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Overview	
  
•  Mul,-­‐view	
  stereo	
  

•  Structure	
  from	
  Mo,on	
  (SfM)	
  

•  Large	
  scale	
  Structure	
  from	
  Mo,on	
  

•  Kinect	
  Fusion	
  

•  Dynamic	
  Fusion	
  



Mul,-­‐view	
  Stereo	
  

CMU’s 3D Room 

Point Grey’s Bumblebee XB3 

Point Grey’s ProFusion 25 

[Slide: N. Snavely] 



Mul,-­‐view	
  Stereo	
  

[Slide: N. Snavely] 



Mul,-­‐view	
  Stereo	
  

Figures by Carlos Hernandez 

Input:	
  	
  calibrated	
  images	
  from	
  several	
  viewpoints	
  
Output:	
  	
  3D	
  object	
  model	
  

[Slide: N. Snavely] 



Fua Narayanan, Rander, Kanade Seitz, Dyer 
1995 1997 1998 

Faugeras, Keriven 
1998 

Hernandez, Schmitt Pons, Keriven, Faugeras Furukawa, Ponce 
2004 2005 2006 

Goesele et al. 
2007 

Furukawa et al., 2010 



Stereo:	
  	
  another	
  view	
  
error 

depth 

[Slide: N. Snavely] 



width of  
a pixel 

Choosing	
  the	
  stereo	
  baseline	
  

What’s	
  the	
  op,mal	
  baseline?	
  
– Too	
  small:	
  	
  large	
  depth	
  error	
  
– Too	
  large:	
  	
  difficult	
  search	
  problem	
  

Large Baseline Small Baseline 

all of these 
points project 
to the same  
pair of pixels 

[Slide: N. Snavely] 



The	
  Effect	
  of	
  Baseline	
  on	
  Depth	
  
Es,ma,on	
  



z 

width of  
a pixel 

width of  
a pixel 

z 

pixel matching score 





Multibaseline Stereo 

Basic Approach 
•  Choose a reference view 
•  Use your favorite stereo algorithm BUT 

>  replace two-view SSD with SSSD over all baselines 

Limitations 
•  Only gives a depth map (not an “object model”) 
•  Won’t work for widely distributed views: 



Some Solutions 
•  Match only nearby photos [Narayanan 98] 
•  Use NCC instead of SSD, 

Ignore NCC values > threshold 
[Hernandez & Schmitt 03] 

Problem:  visibility 



Popular matching scores 

•  SSD (Sum Squared Distance) 

•  NCC (Normalized Cross Correlation) 

•  where           

•  what advantages might NCC have? 

[Slide: N. Snavely] 



Reconstruction from Silhouettes 

Binary Images 

Approach:   
•  Backproject each silhouette 
•  Intersect backprojected volumes 



Volume intersection 

Reconstruction Contains the True Scene 
•  But is generally not the same  
•  In the limit (all views) get visual hull  

>  Complement of all lines that don’t intersect S 



Voxel algorithm for volume intersection 

Color voxel black if on silhouette in every image 
•                 for M images, N3  voxels 
•  Don’t have to search 2N3 possible scenes! 

O(	
  MN3	
  ),	
  



Properties of Volume Intersection 

Pros 
•  Easy to implement, fast 
•  Accelerated via octrees [Szeliski 1993] or interval techniques 

[Matusik 2000] 

 
Cons 

•  No concavities 
•  Reconstruction is not photo-consistent 
•  Requires identification of silhouettes 



Multi-view stereo: Summary 
•  Multiple-baseline stereo 

•  Pick one input view as reference 
•  Inverse depth instead of disparity 

•  Volumetric stereo 
•  Photo-consistency 
•  Space carving 

•  Shape from silhouettes 
•  Visual hull: intersection of visual cones 

•  Carved visual hulls 
•  Feature-based stereo 

•  From sparse to dense correspondences 

All assume calibrated cameras! 



Overview 
Multi-view stereo 
 
Structure from Motion (SfM) 
 
Large scale Structure from Motion 



Structure from motion 



Multiple-view geometry questions 

•  Scene geometry (structure): Given 2D point 
matches in two or more images, where are the 
corresponding points in 3D? 
 

•  Correspondence (stereo matching): Given a 
point in just one image, how does it constrain the 
position of the corresponding point in another 
image? 
 

•  Camera geometry (motion): Given a set of 
corresponding points in two or more images, what 
are the camera matrices for these views? 

