Object Detection
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Detection with ConvNets

* So far, all about
classification

 What about

localizing objects
within the scene?

Groundtruth:
tv or monitor
tv or monitor (2)
tv or monitor (3)

person
remote control
remote control (2)




Two General Approaches

1. Examine very position / scale

— E.g. Overfeat: Integrated recognition, localization and detection
using convolutional networks, Sermanet et al., ICLR 2014

2. Use some kind of proposal mechanism to attend to a set of
possible regions

— E.g. Region-CNN [Rich feature hierarchies for accurate object
detection and semantic segmentation, Girshick et al., CVPR 2014]



Sliding Window with ConvNet
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Sliding Window with ConvNet
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Sliding Window with ConvNet

Conv Conv Conv Conv Conv Full Full
image size 224 110 26 13 13 13 _ _
filter size 7 @3 13
1 L384 V1 %384 256 M
| \2‘56 \
¢stride 2 96 3x3 max| 3x3 max C
3x3 max pool pool| | contrast pool 4096( | 4096 class
stride 2 stride 2| [norm. stride 2 units units softmax
3 55 L
N 13 @3 6 256
Input Image 1 w256 u U
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer6 Layer7 Output
240
/
16 224 6 C
Feature Extractor classes
<> —> €256
TN
Input Window

No need to compute two separate windows --- Just one big input window




Mulci-Scale Sliding Window ConvNet

Feature
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Feature
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Mulci-Scale Sliding Window ConvNet

Feature Bounding Box
Maps Maps
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OverFeat — Output before NM$S
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Overfeat Detection Results

| Sermanet et al. ICLR 2014]
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Top predictions: Groundtruth:
). Y _ - 3 watercraft (confidence 72.2) watercraft
p{v,rmm-:i's'wruss - SR\ i L. S : S5 < ] watercraft (confidence 2.1) watercraft (2)

ILSVRC2012_val 623.PEG

Top predictions: Groundtruth:
trombone (confidence 26.8) person
oboe (confidence 17.5) hat with a wide brim gy, jjpanis bell conf 3.46
oboe (confidence 11.5) hat with a wide brim (2)
012 14JPEG hat with a wide brim (3)
oboe
oboe (2)
saxophone
trombone
person (2)
person (3)
person (4)

Top predictions: Groundtruth:
tennis ball (confidence 3.5) strawberry
banana (confidence 2.4) strawberry (2)
banana (confidence 2.1) strawberry (3)
hotdog (confidence 2.0) strawberry (4)
banana (confidence 1.9) strawberry (5)
ILSVRC2012_val_00000320.JPEG strawberry (6)
strawberry (7)
strawberry (8)
- strawberry (9)
Top predictions: Groundtruth: strawberry (10)
microwave (confidence 5.6) bowl apple
refrigerator (confidence 2.5) microwave apple (2)
apple (3)




Two General Approaches

1. Examine very position / scale

— E.g. Overfeat: Integrated recognition, localization and detection
using convolutional networks, Sermanet et al., ICLR 2014

2. Use some kind of proposal mechanism to attend to a set of
possible regions

— E.g. Region-CNN [Rich feature hierarchies for accurate object
detection and semantic segmentation, Girshick et al., CVPR 2014]



Reproducible research — get the code! * ICCV
O http://git.io/vBgm5 -

Fast R-CNN

Ross Girshick

Facebook Al Research (FAIR)

Work done at Microsoft Research



Fast Region-based ConvNets (R-CNNs)
for Object Detection

Localization

Recognition et N R T
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Figure adapted from Kaiming He



Object detection renaissance (2013-present)

PASCAL VOC

Before deep convnets

Using deep convnets

=
<
£
C
<!
2]
O
()]
| -
(a
Q
o]0]
()
| -
()]
>
<
C
©
()]
=

2008 2009 2010 2011 2013 2014 2015 2016
year




Object detection renaissance (2013-present)

PASCAL VOC
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Object detection renaissance (2013-present)

PASCAL VOC
Fast R-CNN

®

R-CNNv1 A
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Region-based convnets (R-CNNs)

* R-CNN (aka “slow R-CN N") [Girshick et al. CVPR14]
* SPP-net [He et al. ECCV14]



Slow R-CNN

Girshick et al. CVPR14.



Slow R-CNN

Regions of Interest (Rol)
from a proposal method
(~2k)

Girshick et al. CVPR14.



Slow R-CNN

Girshick et al. CVPR14.

' Warped image regions

(~2k)



Slow R-CNN

ConvNet
ConvNet
— -
, we=— Regions of Interest (Rol)
‘ i from a proposal method
: -— (~2k)

Girshick et al. CVPR14.

