
Lecture	
 6:	
 Mul,-­‐view	
 Stereo	
 &	

Structure	
 from	
 Mo,on	

Prof.	
 Rob	
 Fergus	

Many	
 slides	
 adapted	
 from	
 Lana	
 Lazebnik	
 and	
 Noah	
 Snavelly,	
 who	
 in	
 turn	
 adapted	
 slides	
 from	

Steve	
 Seitz,	
 Rick	
 Szeliski,	
 Mar,al	
 Hebert,	
 Mark	
 Pollefeys,	
 and	
 others….	

Overview	

•  Mul,-­‐view	
 stereo	

•  Structure	
 from	
 Mo,on	
 (SfM)	

•  Large	
 scale	
 Structure	
 from	
 Mo,on	

•  Kinect	
 Fusion	

•  Dynamic	
 Fusion	

Mul,-­‐view	
 Stereo	

CMU’s 3D Room

Point Grey’s Bumblebee XB3

Point Grey’s ProFusion 25

[Slide: N. Snavely]

Mul,-­‐view	
 Stereo	

[Slide: N. Snavely]

Mul,-­‐view	
 Stereo	

Figures by Carlos Hernandez

Input:	
 	
 calibrated	
 images	
 from	
 several	
 viewpoints	

Output:	
 	
 3D	
 object	
 model	

[Slide: N. Snavely]

Fua Narayanan, Rander, Kanade Seitz, Dyer
1995 1997 1998

Faugeras, Keriven
1998

Hernandez, Schmitt Pons, Keriven, Faugeras Furukawa, Ponce
2004 2005 2006

Goesele et al.
2007

Furukawa et al., 2010

Stereo:	
 	
 another	
 view	

error

depth

[Slide: N. Snavely]

width of
a pixel

Choosing	
 the	
 stereo	
 baseline	

What’s	
 the	
 op,mal	
 baseline?	

– Too	
 small:	
 	
 large	
 depth	
 error	

– Too	
 large:	
 	
 difficult	
 search	
 problem	

Large Baseline Small Baseline

all of these
points project
to the same
pair of pixels

[Slide: N. Snavely]

The	
 Effect	
 of	
 Baseline	
 on	
 Depth	

Es,ma,on	

z

width of
a pixel

width of
a pixel

z

pixel matching score

Multibaseline Stereo

Basic Approach
•  Choose a reference view
•  Use your favorite stereo algorithm BUT

>  replace two-view SSD with SSSD over all baselines

Limitations
•  Only gives a depth map (not an “object model”)
•  Won’t work for widely distributed views:

Some Solutions
•  Match only nearby photos [Narayanan 98]
•  Use NCC instead of SSD,

Ignore NCC values > threshold
[Hernandez & Schmitt 03]

Problem: visibility

Popular matching scores

•  SSD (Sum Squared Distance)

•  NCC (Normalized Cross Correlation)

•  where

•  what advantages might NCC have?

[Slide: N. Snavely]

Reconstruction from Silhouettes

Binary Images

Approach:
•  Backproject each silhouette
•  Intersect backprojected volumes

Volume intersection

Reconstruction Contains the True Scene
•  But is generally not the same
•  In the limit (all views) get visual hull

>  Complement of all lines that don’t intersect S

Voxel algorithm for volume intersection

Color voxel black if on silhouette in every image
•  for M images, N3 voxels
•  Don’t have to search 2N3 possible scenes!

O(
 MN3	
),	

Properties of Volume Intersection

Pros
•  Easy to implement, fast
•  Accelerated via octrees [Szeliski 1993] or interval techniques

[Matusik 2000]

Cons

•  No concavities
•  Reconstruction is not photo-consistent
•  Requires identification of silhouettes

Multi-view stereo: Summary
•  Multiple-baseline stereo

•  Pick one input view as reference
•  Inverse depth instead of disparity

•  Volumetric stereo
•  Photo-consistency
•  Space carving

•  Shape from silhouettes
•  Visual hull: intersection of visual cones

•  Carved visual hulls
•  Feature-based stereo

•  From sparse to dense correspondences

All assume calibrated cameras!

