ✓ Good speed
 ✓ Good accuracy
 ✓ Intuitive
 ✓ Easy to use

Ross Girshick. "Fast R-CNN". ICCV 2015.

Shaoqing Ren, Kaiming He, Ross Girshick, & Jian Sun. "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks". NIPS 2015.

Semantic Segmentation

Fully Convolutional Net (FCN)
✓ Good speed
✓ Good accuracy
✓ Intuitive
✓ Easy to use

Jonathan Long, Evan Shelhamer, & Trevor Darrell. "Fully Convolutional Networks for Semantic Segmentation". CVPR 2015.
Instance Segmentation

• Goals of Mask R-CNN

✓ Good speed
 ✓ Good accuracy
 ✓ Intuitive
 ✓ Easy to use

Instance Segmentation Methods R-CNN driven

FCN driven

Instance Segmentation Methods

RCNN-driven

- SDS [Hariharan et al, ECCV'14]
- HyperCol [Hariharan et al, CVPR'15]
 - CFM [Dai et al, CVPR'15]
 - MNC [Dai et al, CVPR'16]

• **PFN** [Liang et al, arXiv'15]

FCN-driven

- InstanceCut [Kirillov et al, CVPR'17]
- Watershed [Bai & Urtasun, CVPR'17]
- FCIS [Li et al, CVPR'17]
- DIN [Arnab & Torr, CVPR'17]

Mask R-CNN

• Mask R-CNN = Faster R-CNN with FCN on Rols

Parallel Heads

• Easy, fast to implement and train

Invariance vs. Equivariance

- Convolutions are translation-equivariant
- *Fully*-ConvNet (FCN) is translation-equivariant
- ConvNet becomes translation-invariant due to fully-connected or global pool layers

Equivariance in Mask R-CNN

1. Fully-Conv Features:

equivariant to global (image) translation

Equivariance in Mask R-CNN

2. Fully-Conv on Rol: equivariant to translation within Rol

Fully-Conv on Rol

target masks on Rols

Translation of object in Rol => Same translation of mask in Rol

- Equivariant to small translation of Rols
- More robust to Rol's localization imperfection

Equivariance in Mask R-CNN

3. RolAlign:

3a. maintain translation-equivariance before/after Rol

RolAlign

FAQs: how to sample grid points within a cell?

- 4 regular points in 2x2 sub-cells
- other implementation could work

25

RolAlign vs. RolPool

RoIPool breaks pixel-to-pixel translation-equivariance

Equivariance in Mask R-CNN

3. RolAlign:

3b. Scale-equivariant (and aspect-ratio-equivariant)

Equivariance in Mask R-CNN: Summary

- Translation-equivariant
 - FCN features
 - FCN mask head
 - RolAlign (pixel-to-pixel behavior)
- Scale-equivariant (and aspect-ratio-equivariant)
 - RolAlign (warping and normalization behavior) + paste-back
 - FPN features

Mask R-CNN results on COCO

Result Analysis

Ablation: RolPool vs. RolAlign

in case of big stride (32)

baseline: ResNet-50-Conv5 backbone, stride=32

		mask AP			box AP	
	AP	AP_{50}	AP ₇₅	AP ^{bb}	AP_{50}^{bb}	AP_{75}^{bb}
RoIPool	23.6	46.5	21.6	28.2	52.7	26.9
RoIAlign	30.9	51.8	32.1	34.0	55.3	36.4
	+7.3	+ 5.3	+10.5	+5.8	+2.6	+9.5
• hu	ige gain a	it high Iol	J,			

Ablation: RolPool vs. RolAlign

baseline: ResNet-50-Conv5 backbone, stride=32

		mask AP			box AP	
	AP	AP_{50}	AP ₇₅	AP ^{bb}	AP_{50}^{bb}	AP_{75}^{bb}
RoIPool	23.6	46.5	21.6	28.2	52.7	26.9
RoIAlign	30.9	51.8	32.1	34.0	55.3	36.4
	+7.3	+ 5.3	+10.5	+5.8	+2.6	+9.5

• nice box AP without dilation/upsampling

Instance Segmentation Results on COCO

	backbone	AP	AP_{50}	AP ₇₅	AP_S	AP_M	AP_L
MNC [7]	ResNet-101-C4	24.6	44.3	24.8	4.7	25.9	43.6
FCIS [20] +OHEM	ResNet-101-C5-dilated	29.2	49.5	-	7.1	31.3	50.0
FCIS+++ [20] +OHEM	ResNet-101-C5-dilated	33.6	54.5	-	-	-	-
Mask R-CNN	ResNet-101-C4	33.1	54.9	34.8	12.1	35.6	51.1
Mask R-CNN	ResNet-101-FPN	35.7	58.0	37.8	15.5	38.1	52.4
Mask R-CNN	ResNeXt-101-FPN	37.1	60.0	39.4	16.9	39.9	53.5