Forward each region
through ConvNet

’

H Warped image regions




Slow R-CNN

SVMS

SVMS

Girshick et al. CVPR14.

ConvNet
ConvNet

.{I

SVMS

’

4

e

~—2

Classify regions with SVMs

Forward each region
through ConvNet

H Warped image regions

Regions of Interest (Rol)
from a proposal method
(~2k)

Post hoc component




Slow R-CNN

Apply bounding-box regressors

Bbox reg

SVMS

Classify regions with SVMs

Bbox reg

SVMS

Bbox reg

SVMS

Girshick et al. CVPR14.

ConvNet
ConvNet

.{I

’

H Warped image regions

Forward each region
through ConvNet

y -

vee——— Regions of Interest (Rol)

from a proposal method
(~2k)

Post hoc component




What’s wrong with slow R-CNN?



What’s wrong with slow R-CNN?

* Ad hoc training objectives
* Fine-tune network with softmax classifier (log loss)
* Train post-hoc linear SVMs (hinge loss)
* Train post-hoc bounding-box regressors (squared loss)



What’s wrong with slow R-CNN?

* Ad hoc training objectives
* Fine-tune network with softmax classifier (log loss)
* Train post-hoc linear SVMs (hinge loss)
* Train post-hoc bounding-box regressors (squared loss)

* Training is slow (84h), takes a lot of disk space



What’s wrong with slow R-CNN?

* Ad hoc training objectives
* Fine-tune network with softmax classifier (log loss)
* Train post-hoc linear SVMs (hinge loss)
* Train post-hoc bounding-box regressions (least squares)

* Training is slow (84h), takes a lot of disk space

* Inference (detection) is slow
* 47s / image with VGG16 [Simonyan & Zisserman. ICLR15]
* Fixed by SPP-net [He et al. ECCV14]

= ’ (N: ’t:‘ nutimage
~2000 ConvNet forward passes per image



SPP-net

He et al. ECCV14.



SPP-net

Forward whole image through ConvNet

ConvNet F

=
=

Input image

He et al. ECCV14.



SPP-net

Regions of M‘COWS” feature map of image
Interest (Rols) t
Forward whole image through ConvNet

method
ConvNet F

=
=

Input image

He et al. ECCV14.



SPP-net

= =y A= Spatial Pyramid Pooling (SPP) layer

Regions of ‘,’z-_.!y7 “conv5” feature map of image
Interest (Rols) t
Forward whole image through ConvNet

method
ConvNet F

=
=

Input image

He et al. ECCV14.



Spatial Pyramid Pooling (SPP) Layer ..

«  fix the number of bins explicit spatial information

(instead of filter sizes)
e adaptively-sized bins

pooling

a coarser level removes
explicit spatial information
(bag-of-features)




SPP-net

SVMs Classify regions with SVMs
FCs Fully-connected layers

Regions of
Interest (Rols)
from a proposal
method

ConvNet

He et al. ECCV14. Post hoc component




S P P‘ n Et Apply bounding-box regressors

Bbox reg | | SVMs Classify regions with SVMs

FCs Fully-connected layers

Regions of
Interest (Rols)
from a proposal
method

ConvNet

He et al. ECCV14. Post hoc component




What's good about SPP-net?

* Fixes one issue with R-CNN: makes testing fast

e

Post hoc component




What’s wrong with SPP-net?

* Inherits the rest of R-CNN’s problems
* Ad hoc training objectives
* Training is slow (25h), takes a lot of disk space



What’s wrong with SPP-net?

* Inherits the rest of R-CNN’s problems
* Ad hoc training objectives
* Training is slow (though faster), takes a lot of disk space

* Introduces a new problem: cannot update parameters below SPP
layer during training



SPP-net: the main limitation

He et al. ECCV14.

Bbox reg | | SVMs

ConvNet

Post hoc component




Fast R-CNN

e Fast test-time, like SPP-net



Fast R-CNN

* Fast test-time, like SPP-net
* One network, trained in one stage



Fast R-CNN

* Fast test-time, like SPP-net
* One network, trained in one stage

* Higher mean average precision than slow R-CNN
and SPP-net



Fast R-CNN (test time)

w‘conv?’ feature map of image
Interest (Rols) t
Forward whole image through ConvNet

method
ConvNet F

=
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Regions of



Fast R-CNN (test time)

7 a &
‘,’2"=t=y7 “conv5” feature map of image
Interest (Rols) t

Forward whole image through ConvNet

method
ConvNet F
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Fast R-CNN (test time)

N

FCs Fully-connected layers

“ TN
7 ay &
Regions of ,’-I.I “conv5” feature map of image

Interest (Rols)

method Forward whole image through ConvNet

=
(4

gg,- Input image

= <5 \V

ConvNet



Fast R-CNN (test time)

o JEE .

