Lecture 6: Multi-view Stereo &
Structure from Motion

Many slides adapted from Lana Lazebnik and Noah Snavelly, who in turn adapted slides from
Steve Seitz, Rick Szeliski, Martial Hebert, Mark Pollefeys, and others....



Overview

Multi-view stereo

Structure from Motion (SfM)

Large scale Structure from Motion

Kinect Fusion

Dynamic Fusion



Multi-view Stereo

e
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Point Grey’s ProFusion 25

CMU’s 3D Room [Slide: N. Snavely]



Multi-view Stereo
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Multi-view Stereo

Input: calibrated images from several viewpoints
Output: 3D object model

Figures by Carlos Hernandez

[Slide: N. Snavely]
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Stereo: another view

[Slide: N. Snavely]



Choosing the stereo baseline

all of these
points project
to the same
pair of pixels

width of
a pixel

/ N [\

Large Baseline Small Baseline

What’s the optimal baseline?
— Too small: large depth error

— Too large: difficult search problem
[Slide: N. Snavely]



The Effect of Baseline on Depth
Estimation
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Fgure 2: Anexample scene. The grid
pattern in the background has Baseline b 2b 3b 4b 5b 6b 7b 8b 9b
ambiguity of matching.
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Fig. 6. Combining two stereo pairs with different baselines.
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The horizontal axis is normalized such that 8bF = 1. Fig. 7. Combining multiple baseline stereo pairs.



Multibaseline Stereo

Basic Approach
« Choose a reference view

» Use your favorite stereo algorithm BUT
> replace two-view SSD with SSSD over all baselines

Limitations
« Only gives a depth map (not an “object model”)

« Won’t work for widely distributed views:




Fig. 5. SSD valucs versus inverse distance: (a) B = b; (b) B

B =3 (d) B = 4b; () B = 5b; (f) B = 6b; () B = 7b; (h) B = 8b.

The horizontal axis is normalized such that 8bF = 1.

evaluation function

Bu2b.4b,6b,8

inverse depth

Fig. 7. Combining multiple baseline stereo pairs.

Some Solutions
Match only nearby photos [Narayanan 98]

Use NCC instead of SSD,
Ignore NCC values > threshold
[Hernandez & Schmitt 03]



Popular matching scores

« SSD (Sum Squared Distance)

> Wz, y) — Walz,y)|?

 NCC (Normalized Cross Correlation)

Zx,y(Wl (ZC, y) - Wl)(WQ (QZ, y) - WQ)

O']/VlO'v[/2

1 1 s

 where WZ — E ZWZ ow, = ; Z(Wz — Wz)
T,y L,y

« what advantages might NCC have?

[Slide: N. Snavely]



Reconstruction from Silhouettes

Binary Images =——p @

Approach:
« Backproject each silhouette
 Intersect backprojected volumes



Volume intersection

/'\,’ v
b
Reconstruction Contains the True Scene

« Butis generally not the same

* In the limit (all views) get visual hull
> Complement of all lines that don’ t intersect S



Voxel algorithm for volume intersection

4

Color voxel black if on silhouette in every image
« O(MN3), for M images, N3 voxels
- Don’ t have to search 2N\° possible scenes!



Properties of Volume Intersection

Pros
« Easy to implement, fast

» Accelerated via octrees [Szeliski 1993] or interval techniques
[Matusik 2000]

Cons
* No concavities
» Reconstruction is not photo-consistent
» Requires identification of silhouettes



Multi-view stereo: Summary

Multiple-baseline stereo
* Pick one input view as reference
» Inverse depth instead of disparity

Volumetric stereo
* Photo-consistency
« Space carving

Shape from silhouettes
* Visual hull; intersection of visual cones
Carved visual hulls

Feature-based stereo
 From sparse to dense correspondences

All assume calibrated cameras!



Overview

Multi-view stereo

Structure from Motion (SfM)

Large scale Structure from Motion
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Multiple-view geometry questions

Scene geometry (structure): Given 2D point
matches in two or more images, where are the

corresponding points in 3D?