Slide: S. Lazebnik 



Structure from motion 
•  Given: m images of n fixed 3D points  

 

xij = Pi Xj ,  i = 1, … , m,    j = 1, … , n   

•  Problem: estimate m projection matrices Pi and  
n 3D points Xj from the mn correspondences xij 

 

x1j 

x2j 

x3j 

Xj 

P1 

P2 

P3 

Slide: S. Lazebnik 



Structure from motion ambiguity 
•  If we scale the entire scene by some factor k and, at 

the same time, scale the camera matrices by the 
factor of 1/k, the projections of the scene points in the 
image remain exactly the same: 

It is impossible to recover the absolute scale of the scene! 

)(1 XPPXx k
k
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Slide: S. Lazebnik 



Structure from motion ambiguity 
•  If we scale the entire scene by some factor k and, at 

the same time, scale the camera matrices by the 
factor of 1/k, the projections of the scene points in the 
image remain exactly the same  
 

•  More generally: if we transform the scene using a 
transformation Q and apply the inverse 
transformation to the camera matrices, then the 
images do not change 

( )( )QXPQPXx -1==

Slide: S. Lazebnik 



Types of ambiguity 
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tAProjective 

15dof 

Affine 
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Similarity 
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Euclidean 
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Preserves intersection and 
tangency 

Preserves parallellism, 
volume ratios 

Preserves angles, ratios of 
length 
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•  With no constraints on the camera calibration matrix or on the 
scene, we get a projective reconstruction 

•  Need additional information to upgrade the reconstruction to 
affine, similarity, or Euclidean 

Slide: S. Lazebnik 



Projective ambiguity 

( )( )XQPQPXx  P
-1
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Projective ambiguity 



Affine ambiguity 
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-1
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Affine 



Affine ambiguity 



Similarity ambiguity 
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Similarity ambiguity 



Structure from motion 
•  Let’s start with affine cameras (the math is easier) 

center at 
infinity 



Recall: Orthographic Projection 
Special case of perspective projection 

•  Distance from center of projection to image plane is infinite 

•  Projection matrix: 

Image World 

Slide by Steve Seitz 



Orthographic Projection 

Parallel Projection 

Affine cameras 



Affine cameras 
•  A general affine camera combines the effects of an 

affine transformation of the 3D space, orthographic 
projection, and an affine transformation of the image: 
 
 
 
 
 

•  Affine projection is a linear mapping + translation in 
inhomogeneous coordinates 
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Affine structure from motion 
•  Given: m images of n fixed 3D points: 

 xij = Ai Xj + bi ,     i = 1,… , m,  j = 1, … , n   
 

•  Problem: use the mn correspondences xij  to estimate 
m projection matrices Ai and translation vectors bi,  
and n points Xj  

•  The reconstruction is defined up to an arbitrary affine 
transformation Q (12 degrees of freedom): 
 
 
 
 

•  We have 2mn knowns and 8m + 3n unknowns (minus 
12 dof for affine ambiguity) 

•  Thus, we must have 2mn >= 8m + 3n – 12 
•  For two views, we need four point correspondences 
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Affine structure from motion 
•  Centering: subtract the centroid of the image points 

 
 
 
 
 
 

•  For simplicity, assume that the origin of the world 
coordinate system is at the centroid of the 3D points 

•  After centering, each normalized point xij is related to 
the 3D point Xi by 
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Affine structure from motion 
•  Let’s create a 2m × n data (measurement) matrix: 
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C. Tomasi and T. Kanade. Shape and motion from image streams under orthography:  
A factorization method. IJCV, 9(2):137-154, November 1992.  



Affine structure from motion 
•  Let’s create a 2m × n data (measurement) matrix: 
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The measurement matrix D = MS must have rank 3! 

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography:  
A factorization method. IJCV, 9(2):137-154, November 1992.  



Factorizing the measurement matrix 

Source: M. Hebert 



Factorizing the measurement matrix 
•  Singular value decomposition of D: 

Source: M. Hebert 



Factorizing the measurement matrix 
•  Singular value decomposition of D: 

Source: M. Hebert 



Factorizing the measurement matrix 
•  Obtaining a factorization from SVD: 

Source: M. Hebert 



Factorizing the measurement matrix 
•  Obtaining a factorization from SVD: 

Source: M. Hebert 

This decomposition minimizes 
|D-MS|2 



Affine ambiguity 

•  The decomposition is not unique. We get the same D 
by using any 3×3 matrix C and applying the 
transformations M → MC, S →C-1S 