FCs Fully-connected layers

“ TN
7 ay &
Regions of ,’-I.I “conv5” feature map of image

Interest (Rols)

method Forward whole image through ConvNet

=
(4

gg,- Input image

= <5 \V

ConvNet



Fast R-CNN
(training)




Fast R-CNN
(training) -

Multi-task loss




Fast R-CNN

s Log loss + smooth L1 loss Multi-task loss
(training) 7 1
Linear + B
softmax Linear

& &/

= Trainable l

ConvNet




Obstacle #1: Differentiable Rol pooling

Region of Interest (Rol) pooling must be (sub-)
differentiable to train conv layers



Obstacle #1: D |ffe rentiapte Rol-pooling
i T — —1)0,2
!/ - = Y1,0
14 - - )
Rol pooling///

__ max pooling “switch”
(i.e. argmax back-pointer)

z Z dL
axl 0Yr;

Partial Partial from
for x; next layer



Obstacle #2: efficient SGD steps

Slow R-CNN and SPP-net use region-wise sampling to
make mini-batches

e Sample 128 example Rols uniformly at random

e Examples will come from different images with high
probability

SGD mini-batch




Obstacle #2: efficient SGD steps

Note the receptive field for one example Rol is often
very large

* Worst case: the receptive field is the entire image




Obstacle #2: efficient SGD steps

Worst case cost per mini-batch (crude model of
computational complexity)

input size for Fast R-CNN input size for slow R-CNN

128*600*1000 / (128%*224 *224) = 12x more
computation than slow R-CNN




Obstacle #2: efficient SGD steps

Solution: use hierarchical sampling to build mini-
batches




Obstacle #2: efficient SGD steps

Solution: use hierarchical sampling to build mini-
batches

* Sample a small
number of images

(2)




Obstacle #2: efficient SGD steps

Solution: use hierarchical sampling to build mini-
batches

* Sample a small
number of images

(2)

e Sample many
examples from
each image (64)

SGD mini-batch




Obstacle #2: efficient SGD steps

Use the test-time trick from SPP-net during training

e Share computation between overlapping examples
from the same image




Obstacle #2: efficient SGD steps

Cost per mini-batch compared to slow R-CNN (same
crude cost model)

e for Fast R-CNN e for slow R-CNN

. 2*600*1000 / (128*224*224) 0.19x less
computation than slow R-CNN




Main results

Train time (h) 9.5

- Speedup 8.8x

Timings exclude object proposal time, which is equal for all methods.
All methods use VGG16 from Simonyan and Zisserman.

[1] Girshick et al. CVPR14.
[2] He et al. ECCV14.



Main results

Test time /image 0.32s

Test speedup 146x

Timings exclude object proposal time, which is equal for all methods.
All methods use VGG16 from Simonyan and Zisserman.

[1] Girshick et al. CVPR14.
[2] He et al. ECCV14.



Main results

66.9% 66.0% 63.1%

Timings exclude object proposal time, which is equal for all methods.
All methods use VGG16 from Simonyan and Zisserman.

[1] Girshick et al. CVPR14.
[2] He et al. ECCV14.



Further test-time speedups

Forward pass timing
MAP 66.9% @ 320ms / image

Fully connected layers take
45% of the forward pass

fco6

38.7% (122ms) time
other

3.5% (11ms)
5.4% (17ms)

6.2% (20ms) fc7

roi/pool5

46.3% (146ms)




Further test-time speedups

Forward pass timing
MAP 66.9% @ 320ms / image

Compress these layers with
truncated SVD

fco6

38.7% (122ms)
other

3.5% (11ms)
5.4% (17ms)

6.2% (20ms) fc7

roi/pool5

46.3% (146ms)

J. Xue, J. Li, and Y. Gong.
Restructuring of deep neural network acoustic models with singular value decomposition.
Interspeech, 2013.