Correspondence (stereo matching): Given a
point in just one image, how does it constrain the
position of the corresponding point in another
image”?

Camera geometry (motion): Given a set of

corresponding points in two or more images, what
are the camera matrices for these views?

Slide: S. Lazebnik



Structure from motion

« Given: mimages of n fixed 3D points
x,=P;X,, i=1..,m j=1..,n

* Problem: estimate m projection matrices P; and
n 3D points X; from the mn correspondences x;

Slide: S. Lazebnik



Structure from motion ambiguity

 If we scale the entire scene by some factor k and, at
the same time, scale the camera matrices by the
factor of 1/k, the projections of the scene points in the

Image remain exactly the same:

1
x = PX = (EP)(/(X)

It is impossible to recover the absolute scale of the scene!

Slide: S. Lazebnik



Structure from motion ambiguity

 If we scale the entire scene by some factor k and, at
the same time, scale the camera matrices by the
factor of 1/k, the projections of the scene points in the
Image remain exactly the same

« More generally: if we transform the scene using a
transformation Q and apply the inverse
transformation to the camera matrices, then the
Images do not change

x =PX = (PQ" QX)

Slide: S. Lazebnik



Types of ambiguity

Projective (At Preserves intersection and
15dof T tangency

\Y 1%
Affine (At Preserves parallellism,
12dof 0" 1 volume ratios
Similarity (sRt Preserves angles, ratios of
7dof o7 1 length
Euclidean R t
6dof S Preserves angles, lengths

* With no constraints on the camera calibration matrix or on the
scene, we get a projective reconstruction

* Need additional information to upgrade the reconstruction to

affine, similarity, or Euclidean
Slide: S. Lazebnik



Projective ambiguity

\ g/
éua/

x = PX = (PQ} |Q, X)



Projective ambiguity




Affine ambiguity

41 ¥ Q/
X =PX = (PQ A XQ A




Affine ambiguity




Similarity ambiguity

x=PX= (PQ-SI XQSX)



Similarity ambiguity




Structure from motion

« Let’ s start with affine cameras (the math is easier)

o

center at
infinity

perspective weak perspective

increasing focal length -

increasing distance from camera =




Recall: Orthographic Projection

Special case of perspective projection
» Distance from center of projection to image plane is infinite

* Projection matrix:

= (z,9)

OGN
O~ 0O
o O O
= O O

=N @ 8

|
WS

Slide by Steve Seitz



Affine cameras

Orthographic Projection «
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Parallel Projection g
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Affine cameras

* A general affine camera combines the effects of an
affine transformation of the 3D space, orthographic
projection, and an affine transformation of the image:

S = O
oS O O
_—o O

. A b
[4x 4affmne]=|a,, a, a, Db, =[ ]

1
P =[3x3affine]| 0 0 1
0

« Affine projection is a linear mapping + translation in
Inhomogeneous coordinates

X
— () )

A S ay 4y dy 7 2 /
a /\\\\\ ST
o X Projection of

a, world origin




Affine structure from motion

Given: m images of n fixed 3D points:
x; =A;X;+b, i=1..,mj=1 ..,n
Problem: use the mn correspondences x;; to estimate

m projection matrices A; and translation vectors b,
and n points X;

The reconstruction is defined up to an arbitrary affine
transformation Q (12 degrees of freedom):

A b A b Q- X 0 X

0 1 0 1|~ 1 1
We have 2mn knowns and 8m + 3n unknowns (minus
12 dof for affine ambiguity)

Thus, we must have 2mn >=8m + 3n—-12
For two views, we need four point correspondences




Affine structure from motion

« Centering: subtract the centroid of the image points

%, =xij-12xik =AX, +b, —lZ(AiXk +b,)
n =] =]

nf=
1 & -
= A, Xj——ZXk =AX,
n =

* For simplicity, assume that the origin of the world
coordinate system is at the centroid of the 3D points

* After centering, each normalized point x; is related to
the 3D point X, by

X, =AZ.X].