Overview
Multi-view stereo

Structure from Motion (SfM)

Large scale Structure from Motion

Structure from motion

Multiple-view geometry questions

•  Scene geometry (structure): Given 2D point
matches in two or more images, where are the
corresponding points in 3D?

•  Correspondence (stereo matching): Given a
point in just one image, how does it constrain the
position of the corresponding point in another
image?

•  Camera geometry (motion): Given a set of
corresponding points in two or more images, what
are the camera matrices for these views?

Slide: S. Lazebnik

Structure from motion
•  Given: m images of n fixed 3D points

xij = Pi Xj , i = 1, … , m, j = 1, … , n

•  Problem: estimate m projection matrices Pi and
n 3D points Xj from the mn correspondences xij

x1j

x2j

x3j

Xj

P1

P2

P3

Slide: S. Lazebnik

Structure from motion ambiguity
•  If we scale the entire scene by some factor k and, at

the same time, scale the camera matrices by the
factor of 1/k, the projections of the scene points in the
image remain exactly the same:

It is impossible to recover the absolute scale of the scene!

)(1 XPPXx k
k

⎟
⎠

⎞
⎜
⎝

⎛==

Slide: S. Lazebnik

Structure from motion ambiguity
•  If we scale the entire scene by some factor k and, at

the same time, scale the camera matrices by the
factor of 1/k, the projections of the scene points in the
image remain exactly the same

•  More generally: if we transform the scene using a
transformation Q and apply the inverse
transformation to the camera matrices, then the
images do not change

()()QXPQPXx -1==

Slide: S. Lazebnik

Types of ambiguity

⎥
⎦

⎤
⎢
⎣

⎡

vTv
tAProjective

15dof

Affine
12dof

Similarity
7dof

Euclidean
6dof

Preserves intersection and
tangency

Preserves parallellism,
volume ratios

Preserves angles, ratios of
length

⎥
⎦

⎤
⎢
⎣

⎡

10
tA

T

⎥
⎦

⎤
⎢
⎣

⎡

10
tR

T

s

⎥
⎦

⎤
⎢
⎣

⎡

10
tR

T
Preserves angles, lengths

•  With no constraints on the camera calibration matrix or on the
scene, we get a projective reconstruction

•  Need additional information to upgrade the reconstruction to
affine, similarity, or Euclidean

Slide: S. Lazebnik

Projective ambiguity

()()XQPQPXx P
-1

 P==

Projective ambiguity

Affine ambiguity

()()XQPQPXx A
-1

 A==

Affine

Affine ambiguity

Similarity ambiguity

()()XQPQPXx S
-1
S==

Similarity ambiguity

Structure from motion
•  Let’s start with affine cameras (the math is easier)

center at
infinity

Recall: Orthographic Projection
Special case of perspective projection

•  Distance from center of projection to image plane is infinite

•  Projection matrix:

Image World

Slide by Steve Seitz

Orthographic Projection

Parallel Projection

Affine cameras

Affine cameras
•  A general affine camera combines the effects of an

affine transformation of the 3D space, orthographic
projection, and an affine transformation of the image:

•  Affine projection is a linear mapping + translation in
inhomogeneous coordinates

⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=×

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

×=
10
bA

P
1000

]affine44[
1000
0010
0001

]affine33[2232221

1131211

baaa
baaa

x

X a1

a2

bAXx +=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎥
⎦

⎤
⎢
⎣

⎡
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

2

1

232221

131211

b
b

Z
Y
X

aaa
aaa

y
x

Projection of
world origin

Affine structure from motion
•  Given: m images of n fixed 3D points:

 xij = Ai Xj + bi , i = 1,… , m, j = 1, … , n

•  Problem: use the mn correspondences xij to estimate
m projection matrices Ai and translation vectors bi,
and n points Xj