Further test-time speedups

Forward pass timing
MAP 66.9% @ 320ms / image

fco6

38.7% (122ms)
other

3.5% (11ms)
5.4% (17ms)

6.2% (20ms) fc7

roi_pool5

46.3% (146ms)

Without SVD

Forward pass timing (SVD)
MAP 66.6% @ 223ms / image

fco

17.5% (37ms)  other
5.1% (11ms) .
roi_pool5

7.9% (17ms)
1.7% (4ms) fc7

67.8% (143ms)

conv

With SVD



Other findings



End-to-end training matters

Fine-tune layers =>conv3d 1 =conv2 1

VOCO07 mAP 66.9% 67.2%
Test time per image 0.32s 0.32s

1.4x slower
training



Multi-task training helps

Multi-task training?

Stage-wise training?

Test-time bbox reg.
VOCO7 mAP 62.6% 63.4% 64.0% 66.9%




Multi-task training helps

Multi-task training?

Stage-wise training?

Test-time bbox reg.
VOCO7 mAP 62.6% 63.4% 64.0%

I

Trained without
a bbox regressor




Multi-task training helps

Multi-task training?

Stage-wise training?

Test-time bbox reg.
VOCO7 mAP 62.6% 63.4% 64.0%

Trained with

a bbox regressor,
but it’s disabled at
test time



Multi-task training helps

Multi-task training?

Stage-wise training?

Test-time bbox reg.
VOCO7 mAP 62.6% 63.4% 64.0% 66.9%

Post hoc bbox
regressor, used
at test time



Multi-task training helps

Multi-task training?

Stage-wise training?

Test-time bbox reg.
VOCO7 mAP 62.6% 63.4% 64.0% 66.9%

|

Multi-task objective,
using bbox regressors
at test time




More proposals is harmful

66-

Sel. Search (SS)

63- SS (2k) + Rand Dense
SS replace Dense

61- 45k Dense Softmax
45k Dense SVM

—eo— SS Avg. Recall

~
o~ ~
~

"~

Average Recall

~
~
.

10
Number of object proposals




What’s still wrong?

e Qut-of-network region proposals
 Selective search: 2s /im; EdgeBoxes: 0.2s /im

* Fortunately, we have a solution
* Our follow-up work was presented last week at NIPS

Shaoging Ren, Kaiming He, Ross Girshick & Jian Sun.
“Faster R-CNN: Towards Real-Time Object Detection with Region
Proposal Networks.” NIPS 2015.



Object Detection: Faster R-CNN

features

* Faster R-CNN E
Rol pooling

* Solely based on CNN
proposals

* No external modules
* Each step is end-to-end / /
Region Proposal Net End-to-End

eature map

CNN Aé"i

Shaoqing Ren, Kaiming He, Ross Girshick, & Jian Sun. “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”. NIPS 2015.



Region Proposal Network

Microsof

Research

regress
box locations

classify
 Slide a small window on the feature map obj./not-obj.
e Build a small network for: scores

coordinates

 classifying object or not-object, and \
* regressing bbox locations

1

256-d

Position of the sliding window provides localization
information with reference to the image

i

Box regression provides finer localization information

with reference to this sliding window aT

23 1CCV

nnnnnnnnnnn | Conference on Computer Vision

-

g window

convolutional feature map

Shaoging Ren, Kaiming He, Ross Girshick, & Jian Sun. “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”. NIPS 2015.



IMIICrosortt

Research
Anchors as references
* Anchors: pre-defined reference boxes . n anchors
n scores 4n coordinates E—
* Box regression is with reference to anchors:
regressing an anchor box to a ground-truth box \ -

e Object probability is with reference to anchors, e.g.:

e anchors as positive samples: if loU > 0.7 or loU is max

e anchors as negative samples: if loU < 0.3

ZICCV1T

nternational Conference on Computer Vision

Shaoqing Ren, Kaiming He, Ross Girshick, & Jian Sun. “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”. NIPS 2015.



Anchors as references

* Anchors: pre-defined reference boxes

* Multi-scale/size anchors:

* multiple anchors are used at each position:
e.g., 3 scales (1282, 2562, 5122) and 3 aspect ratios
(2:1, 1:1, 1:2) yield 9 anchors

e each anchor has its own prediction function
* single-scale features, multi-scale predictions

»1CCVLS

nternational Conference on Computer Vision

n SCores

4n coordinates

<7

Microsoft

Research

n anchors

Shaoging Ren, Kaiming He, Ross Girshick, & Jian Sun. “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”. NIPS 2015.



MICrosortt

Research
Region Proposal Network
* RPN is fully convolutional [Long et al. 2015] P yPs—T—— < anchors
RPN is trained end-to-end ‘

* RPN shares convolutional feature maps with

the detection network
(covered in Ross’s section)

>ICCV!D

Shaoqing Ren, Kaiming He, Ross Girshick, & Jian Sun. “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”. NIPS 2015.

nternational Conference on Computer Vision



Faster R-CNN

__system __|__time | _07data__| 07+12data o

R-CNN ~50s 66.0
Fast R-CNN ~2s 66.9
Faster R-CNN 198ms 69.9

detection mAP on PASCAL VOC 2007, with VGG-16 pre-trained on ImageNet
@ . ,L.