Affine structure from motion

« Let’ s create a 2m x n data (measurement) matrix:

-&11 ﬁlz &ln -
D — &21 izz ﬁZ” cameras
(2m)
_&ml ﬁm2 &mn | -
points (n) #

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography:
A factorization method. IJCV, 9(2):137-154, November 1992.




Affine structure from motion

« Let’ s create a 2m x n data (measurement) matrix:

X1 X o Xy, A,
X X oo X A
21 22 2 y)
D = o= X X, e X
A ' A . points (3 x n)
_Xml Xm2 T an | _Am ]
cameras
(2m x 3)

The measurement matrix D = MS must have rank 3!

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography:
A factorization method. IJCV, 9(2):137-154, November 1992.




Factorizing the measurement matrix

2m

o < |
| D = MS
< p > < 3 >

Source: M. Hebert



Factorizing the measurement matrix

« Singular value decomposition of D:

N

n n
< > < > n n
\
2
3
y

e
<

Source: M. Hebert



Factorizing the measurement matrix

« Singular value decomposition of D:
n n

< ~

e

>~
I

n

To reduce to rank 3, we

just need to set all the

singular values to 0 except
3 for the first 3

Source: M. Hebert



Factorizing the measurement matrix

« Obtaining a factorization from SVD:

2m D _

Source: M. Hebert



Factorizing the measurement matrix

« Obtaining a factorization from SVD:

n
3
2m D = U, X3I W, B V,T 13
Possible decomposition:
3 1/2 /2 v T
M=U,W, S=W,"V;

This decomposition minimizes
ID-MS|?

Source: M. Hebert



Affine ambiguity

<

* The decomposition is not unique. We get the same D
by using any 3x3 matrix C and applying the
transformations M — MC, S —C-1S

« That is because we have only an affine transformation
and we have not enforced any Euclidean constraints
(like forcing the image axes to be perpendicular, for
example)

Source: M. Hebert



Eliminating the affine ambiguity

e Orthographic: image axes are
perpendicular and of unit length

/ a;-a;=0
X

|a;]? = |a,|=1

Source: M. Hebert



Solve for orthographic constraints

Three equations for each image i

~T T~T
a,CCa, =1 ST
~ ~ N 1
a.TCCTa.T =] where Al- = Nl
i2 i2 aT
i2

~T I'—=T
a, CCa,=0

 Solve forL=CC’

 Recover C from L by Cholesky decomposition:
L=CCT

e Update Aand X: A=AC, X = CIX

Slide: D. Hoiem



Algorithm summary

» Given: mimages and n features x;
* For each image i, center the feature coordinates

* Construct a 2m x n measurement matrix D:
« Column j contains the projection of pointj in all views
* Row j contains one coordinate of the projections of all the n
points in image i
» Factorize D:
« Compute SVD:D=UWVT
« Create U, by taking the first 3 columns of U
» Create V; by taking the first 3 columns of V
« Create W, by taking the upper left 3 x 3 block of W

« Create the motion and shape matrices:
« M=U;W,%”and S=W,”V," (orM=U;and S = W,V,")
« Eliminate affine ambiguity

Source: M. Hebert



Reconstruction results

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography:

A factorization method. IJCV, 9(2):137-154, November 1992.




Dealing with missing data

« So far, we have assumed that all points are visible in
all views

* In reality, the measurement matrix typically looks
something like this:

cameras




Dealing with missing data

« Possible solution: decompose matrix into dense sub-
blocks, factorize each sub-block, and fuse the results

* Finding dense maximal sub-blocks of the matrix is NP-
complete (equivalent to finding maximal cliques in a graph)

 Incremental bilinear refinement

® © 00 0 0 0 o ® © 0 0 0 0 0 o HMl— e o o o o o [
(1) Perform (2) Solve for a new (3) Solve for a new
factorization on a 3D point visible by camera that sees at
dense sub-block at least two known least three known
cameras (linear 3D points (linear
least squares) least squares)

F. Rothganger, S. Lazebnik, C. Schmid, and J. Ponce.
Segmenting, Modeling, and Matching Video Clips Containing Multiple Moving Obijects.