•  That is because we have only an affine transformation 
and we have not enforced any Euclidean constraints 
(like forcing the image axes to be perpendicular, for 
example) 

Source: M. Hebert 



•  Orthographic:	
  image	
  axes	
  are	
  
perpendicular	
  and	
  of	
  unit	
  length	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

Elimina,ng	
  the	
  affine	
  ambiguity	
  

x 

X a1 

a2 

a1 · a2 = 0 

|a1|2 = |a2|2 = 1 

Source: M. Hebert 



Solve	
  for	
  orthographic	
  constraints	
  

•  Solve	
  for	
  L	
  =	
  CCT	
  
•  Recover	
  C	
  from	
  L	
  by	
  Cholesky	
  decomposi,on:	
  
L	
  =	
  CCT	
  

•  Update	
  A	
  and	
  X:	
  	
  A	
  =	
  AC,	
  X	
  =	
  C-­‐1X	
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Slide:	
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  Hoiem	
  



Algorithm summary 
•  Given: m images and n features xij 

•  For each image i, center the feature coordinates 
•  Construct a 2m × n measurement matrix D: 

•  Column j contains the projection of point j in all views 
•  Row i contains one coordinate of the projections of all the n 

points in image i 

•  Factorize D: 
•  Compute SVD: D = U W VT 

•  Create U3 by taking the first 3 columns of U 
•  Create V3 by taking the first 3 columns of V 
•  Create W3 by taking the upper left 3 × 3 block of W 

•  Create the motion and shape matrices: 
•  M = U3W3

½  and S = W3
½ V3

T (or M = U3 and S = W3V3
T) 

•  Eliminate affine ambiguity 
Source: M. Hebert 



Reconstruction results 

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography:  
A factorization method. IJCV, 9(2):137-154, November 1992.  



Dealing with missing data 
•  So far, we have assumed that all points are visible in 

all views 
•  In reality, the measurement matrix typically looks 

something like this: 
 
 
 
 
 
 
 

cameras 

points 



Dealing with missing data 
•  Possible solution: decompose matrix into dense sub-

blocks, factorize each sub-block, and fuse the results 
•  Finding dense maximal sub-blocks of the matrix is NP-

complete (equivalent to finding maximal cliques in a graph) 

•  Incremental bilinear refinement 

(1)  Perform 
factorization on a 
dense sub-block 

(2)  Solve for a new 
3D point visible by 
at least two known 
cameras (linear 
least squares) 

(3)  Solve for a new 
camera that sees at 
least three known 
3D points (linear 
least squares) 

F. Rothganger, S. Lazebnik, C. Schmid, and J. Ponce. 
Segmenting, Modeling, and Matching Video Clips Containing Multiple Moving Objects. 
PAMI 2007. 



Projective structure from motion 
•  Given: m images of n fixed 3D points  

 

zij xij = Pi Xj ,  i = 1,… , m,    j = 1, … , n   

•  Problem: estimate m projection matrices Pi and n 3D 
points Xj from the mn correspondences xij 

 

x1j 

x2j 

x3j 

Xj 

P1 

P2 

P3 



Projective structure from motion 
•  Given: m images of n fixed 3D points  

 

zij xij = Pi Xj ,  i = 1,… , m,    j = 1, … , n   

•  Problem: estimate m projection matrices Pi and n 3D 
points Xj from the mn correspondences xij 

•  With no calibration info, cameras and points can only 
be recovered up to a 4x4 projective transformation Q: 

X → QX, P → PQ-1 
•  We can solve for structure and motion when  

2mn >= 11m +3n – 15 
•  For two cameras, at least 7 points are needed 
 



Projective SFM: Two-camera case 
•  Compute fundamental matrix F between the two views 
•  First camera matrix:  [I|0] 

•  Second camera matrix:  [A|b] 
•  Then b is the epipole (FTb = 0), A = –[b×]F 

F&P sec. 13.3.1 



Sequential structure from motion 
• Initialize motion from two images 
using fundamental matrix 
 
• Initialize structure by triangulation 
 
• For each additional view: 

•  Determine projection matrix of 
new camera using all the known 
3D points that are visible in its 
image – calibration  ca

m
er

as
 

points 



Sequential structure from motion 
• Initialize motion from two images 
using fundamental matrix 
 
• Initialize structure by triangulation 
 
• For each additional view: 

•  Determine projection matrix of 
new camera using all the known 
3D points that are visible in its 
image – calibration  
 