>ICCV!°

1ternational Conference on Computer Vision

Microsoft

detector

Rol pooling

propoy /

RPN

feature map

70.0
73.2

CNN

F- —ﬂ'mmu‘m as.-e‘m. T Somvesmane kmm

Shaoqing Ren, Kaiming He, Ross Girshick, & Jian Sun. “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”. NIPS 2015.

Research



Fast R-CNN take-aways

* End-to-end training of deep ConvNets for detection
* Fast training times

* Open source for easy experimentation
“I think [the Fast R-CNN] code is average-somewhat above average for what it is.”
— sporkles on r/MachinelLearning

* A large number of ImageNet detection and COCO detection methods

are built on Fast R-CNN
Checkout the ImageNet / COCO Challenge workshop on Thursday!



Focal Loss for
Dense Object Detection

Tsung-Yi Lin, Google Brain

Work done at Facebook Al Research with
Priya Goyal, Ross Girshick, Kaiming He, Piotr Dollar



Viola and Jones (2001)

R \4} ‘ - e \

Image from OpenCV 3.3 website



Fast R-CNN

— mm— = Outputs: bbox
{Deep softmax regressor
LB A - |ConvNet = g
ZHEE ' =3 FC
: ,«" &
LRl || |
E—I|=projection\_ | |
5 Conv | Rol feature

feature map vector

For each Rol

Fast R-CNN, Girshick



One-stage vs. Two-stage

* One-stage
— Fast
— Simple
* Two-stage
— 10 - 40% better accuracy

-

I

(b) Faster RCNN. (c) R-FCN.
https://arxiv.org/pdf/1611.10012.pdf




Overall mAP

One-stage vs. Two-stage

40

Faster R-CNN w/ResNet, Hi ta Architecture
Res, 50 Proposals . R- F C N
35 —o- - -~ O - g

-FCN w O
S J _-Qe o8
100 Proposals

(@ O m

30 /€n e % O .

25 S =
@
. Why:
SSD w/Inception V2, Lo Res
15 SSD w/MobileNet, Lo Res
10
0 200 400 600

GPU Time

Faster R-CNN w/Inception
Resnet, Hi Res, 300
Proposals, Stride 8

[ N NONON NO

Feature Extractor
Inception Resnet V2
Inception V2
Inception V3
MobileNet
Resnet 101
VGG

800 1000

Speed/accuracy trade-offs for modern convolutional object detectors, Huang et al., CVPR 2017



Toward dense detection

YOLOv1 — 98 boxes
YOLOv2 — ~1k
OverFeat — ~1-2k
SSD — ~8-26k

This work — ~100k



Class Imbalance

* Few training examples from foreground

* Most examples from background
— Easy and uninformative

— Distracting

Many negative
examples, no
useful signal

Few positive
examples, rich
information




loss

Cross Entropy

—— Cross Entropy

Well classified
examples

)

0.2

] ]
0.4 0.6 0.8 1.0
probability of ground truth class



Cross Entropy

—— Cross Entropy

Loss = 0.1

] ]
0.2 0.4 0.6 0.8
probability of ground truth class




Cross Entropy with Imbalance Data

* 100000 easy : 100 hard examples
* 40x bigger loss from easy examples

— Cross Entropy

Loss = 2.3

| | | |
0.0 0.2 0.4 0.6 0.8 1.0
probability of ground truth class



Focal Loss

CE(p) = —log(p1)
FL(p) = —‘(1 — pt)”‘log(pt)

— Cross Entropy

CE=23  |=*ro
FL=2.1

CE=0.1

\

| | |
0.2 0.4 0.6 0.8
probability of ground truth class

FL= 0.01

1.0



Focal Loss

5
CE(pt) = —log(p1) . 0
4 FL(p:) = —(1 — p)” log(pr) =1
— =2
3| =0
%)
%
ko]
2 -
well-classified
examples
1+ A
)
0 B I
0 0.2 0.4 0.6 0.8 1

probability of ground truth class



Prior

a-balanced Cross entropy
CE(p) = —ou log(py)

o-balanced Focal Loss
FL(pt> — —Oét(l - pt)7 1Og(pt)

y: focus more on hard examples
a: offset class imbalance of number of examples



Feature Pyramid Network

* Multiscale
* Semantically strong at all scales
* Fast to compute

predict

predict

predict

Feature Pyramid Network for Object Detection, Lin et al., CVPR 2017



Architecture

e RetinaNet
— FPN + 100k boxes

— Focal loss

/»f/%/ﬂ
7 4

/.