PANI 2007



Projective structure from motion

« Given: mimages of n fixed 3D points

zijxl.J.ZPl.Xj, i=1,....,m j=1 ..,n

* Problem: estimate m projection matrices P; and n 3D
points X; from the mn correspondences Xx;




Projective structure from motion

« Given: mimages of n fixed 3D points
z;X; =P, X, i=1L..,m j=1..,n

* Problem: estimate m projection matrices P; and n 3D
points X; from the mn correspondences Xx;

« With no calibration info, cameras and points can only
be recovered up to a 4x4 projective transformation Q:

X—QX,P - PQ
* We can solve for structure and motion when
2mn >=11m +3n—-15
 For two cameras, at least 7 points are needed



Projective SFM: Two-camera case

« Compute fundamental matrix F between the two views
* First camera matrix: [1|0]

« Second camera matrix: [A|b]

 Then b is the epipole (F'b=0), A=—[b.]F

F&P sec. 13.3.1



Sequential structure from motion

eInitialize motion from two images
using fundamental matrix

v

eInitialize structure by triangulation points
*For each additional view: eSS S S
® ® & o & & o 0
 Determine projection matrix of O [eeeeeeee
new camera using all the known 5| (e @ e e o ¢ o o
3D points that are visible in its - 0000000
image — calibration Tl |eeeee e oo
® ® & ® & & & 0
® ® & & & & & o >
- o990 0 o
v e e 0 0 o0




Sequential structure from motion

eInitialize motion from two images
using fundamental matrix

eInitialize structure by triangulation

*For each additional view:

» Determine projection matrix of
new camera using all the known
3D points that are visible in its
image — calibration

cameras

* Refine and extend structure:
compute new 3D points,
re-optimize existing points that
are also seen by this camera —
triangulation

points
® & & o & & 0 0
® ® & & & & o 0
® ® & & & & 0 0o
® & & & & & 0 o
® & & & & & 0 0
® & & ® & & 0 0
® ® & & & & 0 0
® ® & & & & 0 0o I



Sequential structure from motion

eInitialize motion from two images
using fundamental matrix

eInitialize structure by triangulation points

v

*For each additional view:

» Determine projection matrix of
new camera using all the known
3D points that are visible in its
image — calibration

cameras
e e 0000 00
e o0 000 00
® o0 000 0 00
o o0 0000 00
® o0 0000 00
o e 0000000

 Refine and extend structure:

compute new 3D points,
re-optimize existing points that
are also seen by this camera —
triangulation

*Refine structure and motion:
bundle adjustment



Bundle adjustment

* Non-linear method for refining structure and motion

* Minimizing reprojection error
2

E(P,X) = EED(XU,PZX )

X




Self-calibration

« Self-calibration (auto-calibration) is the process of
determining intrinsic camera parameters directly from
uncalibrated images

 For example, when the images are acquired by a
single moving camera, we can use the constraint that
the intrinsic parameter matrix remains fixed for all the
Images

« Compute initial projective reconstruction and find 3D
projective transformation matrix Q such that all camera
matrices are in the form P, = K [R, | t]

« (Can use constraints on the form of the calibration

matrix: zero skew



Review: Structure from motion

* Ambiguity
» Affine structure from motion
» Factorization
* Dealing with missing data
* |ncremental structure from motion
* Projective structure from motion

« Bundle adjustment
» Self-calibration



Summary: 3D geometric vision

« Single-view geometry
* The pinhole camera model
— Variation: orthographic projection
* The perspective projection matrix
 Intrinsic parameters
« Extrinsic parameters
« Calibration

* Multiple-view geometry
« Triangulation
* The epipolar constraint
— Essential matrix and fundamental matrix
« Stereo
— Binocular, multi-view

o Structure from motion

— Reconstruction ambiguity
— Affine SFM
— Projective SFM



Overview

Multi-view stereo

Structure from Motion (SfM)

Large scale Structure from Motion



Large-scale Structure from motion

Given many images from photo collections how can we
a) figure out where they were all taken from?
b) build a 3D model of the scene?