•  The reconstruction is defined up to an arbitrary affine
transformation Q (12 degrees of freedom):

•  We have 2mn knowns and 8m + 3n unknowns (minus
12 dof for affine ambiguity)

•  Thus, we must have 2mn >= 8m + 3n – 12
•  For two views, we need four point correspondences

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
→⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
→⎥

⎦

⎤
⎢
⎣

⎡ −

1
X

Q
1
X

,Q
10
bA

10
bA 1

Affine structure from motion
•  Centering: subtract the centroid of the image points

•  For simplicity, assume that the origin of the world
coordinate system is at the centroid of the 3D points

•  After centering, each normalized point xij is related to
the 3D point Xi by

()

ji

n

k
kji

n

k
ikiiji

n

k
ikijij

n

nn

XAXXA

bXAbXAxxx

ˆ1

11ˆ

1

11

=⎟
⎠

⎞
⎜
⎝

⎛
−=

+−+=−=

∑

∑∑

=

==

jiij XAx =ˆ

Affine structure from motion
•  Let’s create a 2m × n data (measurement) matrix:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

mnmm

n

n

xxx

xxx
xxx

D

ˆˆˆ

ˆˆˆ
ˆˆˆ

21

22221

11211

!
"
!
!

cameras
(2 m)

points (n)

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography:
A factorization method. IJCV, 9(2):137-154, November 1992.

Affine structure from motion
•  Let’s create a 2m × n data (measurement) matrix:

[]n

mmnmm

n

n

XXX

A

A
A

xxx

xxx
xxx

D !
"

!
#
!
!

21
2

1

21

22221

11211

ˆˆˆ

ˆˆˆ
ˆˆˆ

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

cameras
(2 m × 3)

points (3 × n)

The measurement matrix D = MS must have rank 3!

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography:
A factorization method. IJCV, 9(2):137-154, November 1992.

Factorizing the measurement matrix

Source: M. Hebert

Factorizing the measurement matrix
•  Singular value decomposition of D:

Source: M. Hebert

Factorizing the measurement matrix
•  Singular value decomposition of D:

Source: M. Hebert

Factorizing the measurement matrix
•  Obtaining a factorization from SVD:

Source: M. Hebert

Factorizing the measurement matrix
•  Obtaining a factorization from SVD:

Source: M. Hebert

This decomposition minimizes
|D-MS|2

Affine ambiguity

•  The decomposition is not unique. We get the same D
by using any 3×3 matrix C and applying the
transformations M → MC, S →C-1S

•  That is because we have only an affine transformation
and we have not enforced any Euclidean constraints
(like forcing the image axes to be perpendicular, for
example)

Source: M. Hebert

•  Orthographic:	
 image	
 axes	
 are	

perpendicular	
 and	
 of	
 unit	
 length	

	

	

	

	

	

	

	

	

Elimina,ng	
 the	
 affine	
 ambiguity	

x

X a1

a2

a1 · a2 = 0

|a1|2 = |a2|2 = 1

Source: M. Hebert

Solve	
 for	
 orthographic	
 constraints	

•  Solve	
 for	
 L	
 =	
 CCT	

•  Recover	
 C	
 from	
 L	
 by	
 Cholesky	
 decomposi,on:	

L	
 =	
 CCT	

•  Update	
 A	
 and	
 X:	
 	
 A	
 =	
 AC,	
 X	
 =	
 C-­‐1X	

⎥
⎦

⎤
⎢
⎣

⎡
= T

i

T
i

i
2

1
~
~~
a
a

Awhere

1~~
11 =T
i

TT
i aCCa

1~~
22 =T
i

TT
i aCCa

0~~
21 =T
i

TT
i aCCa

~ ~

Three equations for each image i

Slide:	
 D.	
 Hoiem	

Algorithm summary
•  Given: m images and n features xij

•  For each image i, center the feature coordinates
•  Construct a 2m × n measurement matrix D:

•  Column j contains the projection of point j in all views
•  Row i contains one coordinate of the projections of all the n

points in image i

•  Factorize D:
•  Compute SVD: D = U W VT

•  Create U3 by taking the first 3 columns of U
•  Create V3 by taking the first 3 columns of V
•  Create W3 by taking the upper left 3 × 3 block of W

•  Create the motion and shape matrices:
•  M = U3W3

½ and S = W3
½ V3

T (or M = U3 and S = W3V3
T)

•  Eliminate affine ambiguity
Source: M. Hebert

Reconstruction results

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography:
A factorization method. IJCV, 9(2):137-154, November 1992.

Dealing with missing data
•  So far, we have assumed that all points are visible in

all views
•  In reality, the measurement matrix typically looks

something like this:

cameras

points

Dealing with missing data
•  Possible solution: decompose matrix into dense sub-

blocks, factorize each sub-block, and fuse the results
•  Finding dense maximal sub-blocks of the matrix is NP-

complete (equivalent to finding maximal cliques in a graph)

•  Incremental bilinear refinement

(1)  Perform
factorization on a
dense sub-block

(2) Solve for a new
3D point visible by
at least two known
cameras (linear
least squares)

(3) Solve for a new
camera that sees at
least three known
3D points (linear
least squares)

F. Rothganger, S. Lazebnik, C. Schmid, and J. Ponce.
Segmenting, Modeling, and Matching Video Clips Containing Multiple Moving Objects.
PAMI 2007.

Projective structure from motion
•  Given: m images of n fixed 3D points

zij xij = Pi Xj , i = 1,… , m, j = 1, … , n

•  Problem: estimate m projection matrices Pi and n 3D
points Xj from the mn correspondences xij

x1j

x2j

x3j

Xj

P1

P2

P3

Projective structure from motion
•  Given: m images of n fixed 3D points

zij xij = Pi Xj , i = 1,… , m, j = 1, … , n

•  Problem: estimate m projection matrices Pi and n 3D
points Xj from the mn correspondences xij

•  With no calibration info, cameras and points can only
be recovered up to a 4x4 projective transformation Q:

X → QX, P → PQ-1
•  We can solve for structure and motion when

2mn >= 11m +3n – 15
•  For two cameras, at least 7 points are needed

Projective SFM: Two-camera case
•  Compute fundamental matrix F between the two views
•  First camera matrix: [I|0]

•  Second camera matrix: [A|b]
•  Then b is the epipole (FTb = 0), A = –[b×]F

F&P sec. 13.3.1

Sequential structure from motion
• Initialize motion from two images
using fundamental matrix

• Initialize structure by triangulation

• For each additional view:

•  Determine projection matrix of
new camera using all the known
3D points that are visible in its
image – calibration ca

m
er

as

points

Sequential structure from motion
• Initialize motion from two images
using fundamental matrix

• Initialize structure by triangulation

• For each additional view:

•  Determine projection matrix of
new camera using all the known
3D points that are visible in its
image – calibration

•  Refine and extend structure:
compute new 3D points,
re-optimize existing points that
are also seen by this camera –
triangulation

ca
m

er
as

points

Sequential structure from motion
• Initialize motion from two images
using fundamental matrix

• Initialize structure by triangulation

• For each additional view:

•  Determine projection matrix of
new camera using all the known
3D points that are visible in its
image – calibration

•  Refine and extend structure:
compute new 3D points,
re-optimize existing points that
are also seen by this camera –
triangulation

• Refine structure and motion:
bundle adjustment

ca
m

er
as

points

Bundle adjustment
•  Non-linear method for refining structure and motion
•  Minimizing reprojection error