(a) ResNet (b) feature pyramid net

’
box+class 7
* subnets %
K
y
> box+class ‘
subnets
\
¢ box-+class !
9 subnets

—————————————————————————————————

class

N
A\

Y

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

(c) box & class subnets



Loss Distribution under Focal Loss

Background Boxes

Al
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B0.8
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Loss Distribution under Focal Loss

Foreground Boxes
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vs. Cross Entropy

* + 2.9 AP to a-balanced cross entropy

¥ Q AP APso AP~5

0O .75 | 31.1 49 .4 33.0 CE(pr) = —log(p1) —0s
0.1 75| 314 499 331 FL(p) = (1 = p)" log(p) .
02 75| 319 507 334 —9=5
05 50| 329 517 352

1.0 .25 33.7 52.0 36.2 well-classified
20 25| 340 525 365 A
50 25| 322 496  34.8

0 0.2 0.4 0.6 0.8 1
probability of ground truth class

(b) Varying ~ for FL (w. optimal o)
(ResNet-50-FPN 600px input image)



e +3.2 AP to best O

vs. OHEM

_l E M (ResNet-101 FPN)

meod | W s |
OHEM 128 i 31.1
OHEM 256 i 31.8
OHEM 512 i 30.6
OHEM 128 S 32.8
OHEM 256 S 31.0
OHEM 512 S 27.6
OHEM 1:3 | 128 S 31.1
OHEM 1:3 | 256 S 28.3
OHEM 1:3 | 512 S 24.0
FL n/a n/a 36.0

->» Best OHEM

—> Best Focal Loss

Online Hard Example Mining, Shrivastava et al., 2016



RetinaNet performance

RetinaNet-50
@ RetinaNet-101

36
FPN Fast R-CNN
=" )
O
8 30| DSSD513
O R-FCN E
301 @ SSD513

SSD321 DSSD321

281 [E]

YOLOV2 | | | |

AP 22 @25ms g 100 150 200 250
‘ inference time (ms)



Summary

* |dentify class imbalance is the major issue for training one-
stage dense detector

* Propose Focal Loss to address class imbalance

* Achieve state-of-the-art accuracy and speed



Mask R-CNN:

A Perspective on Equivariance

ICCV 2017 Tutorial, Venice, ltaly

Kaiming He
in collaboration with: Georgia Gkioxari, Piotr Dollar, and Ross Girshick
Facebook Al Research (FAIR)



Introduction



Visual Perception Problems

Object Detection Semantic Segmentation Instance Segmentation

V4 v4 ¢



A Challenging Problem...

# entries on COCO

leaderboard
31

Object Det. Instance Seg.

# entries on Cityscapes
leaderboard

58

Semantic Seg.

11

Instance Seg.



Object Detection

e Fast/Faster R-CNN
v'Good speed
v'Good accuracy
v'Intuitive
v'Easy to use

7

RolPool

Ross Girshick. “Fast R-CNN”. ICCV 2015.
Shaoging Ren, Kaiming He, Ross Girshick, & Jian Sun. “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”. NIPS 2015.



Semantic Segmentation

* Fully Convolutional Net (FCN)
v'Good speed
v'Good accuracy
v Intuitive
v'Easy to use

forward /inference

<€

backward /learning

00 00 21
P o™ A% 40 8O” p0

Figure credit: Long et al

Jonathan Long, Evan Shelhamer, & Trevor Darrell. “Fully Convolutional Networks for Semantic Segmentation”. CVPR 2015.



Instance Segmentation

* Goals of Mask R-CNN
v'Good speed
v'Good accuracy
v'Intuitive
v'Easy to use

7

RolAlign

Y




Instance Segmentation Methods
R-CNN driven { FCN driven




Instance Segmentation Methods

!

|
|

| i

® PFN [Liang et al, arXiv’15] FCN-driven

e HyperCol [Hariharan et al, CVPR'15]

| @

e SDS [Hariharan et al, ECCV’14] |
! g AL
|

RCNN-driven

e CFM [Dai et al, CVPR’15]

e InstanceCut [Kirillov et al, CVPR’17
e MINC [Dai et al, CVPR’16] [ ]

e \Watershed [Bai & Urtasun, CVPR’17]

:'- FCIS [Li et al, CVPR’17]

‘e DIN [Arnab & Torr, CVPR17]
‘;
|

\
/



Mask R-CNN

e Mask R-CNN = Faster R-CNN with FCN on Rols
Faster R-CNN

class
box
//
//
] /: A (
. AN A
RolAlign| ¢9ts%s 9%
g conv’ Tconv
) |
// :/ ///
W )

FCN on Rol



Parallel Heads

* Easy, fast to implement and train

Feat.

cls

bbox
reg

Feat.