•  Refine and extend structure: 
compute new 3D points,  
re-optimize existing points that 
are also seen by this camera – 
triangulation  

ca
m

er
as

 

points 



Sequential structure from motion 
• Initialize motion from two images 
using fundamental matrix 
 
• Initialize structure by triangulation 
 
• For each additional view: 

•  Determine projection matrix of 
new camera using all the known 
3D points that are visible in its 
image – calibration  
 

•  Refine and extend structure: 
compute new 3D points,  
re-optimize existing points that 
are also seen by this camera – 
triangulation  
 

• Refine structure and motion: 
bundle adjustment 

ca
m
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as

 

points 



Bundle adjustment 
•  Non-linear method for refining structure and motion 
•  Minimizing reprojection error 
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Self-calibration 
•  Self-calibration (auto-calibration) is the process of 

determining intrinsic camera parameters directly from 
uncalibrated images 

•  For example, when the images are acquired by a 
single moving camera, we can use the constraint that 
the intrinsic parameter matrix remains fixed for all the 
images 
•  Compute initial projective reconstruction and find 3D 

projective transformation matrix Q such that all camera 
matrices are in the form Pi = K [Ri | ti] 

•  Can use constraints on the form of the calibration 
matrix: zero skew 



Review: Structure from motion 
•  Ambiguity 
•  Affine structure from motion 

•  Factorization 

•  Dealing with missing data 
•  Incremental structure from motion 

•  Projective structure from motion 
•  Bundle adjustment 
•  Self-calibration 



Summary: 3D geometric vision 
•  Single-view geometry 

•  The pinhole camera model 
–  Variation: orthographic projection 

•  The perspective projection matrix 
•  Intrinsic parameters 
•  Extrinsic parameters 
•  Calibration 

•  Multiple-view geometry 
•  Triangulation 
•  The epipolar constraint 

–  Essential matrix and fundamental matrix 
•  Stereo  

–  Binocular, multi-view 
•  Structure from motion 

–  Reconstruction ambiguity 
–  Affine SFM 
–  Projective SFM 



Overview 
Multi-view stereo 
 
Structure from Motion (SfM) 
 
Large scale Structure from Motion 



Large-scale Structure from motion 

Given many images from photo collections how can we  
a) figure out where they were all taken from? 
b) build a 3D model of the scene? 
 
 
 
 
 
 
 
 
 
This is (roughly) the structure from motion problem 

Slides from N. Snavely 



appearance variation 
 
 
 
 
resolution 
 
 
 
 
 
massive collections 

Challenges 



Large-scale structure from motion 

Dubrovnik,	
  Croa,a.	
  	
  4,619	
  images	
  (out	
  of	
  an	
  ini,al	
  	
  57,845).	
  
Total	
  reconstruc,on	
  ,me:	
  23	
  hours	
  
Number	
  of	
  cores:	
  352	
   Slide: N. Snavely 



Structure from motion 

•  Input:	
  images	
  with	
  points	
  in	
  correspondence	
  	
  	
  	
  	
  	
  
	
  pi,j	
  	
  =	
  (ui,j,vi,j)	
  

•  Output	
  
•  structure:	
  3D	
  loca,on	
  xi	
  for	
  each	
  point	
  pi	
  
•  mo,on:	
  camera	
  parameters	
  Rj	
  ,	
  tj	
  possibly	
  Kj	
  

•  Objec,ve	
  func,on:	
  minimize	
  reprojec+on	
  error	
  
	
  

Reconstruc,on	
  (side)	
   (top)	
  



Photo Tourism 

Slide: N. Snavely 

TreviFlythrojugh2.wmv 



First step: how to get correspondence? 

Feature detection and matching 



Feature detection 

Detect	
  features	
  using	
  SIFT	
  [Lowe,	
  IJCV	
  2004]	
  



Feature detection 

Detect features using SIFT [Lowe, IJCV 2004] 



Feature matching 

Match features between each pair of images 



Feature matching 

Refine	
  matching	
  using	
  RANSAC	
  to	
  es,mate	
  fundamental	
  
matrix	
  between	
  each	
  pair	
  



p1,1	
  
p1,2	
  

p1,3	
  

Image	
  1	
  

Image	
  2	
  

Image	
  3	
  

x1 

x4 

x3 

x2 

x5 

x6 

x7 

R1,t1 

R2,t2 

R3,t3 

Slide: N. Snavely 



Structure from motion 

Camera	
  1	
  

Camera	
  2	
  

Camera	
  3	
  
R1,t1 

R2,t2 

R3,t3 

p1 

p4 

p3 

p2 

p5 

p6 

p7 

minimize 
g (R, T, P) 