()
2

1 1
,),(∑∑

= =

=
m

i

n

j
jiijDE XPxXP

x1j

x2j

x3j

Xj

P1

P2

P3

P1Xj

P2Xj
P3Xj

Self-calibration
•  Self-calibration (auto-calibration) is the process of

determining intrinsic camera parameters directly from
uncalibrated images

•  For example, when the images are acquired by a
single moving camera, we can use the constraint that
the intrinsic parameter matrix remains fixed for all the
images
•  Compute initial projective reconstruction and find 3D

projective transformation matrix Q such that all camera
matrices are in the form Pi = K [Ri | ti]

•  Can use constraints on the form of the calibration
matrix: zero skew

Review: Structure from motion
•  Ambiguity
•  Affine structure from motion

•  Factorization

•  Dealing with missing data
•  Incremental structure from motion

•  Projective structure from motion
•  Bundle adjustment
•  Self-calibration

Summary: 3D geometric vision
•  Single-view geometry

•  The pinhole camera model
–  Variation: orthographic projection

•  The perspective projection matrix
•  Intrinsic parameters
•  Extrinsic parameters
•  Calibration

•  Multiple-view geometry
•  Triangulation
•  The epipolar constraint

–  Essential matrix and fundamental matrix
•  Stereo

–  Binocular, multi-view
•  Structure from motion

–  Reconstruction ambiguity
–  Affine SFM
–  Projective SFM

Overview
Multi-view stereo

Structure from Motion (SfM)

Large scale Structure from Motion

Large-scale Structure from motion

Given many images from photo collections how can we
a) figure out where they were all taken from?
b) build a 3D model of the scene?

This is (roughly) the structure from motion problem

Slides from N. Snavely

appearance variation

resolution

massive collections

Challenges

Large-scale structure from motion

Dubrovnik,	
 Croa,a.	
 	
 4,619	
 images	
 (out	
 of	
 an	
 ini,al	
 	
 57,845).	

Total	
 reconstruc,on	
 ,me:	
 23	
 hours	

Number	
 of	
 cores:	
 352	
 Slide: N. Snavely

Structure from motion

•  Input:	
 images	
 with	
 points	
 in	
 correspondence	
 	
 	
 	
 	
 	

	
 pi,j	
 	
 =	
 (ui,j,vi,j)	

•  Output	

•  structure:	
 3D	
 loca,on	
 xi	
 for	
 each	
 point	
 pi	

•  mo,on:	
 camera	
 parameters	
 Rj	
 ,	
 tj	
 possibly	
 Kj	

•  Objec,ve	
 func,on:	
 minimize	
 reprojec+on	
 error	

	

Reconstruc,on	
 (side)	
 (top)	

Photo Tourism

Slide: N. Snavely

TreviFlythrojugh2.wmv

First step: how to get correspondence?

Feature detection and matching

Feature detection

Detect	
 features	
 using	
 SIFT	
 [Lowe,	
 IJCV	
 2004]	

Feature detection

Detect features using SIFT [Lowe, IJCV 2004]

Feature matching

Match features between each pair of images

Feature matching

Refine	
 matching	
 using	
 RANSAC	
 to	
 es,mate	
 fundamental	

matrix	
 between	
 each	
 pair	

p1,1	

p1,2	

p1,3	

Image	
 1	

Image	
 2	

Image	
 3	

x1

x4

x3

x2

x5

x6

x7

R1,t1

R2,t2

R3,t3

Slide: N. Snavely

Structure from motion

Camera	
 1	

Camera	
 2	

Camera	
 3	

R1,t1

R2,t2

R3,t3

p1

p4

p3

p2

p5

p6

p7

minimize
g (R, T, P)

Slide: N. Snavely

SfM objective function

Given point x and rotation and translation R, t

Minimize sum of squared reprojection errors:

	
 	

	
 	
 	
 	

predicted	
 	

image	
 loca,on	

observed	

image	
 loca,on	

Solving structure from motion
Minimizing g is difficult

•  g is non-linear due to rotations, perspective division
•  lots of parameters: 3 for each 3D point, 6 for each

camera
•  difficult to initialize
•  gauge ambiguity: error is invariant to a similarity

transform (translation, rotation, uniform scale)