(slow) R-CNN

Fast/er R-CNN

cls

cls

bbox
reg

Feat.

bbox
reg

mask

Mask R-CNN




Invariance vs. Equivariance

e Convolutions are translation-equivariant
* Fully-ConvNet (FCN) is translation-equivariant

* ConvNet becomes translation-invariant due to fully-connected or global
pool layers



Equivariance in Mask R-CNN

ol

A
/// // //
T //
A H 1
.| RolAlign] _ (7
TATIM "z >
[ Trconv
/ Vd

|\ J

Y

1. Fully-Conv Features:
equivariant to global (image) translation



Equivariance in Mask R-CNN

ol

pal /]
/////// // ]
%)% . /1
s RolAl ign| _ //:
p / P > [ // >
| rconv
A /
/ Vd

|\ J

2. Fully-Conv on Rol:
equivariant to translation within Rol



Fully-Conv on Rol

target masks on Rols

Translation of object in Rol => Same translation of mask in Rol
e Equivariant to small translation of Rols
 More robust to Rol’s localization imperfection



Equivariance in Mask R-CNN

ol

~
| RolAlign| (7
g >
L rconv
/ Vd

3. RolAlign:
3a. maintain translation-equivariance before/after Rol



RolAlign

FAQs: how to sample grid points within a cell?

* 4 regular points in 2x2 sub-cells
* other implementation could work

conv feat. map

N\

Grid points of
bilinear interpolation

o | ¢ @
° o | o o RolAlign
output
—
e o | ©® o
e o | ©® o

(Variable size Rol)

(Fixed dimensional
representation)




see also “What is wrong with convolutional neural nets?”, Geoffrey Hinton, 2017

RolAlign vs. RolPool

* RolPool breaks pixel-to-pixel translation-equivariance

&
Q- /

RolPool coordinate
guantization




Equivariance in Mask R-CNN

ol

/]
Al A
| RolAlign| (1
il {Tyconv
/ v

3. RolAlign:
3b. Scale-equivariant (and aspect-ratio-equivariant)



Equivariance in Mask R-CNN: Summary

* Translation-equivariant
* FCN features
* FCN mask head
* RolAlign (pixel-to-pixel behavior)

 Scale-equivariant (and aspect-ratio-equivariant)
* RolAlign (warping and normalization behavior) + paste-back
* FPN features



object
surrounded by

same-category|

objects
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Mask R-CNN results on COCO
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Result Analysis



Ablation: RolPool vs. RolAlign

baseline: ResNet-50-Conv5 backbone, stride=32
mask AP box AP

AP  AP59 AP75 | AP  APXY  APD

RolPool 23.6 46.5 21.6 28.2 52.7 26.9
RolAlign | 30.9 51.8 32.1 34.0 55.3 36.4

+7.3 + 5.3 |+10.5 +35.8 +2.6 +9.5

* huge gain at high loU,
in case of big stride (32)



Ablation: RolPool vs. RolAlign

baseline: ResNet-50-Conv5 backbone, stride=32
mask AP box AP

AP  AP59 AP75 | AP  APXY  APD

RolPool 23.6 46.5 21.6 28.2 52.7 26.9
RolAlign | 309  51.8 32.1 || 34.0) 553 364
+7.3 + 53 +10.5 +5.8 +2.6 +9.5

* nice box AP without dilation/upsampling



Instance Segmentation Results on COCO

backbone AP APso AP75 | AP APp AP
MNC [7] ResNet-101-C4 24.6 443 24.8 4.7 25.9 43.6
FCIS [20] +OHEM ResNet-101-C5-dilated | 29.2 49.5 - 7.1 31.3 50.0
FCIS+++ [20] +OHEM | ResNet-101-C5-dilated | 33.6 54.5 - - - -
Mask R-CNN ResNet-101-C4 33.1 54.9 34.8 12.1 35.6 51.1
Mask R-CNN ResNet-101-FPN 35.7 58.0 37.8 15.5 38.1 52.4
Mask R-CNN ResNeXt-101-FPN 37.1 60.0 39.4 16.9 39.9 53.5