Slide: N. Snavely 



SfM objective function 

Given point x and rotation and translation R, t 
 
 
 
 
Minimize sum of squared reprojection errors: 

	
  	
  

	
  	
  	
  	
  

predicted	
  	
  
image	
  loca,on	
  

observed	
  
image	
  loca,on	
  



Solving structure from motion 
Minimizing g is difficult 

•  g is non-linear due to rotations, perspective division 
•  lots of parameters: 3 for each 3D point, 6 for each 

camera 
•  difficult to initialize 
•  gauge ambiguity: error is invariant to a similarity 

transform (translation, rotation, uniform scale)  
 
Many techniques use non-linear least-squares 

(NLLS) optimization (bundle adjustment) 
•  Levenberg-Marquardt is one common algorithm for 

NLLS 
•  Lourakis, The Design and Implementation of a 

Generic Sparse Bundle Adjustment Software 
Package Based on the Levenberg-Marquardt 
Algorithm, http://www.ics.forth.gr/~lourakis/sba/ 

•  http://en.wikipedia.org/wiki/Levenberg-
Marquardt_algorithm 



Extensions to SfM 

Can also solve for intrinsic parameters (focal length, radial 
distortion, etc.) 

Can use a more robust function than squared error, to 
avoid fitting to outliers 

 
 
 
 
For more information, see: Triggs, et al, “Bundle 

Adjustment – A Modern Synthesis”, Vision 
Algorithms 2000. 



Problem size 
Trevi Fountain collection 

    466 input photos 
 + > 100,000 3D points 
      = very large optimization problem  



Incremental structure from motion 



Incremental structure from motion 
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Incremental structure from motion 
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Photo Explorer 
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KinectFusion:	
  Real-­‐Time	
  Dense	
  
Surface	
  Mapping	
  and	
  Tracking	
  

	
  by	
  Richard.A	
  Newcombe	
  et	
  al.	
  
	
  

Presen,ng:	
  Boaz	
  Petersil	
  



Video	
  



Mo,va,on	
  
Augmented	
  Reality	
  

3d	
  model	
  scanning	
  

Robot	
  Naviga,on	
  

Etc..	
  

[Slide: B. Petersil] 



Related	
  Work	
  

Tracking	
  (&sparse	
  Mapping)	
  

Bundle-­‐adjustment(offline)	
  PTAM	
  

DTAM	
  (RGB	
  cam!)	
  

Tracking&Mapping	
  

Dense	
  Mapping	
  

Kinect	
  Fusion	
  

[Slide: B. Petersil] 



Challenges	
  

•  Tracking	
  Camera	
  Precisely	
  
•  Fusing	
  and	
  De-­‐noising	
  Measurements	
  
•  Avoiding	
  Drio	
  
•  Real-­‐Time	
  
•  Low-­‐Cost	
  Hardware	
  

[Slide: B. Petersil] 



Proposed	
  Solu,on	
  

•  Fast	
  Op,miza,on	
  for	
  Tracking,	
  Due	
  to	
  High	
  Frame	
  
Rate.	
  

•  Global	
  Framework	
  for	
  fusing	
  data	
  
•  Interleaving	
  Tracking	
  &	
  Mapping	
  	
  
•  Using	
  Kinect	
  to	
  get	
  Depth	
  data	
  (low	
  cost)	
  
•  Using	
  GPGPU	
  to	
  get	
  Real-­‐Time	
  Performance	
  (low	
  
cost)	
  

[Slide: B. Petersil] 



How	
  does	
  Kinect	
  work?	
  

[Slide: B. Petersil] 



Method	
  

[Slide: B. Petersil] 



Tracking	
  

•  Finding	
  Camera	
  posi,on	
  is	
  the	
  same	
  as	
  fipng	
  
frame’s	
  Depth	
  Map	
  onto	
  Model	
  

Tracking	
  
Mapping	
 [Slide: B. Petersil] 



Tracking	
  –	
  ICP	
  algorithm	
  

•  icp	
  =	
  itera,ve	
  closest	
  point	
  
•  Goal:	
  fit	
  two	
  3d	
  point	
  sets	
  
•  Problem:	
  What	
  are	
  the	
  correspondences?	
  