Many techniques use non-linear least-squares

(NLLS) optimization (bundle adjustment)
•  Levenberg-Marquardt is one common algorithm for

NLLS
•  Lourakis, The Design and Implementation of a

Generic Sparse Bundle Adjustment Software
Package Based on the Levenberg-Marquardt
Algorithm, http://www.ics.forth.gr/~lourakis/sba/

•  http://en.wikipedia.org/wiki/Levenberg-
Marquardt_algorithm

Extensions to SfM

Can also solve for intrinsic parameters (focal length, radial
distortion, etc.)

Can use a more robust function than squared error, to
avoid fitting to outliers

For more information, see: Triggs, et al, “Bundle

Adjustment – A Modern Synthesis”, Vision
Algorithms 2000.

Problem size
Trevi Fountain collection

 466 input photos
 + > 100,000 3D points
 = very large optimization problem

Incremental structure from motion

Incremental structure from motion

Slide: N. Snavely

Incremental structure from motion

Slide: N. Snavely

Photo Explorer

Slide: N. Snavely

KinectFusion:	
 Real-­‐Time	
 Dense	

Surface	
 Mapping	
 and	
 Tracking	

	
 by	
 Richard.A	
 Newcombe	
 et	
 al.	

	

Presen,ng:	
 Boaz	
 Petersil	

Video	

Mo,va,on	

Augmented	
 Reality	

3d	
 model	
 scanning	

Robot	
 Naviga,on	

Etc..	

[Slide: B. Petersil]

Related	
 Work	

Tracking	
 (&sparse	
 Mapping)	

Bundle-­‐adjustment(offline)	
 PTAM	

DTAM	
 (RGB	
 cam!)	

Tracking&Mapping	

Dense	
 Mapping	

Kinect	
 Fusion	

[Slide: B. Petersil]

Challenges	

•  Tracking	
 Camera	
 Precisely	

•  Fusing	
 and	
 De-­‐noising	
 Measurements	

•  Avoiding	
 Drio	

•  Real-­‐Time	

•  Low-­‐Cost	
 Hardware	

[Slide: B. Petersil]

Proposed	
 Solu,on	

•  Fast	
 Op,miza,on	
 for	
 Tracking,	
 Due	
 to	
 High	
 Frame	

Rate.	

•  Global	
 Framework	
 for	
 fusing	
 data	

•  Interleaving	
 Tracking	
 &	
 Mapping	
 	

•  Using	
 Kinect	
 to	
 get	
 Depth	
 data	
 (low	
 cost)	

•  Using	
 GPGPU	
 to	
 get	
 Real-­‐Time	
 Performance	
 (low	

cost)	

[Slide: B. Petersil]

How	
 does	
 Kinect	
 work?	

[Slide: B. Petersil]

Method	

[Slide: B. Petersil]

Tracking	

•  Finding	
 Camera	
 posi,on	
 is	
 the	
 same	
 as	
 fipng	

frame’s	
 Depth	
 Map	
 onto	
 Model	

Tracking	

Mapping	
 [Slide: B. Petersil]

Tracking	
 –	
 ICP	
 algorithm	

•  icp	
 =	
 itera,ve	
 closest	
 point	

•  Goal:	
 fit	
 two	
 3d	
 point	
 sets	

•  Problem:	
 What	
 are	
 the	
 correspondences?	

•  Kinect	
 fusion	
 chosen	
 solu,on:	

1)  Start	
 with	
 	

2)  Project	
 model	
 onto	
 camera	

3)  Correspondences	
 are	
 points	
 with	
 same	
 coordinates	
 	

4)  Find	
 new	
 T	
 with	
 Least	
 -­‐	
 Squares	

5)  Apply	
 T,	
 and	
 repeat	
 2-­‐5	
 un,l	
 convergence	

	

0T

Tracking	

Mapping	
 [Slide: B. Petersil]

Tracking	
 –	
 ICP	
 algorithm	

• 	
 Assump,on:	
 frame	
 and	
 model	
 are	
 roughly	
 aligned.	
 	