e 2 AP better than SOTA w/ R101, without bells and whistles

* 200ms / img




Instance Segmentation Results on COCO

backbone AP APso AP75 | AP APp AP
MNC [7] ResNet-101-C4 24.6 443 24.8 4.7 25.9 43.6
FCIS [20] +OHEM ResNet-101-C5-dilated | 29.2 49.5 - 7.1 31.3 50.0
FCIS+++ [20] +OHEM | ResNet-101-C5-dilated | 33.6 54.5 - - - -
Mask R-CNN ResNet-101-C4 33.1 54.9 34.8 12.1 35.6 51.1
Mask R-CNN ResNet-101-FPN 35.7 58.0 37.8 15.5 38.1 52.4
Mask R-CNN ResNeXt-101-FPN 37.1 60.0 39.4 16.9 39.9 53.5

* benefit from better features (ResNeXt [xie et al. cvpPrR'17])




Object Detection Results on COCO

backbone AP®  APZ  AP2Y | AP® APY  APP
Faster R-CNN+++ [15] ResNet-101-C4 349 557 374 | 156 387 509
Faster R-CNN w FPN [22] | ResNet-101-FPN 36.2 | 59.1 39.0 | 182 39.0 482

Faster R-CNN by G-RMI [17] | Inception-ResNet-v2 [32] 347 55.5 36.7 13.5 38.1 52.0
Faster R-CNN w TDM [31] Inception-ResNet-v2-TDM | 36.8 57.7 39.2 16.2 390.8 52.1

Faster R-CNN, RolAlign ResNet-101-FPN 37.3 59.6 40.3 19.8 40.2 48.8
Mask R-CNN ResNet-101-FPN 38.2 60.3 41.7 20.1 41.1 50.2
Mask R-CNN ResNeXt-101-FPN 39.8 62.3 43.4 22.1 43.2 51.2

bbox detection improved by:
* RolAlign



Object Detection Results on COCO

backbone AP AP%®  APPR | AP APY AP
Faster R-CNN+++ [15] ResNet-101-C4 349 557 374 | 156 387 509
Faster R-CNN w FPN [22] | ResNet-101-FPN 362 59.1 390 | 182 39.0 482

Faster R-CNN by G-RMI [17] | Inception-ResNet-v2 [32] 347 55.5 36.7 13.5 38.1 52.0
Faster R-CNN w TDM [31] Inception-ResNet-v2-TDM | 36.8 57.7 39.2 16.2 390.8 52.1

Faster R-CNN, RolAlign ResNet-101-EPN 373 | 596 403 | 19.8 402 488
Mask R-CNN ResNet-101-FPN 603 417 | 201 411 502
Mask R-CNN ResNeXt-101-FPN 398 623 434 | 221 432 512

bbox detection improved by:
* RolAlign
* Multi-task training w/ mask
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Mask R-CNN results on COCO



small
objects

Mask R-CNN results on COCO
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Mask R-CNN results on CityScapes
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Mask R-CNN results on COCO
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Failure case: recognition

umbrella.87

not a kite SR . '__,V.J'émr 9S.)~!

| héndbagﬁ.76

Mask R-CNN results on COCO



28x28 soft prediction from Mask R-CNN
(enlarged)

Soft prediction resampled to image coordinates

(bilinear and bicubic interpolation work equally well)

Final prediction (threshold at 0.5)

Validation image with box detection shown in red



28x28 soft prediction

Resized Soft prediction

Final mask

<\

Validation image with box detection shown in red



Mask R-CNN: for Human Keypoint Detection

0.94 nose 1.00 left_eye 1.00 right_eye 0.98 left_ear 0.98

- 1 keypoint = 1-hot “mask” /“"f ﬂ ﬂ ﬁ
* Human pose = 17 masks

nght ear 0 93 left_shoulder 0. 97r|ght shoulder 1.00 left elbow 0.41 rlght elbow 0.99

"1 T EiaNE
* Softmax over spatial locations ‘ ‘ ‘ i‘ s“

° e.g. 562_Way Softmax on 56X56 Ieft wrlst 0.91 right_ wrlst 0.97 left_hip 0.96 right_hip 0.97 left knee 0.99

A R X

* Desire the same equivariances | |
right knee 0.99 left ankle 0.91 right_ankle 0.98

* translation, scale, aspect ratio v 1 i“ aw
: N e,
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Conclusion

Mask R-CNN
v'Good speed Code will be open-sourced as
v Facebook Al Research’s Detectron platform
Good accuracy
v Intuitive

v'Easy to use
v'Equivariance matters