•  Kinect	
  fusion	
  chosen	
  solu,on:	
  

1)  Start	
  with	
  	
  
2)  Project	
  model	
  onto	
  camera	
  
3)  Correspondences	
  are	
  points	
  with	
  same	
  coordinates	
  	
  
4)  Find	
  new	
  T	
  with	
  Least	
  -­‐	
  Squares	
  
5)  Apply	
  T,	
  and	
  repeat	
  2-­‐5	
  un,l	
  convergence	
  

	
  

0T

Tracking	
  
Mapping	
 [Slide: B. Petersil] 



Tracking	
  –	
  ICP	
  algorithm	
  

• 	
  Assump,on:	
  frame	
  and	
  model	
  are	
  roughly	
  aligned.	
  	
  
• 	
  True	
  because	
  of	
  high	
  frame	
  rate	
  

Tracking	
  
Mapping	
 [Slide: B. Petersil] 



Mapping	
  

•  Mapping	
  is	
  Fusing	
  depth	
  maps	
  when	
  camera	
  
poses	
  are	
  known	
  

•  Problems:	
  	
  
– measurements	
  are	
  noisy	
  
– Depth	
  maps	
  have	
  holes	
  in	
  them	
  

•  Solu,on:	
  	
  
– using	
  implicit	
  surface	
  representa,on	
  	
  	
  
– Fusing	
  =	
  es,ma,ng	
  from	
  all	
  frames	
  relevant	
  

Tracking	
  
Mapping	
 [Slide: B. Petersil] 



Mapping	
  –	
  surface	
  representa,on	
  	
  
•  Surface	
  is	
  represented	
  implicitly	
  -­‐	
  using	
  	
  	
  	
  	
  
Truncated	
  Signed	
  Distance	
  Func,on	
  (TSDF)	
  

	
  

• Numbers	
  in	
  cells	
  measure	
  voxel	
  distance	
  to	
  surface	
  –	
  D	
  

Voxel	
  grid	
  

Tracking	
  
Mapping	
 [Slide: B. Petersil] 



Mapping	
  

Tracking	
  
Mapping	
 [Slide: B. Petersil] 



Mapping	
  

d=	
  [pixel	
  depth]	
  –	
  [distance	
  from	
  sensor	
  	
  to	
  voxel]	
  	
  Tracking	
  
Mapping	
 [Slide: B. Petersil] 



Mapping	
  

Tracking	
  
Mapping	
 [Slide: B. Petersil] 



Mapping	
  

Tracking	
  
Mapping	
 [Slide: B. Petersil] 



Mapping	
  

Tracking	
  
Mapping	
 [Slide: B. Petersil] 



Mapping	
  
•  Each	
  Voxel	
  also	
  has	
  a	
  weight	
  W,	
  propor,onal	
  to	
  grazing	
  angle	
  
•  Voxel	
  D	
  is	
  the	
  weighted	
  average	
  of	
  all	
  measurements	
  1( )d x

2 ( )w x

1( )w x
( )W x

sensor1	
  

2 ( )d x
1( )d x

sensor2	
  

( )F x

Tracking	
  
Mapping	
 [Slide: B. Petersil] 



Handling	
  drio	
  

•  Drio	
  would	
  have	
  happened	
  If	
  tracking	
  was	
  done	
  from	
  
frame	
  to	
  previous	
  frame	
  

•  Tracking	
  is	
  done	
  on	
  built	
  model	
  

Tracking	
  
Mapping	
 [Slide: B. Petersil] 
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Results	
  &	
  Applica,ons	
  



Pros	
  &	
  Cons	
  

•  Pros:	
  
–  Really	
  nice	
  results!	
  

•  Real	
  ,me	
  performance	
  (30	
  HZ)	
  
•  Dense	
  model	
  
•  No	
  drio	
  with	
  local	
  op,miza,on	
  
•  Robust	
  	
  to	
  scene	
  changes	
  

–  Elegant	
  solu,on	
  
•  Cons	
  :	
  

–  3d	
  grid	
  can’t	
  be	
  trivially	
  up-­‐scaled	
  	
  
	
  

[Slide: B. Petersil] 



Limita,ons	
  

•  Doesn’t	
  work	
  for	
  large	
  areas	
  (Voxel-­‐Grid)	
  
•  Doesn’t	
  work	
  far	
  away	
  from	
  objects	
  (ac,ve	
  ranging)	
  
•  Doesn’t	
  work	
  out-­‐doors	
  (IR)	
  
•  Requires	
  	
  powerful	
  	
  Graphics	
  card	
  
•  Uses	
  lots	
  of	
  batery	
  (ac,ve	
  ranging)	
  
•  Only	
  one	
  sensor	
  at	
  a	
  ,me	
  

	
  

[Slide: B. Petersil] 