• 	
 True	
 because	
 of	
 high	
 frame	
 rate	

Tracking	

Mapping	
 [Slide: B. Petersil]

Mapping	

•  Mapping	
 is	
 Fusing	
 depth	
 maps	
 when	
 camera	

poses	
 are	
 known	

•  Problems:	
 	

– measurements	
 are	
 noisy	

– Depth	
 maps	
 have	
 holes	
 in	
 them	

•  Solu,on:	
 	

– using	
 implicit	
 surface	
 representa,on	
 	
 	

– Fusing	
 =	
 es,ma,ng	
 from	
 all	
 frames	
 relevant	

Tracking	

Mapping	
 [Slide: B. Petersil]

Mapping	
 –	
 surface	
 representa,on	
 	

•  Surface	
 is	
 represented	
 implicitly	
 -­‐	
 using	
 	
 	
 	
 	

Truncated	
 Signed	
 Distance	
 Func,on	
 (TSDF)	

	

• Numbers	
 in	
 cells	
 measure	
 voxel	
 distance	
 to	
 surface	
 –	
 D	

Voxel	
 grid	

Tracking	

Mapping	
 [Slide: B. Petersil]

Mapping	

Tracking	

Mapping	
 [Slide: B. Petersil]

Mapping	

d=	
 [pixel	
 depth]	
 –	
 [distance	
 from	
 sensor	
 	
 to	
 voxel]	
 	
 Tracking	

Mapping	
 [Slide: B. Petersil]

Mapping	

Tracking	

Mapping	
 [Slide: B. Petersil]

Mapping	

Tracking	

Mapping	
 [Slide: B. Petersil]

Mapping	

Tracking	

Mapping	
 [Slide: B. Petersil]

Mapping	

•  Each	
 Voxel	
 also	
 has	
 a	
 weight	
 W,	
 propor,onal	
 to	
 grazing	
 angle	

•  Voxel	
 D	
 is	
 the	
 weighted	
 average	
 of	
 all	
 measurements	
 1()d x

2 ()w x

1()w x
()W x

sensor1	

2 ()d x
1()d x

sensor2	

()F x

Tracking	

Mapping	
 [Slide: B. Petersil]

Handling	
 drio	

•  Drio	
 would	
 have	
 happened	
 If	
 tracking	
 was	
 done	
 from	

frame	
 to	
 previous	
 frame	

•  Tracking	
 is	
 done	
 on	
 built	
 model	

Tracking	

Mapping	
 [Slide: B. Petersil]

[Slide: B. Petersil]

Results	
 &	
 Applica,ons	

Pros	
 &	
 Cons	

•  Pros:	

–  Really	
 nice	
 results!	

•  Real	
 ,me	
 performance	
 (30	
 HZ)	

•  Dense	
 model	

•  No	
 drio	
 with	
 local	
 op,miza,on	

•  Robust	
 	
 to	
 scene	
 changes	

–  Elegant	
 solu,on	

•  Cons	
 :	

–  3d	
 grid	
 can’t	
 be	
 trivially	
 up-­‐scaled	
 	

	

[Slide: B. Petersil]

Limita,ons	

•  Doesn’t	
 work	
 for	
 large	
 areas	
 (Voxel-­‐Grid)	

•  Doesn’t	
 work	
 far	
 away	
 from	
 objects	
 (ac,ve	
 ranging)	

•  Doesn’t	
 work	
 out-­‐doors	
 (IR)	

•  Requires	
 	
 powerful	
 	
 Graphics	
 card	

•  Uses	
 lots	
 of	
 batery	
 (ac,ve	
 ranging)	

•  Only	
 one	
 sensor	
 at	
 a	
 ,me	

	

[Slide: B. Petersil]