This is (roughly) the structure from motion problem

Slides from N. Snavely



Challenges

appearance variation

massive collections
82,754 results for photos matching notre and dame and paris.



Large-scale structure from motion

Dubrovnik, Croatia. 4,619 images (out of an initial 57,845).
Total reconstruction time: 23 hours

Number of cores: 352 Slide: N. Snavely



Structure from motion
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* |Input: images with points in correspondence

pi,j (u’jlv )

Output

* structure: 3D location x; for each point p,
* motion: camera parameters R;, t; possibly K;

Objective function: minimize reprojection error



Photo Tourism

Slide: N. Snavely



First step: how to get correspondence?

Feature detection and matching



Feature detection

Detect features using SIFT [Lowe, [JCV 2004]




Feature detection

Detect features using SIFT [Lowe, [JCV 2004]




Feature matching

Match features between each pair of images




Feature matching

Refine matching using RANSAC to estimate fundamental
matrix between each pair




Image 1

R3, t3

Image 2

Slide: N. Snavely



Structure from motion

O P; minimize

g (R, T,P)

/ ~Op;
\/\ N N
~
p/ SN /
v
/
/
/
Cameral Camera 3
Rl’tl Camera 2 R3’ t3
R, 1,

Slide: N. Snavely



SfM objective function

Given point x and rotation and translation R, t

- , X
u = p u/
y’ = Rx+t ‘ [ ,] — P(XJ R)t)
4 , _ Ty v
ZI

Minimize sum of squared reprojection errors:

m n Ui 2
g(X) R) T) ZZWU ‘P(Xl’ t]) - [Vz:j”‘
i=1 j=1 ' e e

predicted observed
image location image location




Solving structure from motion

Minimizing g is difficult
* g is non-linear due to rotations, perspective division

* |ots of parameters: 3 for each 3D point, 6 for each
camera

 difficult to initialize

e gauge ambiguity: error is invariant to a similarity
ransform (translation, rotation, uniform scale)

Man{techniq_ue_s use non-linear least-squares
(NLLS) optimization (bundle adjustment)

. IIQ?_\I/_eSnberg—Marquardt IS one common algorithm for

 Lourakis, The Design and Implementation of a
Generic Sparse Bundle Adjustment Software
Package Based on the Levenberg-Marquardt
Algorithm, http://www.ics.forth.gr/~lourakis/sba/

* http://en.wikipedia.org/wiki/Levenberg-
Marquardt algorithm




Extensions to SfM

Can also solve for intrinsic parameters (focal length, radial
distortion, etc.)

Can use a more robust function than squared error, to
avoid fitting to outliers

@

L, O = N WA e N
—— ——

For more information, see: Triggs, et al, “Bundle
Adjustment — A Modern Synthesis”, Vision
Algorithms 2000.



Problem size

Trevi Fountain collection
466 input photos
+ > 100,000 3D points
= very large optimization problem



Incremental structure from motion




Incremental structure from motion

Slide: N. Snavely



Incremental structure from motion

Slide: N. Snavely



Photo Explorer

Slide: N. Snavely






KinectFusion: Real-Time Dense
Surface Mapping and Tracking

A

by Richard.A Newcombe et al.

Presenting: Boaz Petersil



Video



Motivation

Augmented Reality

Etc..