- 2 AP better than SOTA w/ R101, without bells and whistles
- 200ms / img

Instance Segmentation Results on COCO

	backbone	AP	AP_{50}	AP ₇₅	AP_S	AP_M	AP_L
MNC [7]	ResNet-101-C4	24.6	44.3	24.8	4.7	25.9	43.6
FCIS [20] +OHEM	ResNet-101-C5-dilated	29.2	49.5	-	7.1	31.3	50.0
FCIS+++ [20] +OHEM	ResNet-101-C5-dilated	33.6	54.5	-	-	-	-
Mask R-CNN	ResNet-101-C4	33.1	54.9	34.8	12.1	35.6	51.1
Mask R-CNN	ResNet-101-FPN	35.7	58.0	37.8	15.5	38.1	52.4
Mask R-CNN	ResNeXt-101-FPN	37.1	60.0	39.4	16.9	39.9	53.5

• benefit from better features (ResNeXt [Xie et al. CVPR'17])

Object Detection Results on COCO

	backbone	AP ^{bb}	AP_{50}^{bb}	AP_{75}^{bb}	$\mathrm{AP}^{\mathrm{bb}}_S$	$\mathrm{AP}^{\mathrm{bb}}_M$	AP_L^{bb}
Faster R-CNN+++ [15]	ResNet-101-C4	34.9	55.7	37.4	15.6	38.7	50.9
Faster R-CNN w FPN [22]	ResNet-101-FPN	36.2	59.1	39.0	18.2	39.0	48.2
Faster R-CNN by G-RMI [17]	Inception-ResNet-v2 [32]	34.7	55.5	36.7	13.5	38.1	52.0
Faster R-CNN w TDM [31]	Inception-ResNet-v2-TDM	36.8	57.7	39.2	16.2	39.8	52.1
Faster R-CNN, RoIAlign	ResNet-101-FPN	37.3	59.6	40.3	19.8	40.2	48.8
Mask R-CNN	ResNet-101-FPN	38.2	60.3	41.7	20.1	41.1	50.2
Mask R-CNN	ResNeXt-101-FPN	39.8	62.3	43.4	22.1	43.2	51.2

bbox detection improved by:

RolAlign

Object Detection Results on COCO

	backbone	AP ^{bb}	AP_{50}^{bb}	AP_{75}^{bb}	$\mathrm{AP}^{\mathrm{bb}}_S$	$\mathrm{AP}^{\mathrm{bb}}_M$	AP_L^{bb}
Faster R-CNN+++ [15]	ResNet-101-C4	34.9	55.7	37.4	15.6	38.7	50.9
Faster R-CNN w FPN [22]	ResNet-101-FPN	36.2	59.1	39.0	18.2	39.0	48.2
Faster R-CNN by G-RMI [17]	Inception-ResNet-v2 [32]	34.7	55.5	36.7	13.5	38.1	52.0
Faster R-CNN w TDM [31]	Inception-ResNet-v2-TDM	36.8	57.7	39.2	16.2	39.8	52.1
Faster R-CNN, RoIAlign	ResNet-101-FPN	37.3	59.6	40.3	19.8	40.2	48.8
Mask R-CNN	ResNet-101-FPN	38.2	60.3	41.7	20.1	41.1	50.2
Mask R-CNN	ResNeXt-101-FPN	39.8	62.3	43.4	22.1	43.2	51.2

bbox detection improved by:

- RolAlign
- Multi-task training w/ mask

Mask R-CNN results on COCO

Mask R-CNN results on COCO

small objects

Mask R-CNN results on CityScapes

Failure case: detection/segmentation

Mask R-CNN results on COCO

Failure case: recognition

Mask R-CNN results on COCO

not a kite

Validation image with box detection shown in red

28x28 soft prediction from Mask R-CNN (enlarged)

Soft prediction resampled to image coordinates

(bilinear and bicubic interpolation work equally well)

Final prediction (threshold at 0.5)

28x28 soft prediction

Resized Soft prediction

Final mask

Validation image with box detection shown in red

Mask R-CNN: for Human Keypoint Detection

- 1 keypoint = 1-hot "mask"
- Human pose = 17 masks
- Softmax over spatial locations
 - e.g. 56²-way softmax on 56x56
- Desire the same equivariances
 - translation, scale, aspect ratio

Mask R-CNN frame-by-frame

Conclusion

Mask R-CNN

- ✓ Good speed
 ✓ Good accuracy
 ✓ Intuitive
- ✓ Easy to use
- ✓ Equivariance matters

Code will be open-sourced as Facebook AI Research's **Detectron** platform