[Slide: B. Petersil]



Related Work

AN

Tracking (&sparse Mapping)

PTAM - Paralle
Klein &

/

Tracking&Mapping

- J

Dense Mapping

[Slide: B. Petersil]



Challenges

Tracking Camera Precisely

Fusing and De-noising Measurements

Avoiding Drift
Real-Time
Low-Cost Hardware

[Slide: B. Petersil]



Proposed Solution

Fast Optimization for Tracking, Due to High Frame
Rate.

Global Framework for fusing data
Interleaving Tracking & Mapping
Using Kinect to get Depth data (low cost)

Using GPGPU to get Real-Time Performance (low
cost)

[Slide: B. Petersil]



How does Kinect work?

IR laser projector  CD camera

static pseudo-random dot pattern

Slide: B. Petersil]



Method

o —
f) Generated 3D Vertex &

Normal Map

) e 6DOF Pose & Depth 88
o I T BRI

4
4

>
A “.-\;.‘f~ -

a) 3D Vertex & b) ICP Camera ¢) Volume Data ) Ray-casted 3D
Normal Map Tracking o Integration Rendering

\C )
e) ICP Outliers

[Slide: B. Petersil]



Tracking

* Finding Camera position is the same as fitting
frame’s Depth Map onto Model

[9 Tracking

Mapping [Slide: B. Petersil]




Tracking — ICP algorithm

* icp = iterative closest point

e Goal: fit two 3d point sets
* Problem: What are the correspondences?

* Kinect fusion chosen solution:
1) Start with ]:)
2) Project model onto camera
3) Correspondences are points with same coordinates
4) Find new T with Least - Squares
5) Apply T, and repeat 2-5 until convergence

2 Tracking
[ Mapping ] [Slide: B. Petersil]




V\

[

2 Tracking
Mapping

]

Tracking — ICP algorithm

initial estimate
(current pose := previous pose)

— S a [P~

after 1 iteration after 2 iterations after 3 iteration

vV vV W

* Assumption: frame and model are roughly aligned.
* True because of high frame rate [Slide: B. Petersil



Mapping

* Mapping is Fusing depth maps when camera
poses are known

* Problems:
— measurements are noisy
— Depth maps have holes in them

e Solution:
— using implicit surface representation
— Fusing = estimating from all frames relevant

Tracking
Mapping [Slide: B. Petersil]




Mapping — surface representation

* Surface is represented implicitly - using
Truncated Signed Distance Function (TSDF)

H
i
2
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Tracking *Numbers in cells measure voxel distance to surface—D
> Mapping [Slide: B. Petersil]




Mapping
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[Slide: B. Petersil]
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Mapping
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[Slide: B. Petersil]

[pixel depth] — [distance from sensor to voxel]
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|
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Mapping
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[Slide: B. Petersil]
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Mapping
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Mapping
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Mapping

* Each Voxel also has a weight W, proportional to grazing angle
* Voxel D is the weighted average-of all measurements

A

sensor2
sensorl ,q

\Y

/ — Wi—1(p)Fk-1(p) + Wr,(P)Fg, (P)

A ’ B Wk—l(p) +WRk(p)
Wi(p) = Wi_1(p)+Wg,(p)

w; ()

w;, (x)

Tracking >
> Mapping [Slide: B. Petersil]




Handling drift

* Drift would have happened If tracking was done from
frame to previous frame

* Tracking is done on built model

2 Tracking
[ : (a) Frame to frame tracking (b) Partial loop

> Mapping [Slide: B. Petersil]




[Slide: B. Petersil]



Results & Applications

Thousands of particles simulated
directly on 3D reconstruction
(as room is being reconstructed)




Pros & Cons

* Pros:
— Really nice results!

* Real time performance (30 HZ)
* Dense model

* No drift with local optimization
* Robust to scene changes

— Elegant solution

* Cons:
— 3d grid can’t be trivially up-scaled
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Limitations

Doesn’t work for large areas (Voxel-Grid)

Doesn’t work far away from objects (active ranging)
Doesn’t work out-doors (IR)

Requires powerful Graphics card

Uses lots of battery (active ranging)

Only one sensor at a time
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