Transformers For Vision Lecture 5

Outline

- Background on Transformer models
- Transformers for image classification

• [Admin interlude]

• Perceiver models [guest talk from Drew Jaegle, DeepMind]

Transformers for Computer Vision

Alexey Dosovitskiy

EEML summer school July 7th 2021, Budapest (virtually)

Google Research

AlexNet

AlexNet (2012) - first big success of deep learning in vision*

* ConvNets had previously shown good results on specialized dataset like handwritten digits (LeCun et al.) or traffic signs (Ciersan et al.), but not on large and diverse "natural" datasets

ResNet

• ResNet (2015) - make deep models train well by adding residual connections

Transformer

- Non-vision specific model
 - Typically applied to 1-D sequence data
- Transformer "encoder"
 - A stack of alternating self-attention and MLP blocks
 - Residuals and LayerNorm
- Transformer "decoder" (not shown)
 - A slightly more involved architecture useful when the output space is different from the input space (e.g. translation)

Self-attention

- Each of the tokens (=vectors) attends to all tokens
 - Extra tricks: learned key, query, and value projections, inverse-sqrt scaling in the softmax, and multi-headed attention (omit for simplicity)
- It's a set operation (permutation-invariant)
 - …and hence need "position embeddings" to "remember" the spatial structure
- It's a global operation
 - Aggregates information from all tokens

 $\mathbf{y}_j = \sum \alpha_{ji} V \mathbf{x}_i$

Self-Attention with Queries, Keys, Values

Make three version of each input embedding x(i)

- Query vector $\mathbf{q}^{(i)} = \mathbf{W}_{q} \mathbf{x}^{(i)}$
- Key vector: $\mathbf{k}^{(i)} = \mathbf{W}_k \mathbf{x}^{(i)}$
- Value vector: $\mathbf{v}^{(i)} = \mathbf{W}_{v} \mathbf{x}^{(i)}$

The attention weight of the *j*-th position to compute the new output for the *i*-th position depends on the query of i and the key of j (scaled):

$$w_j^{(i)} = \frac{\exp(\mathbf{q}^{(i)}\mathbf{k}^{(j)})/\sqrt{k}}{\sum_j (\exp(\mathbf{q}^{(i)}\mathbf{k}^{(j)})/\sqrt{k})}$$

The **new output vector for the i-th position** depends on the **attention weights** and **value** vectors of all **input positions j**:

$$\mathbf{y}^{(i)} = \sum_{j=1..T} w_j^{(i)} \mathbf{v}^{(j)}$$

CS546 Machine Learning in NLP

[Julia Hockenmaier, Lecture 9, UIUC]

Transformer self-attention layer

Input: X (matrix of n embedding vectors, each dim m)

Parameters (learned): W_Q, W_K, W_V Compute: $Q = XW_Q$ $K = XW_K$ $V = XW_V$

Self-attention Parameters

 $QK^T \in \mathbb{R}^{n \times n}$

$$Q, K, V \in \mathbb{R}^{n \times m}$$

Transformer self-attention

Self-attention Parameters

Output matrix H =
$$\operatorname{softmax}(\frac{1}{\sqrt{d}}QK^T) \cdot V$$

Self-attention explicitly models interactions between all pairs of input embeddings

Multi-Head attention

- Learn *h* different linear projections of Q,K,V
- Compute attention separately on each of these *h* versions
- Concatenate and project the resultant vectors to a lower dimensionality.
- Each attention head can use low dimensionality

 $MultiHead(Q, K, V) = Concat(head_1, ..., head_h)W^O$ where head_i = Attention(QW_i^Q, KW_i^K, VW_i^V)

[Julia Hockenmaier, Lecture 9, UIUC]

Positional Encoding (1-D)

How to capture sequence order?

Add positional embeddings to input embeddings

- Same dimension
- Can be learned or fixed

Fixed encoding: sin / cos of different frequencies:

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{model}})$$
$$PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{model}})$$

ConvNet vs Transformer

ConvNet

Transformer (encoder)

Convolutions (with kernels > 1x1) mix both the

channels and the spatial locations

MLPs (=1x1 convs) only mix the channels, per location **Self-attention** mixes the spatial locations (and channels a bit)

*ResNets have grouped of 1x1 convolutions that are nearly identical to transformer's MLPs

BERT model in NLP

- Transformers pre-trained self-supervised perform great on many NLP tasks
 - Masked language modeling (MLM)
 - Next sentence prediction (NSP)

Devlin et al., BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, arXiv 2018

Masked language modeling with Transformers (in NLP)

Training: Predict Masked Tokens

$$\mathcal{L}_{\mathrm{MLM}}(X;\theta) = \mathop{\mathbb{E}}_{x \sim X} \mathop{\mathbb{E}}_{\mathrm{mask}} \sum_{i \in \mathrm{mask}} \log p(x_i | x_{j \notin \mathrm{mask}};\theta)$$
(mask 15% at a time)

T5, GPT-3

- T5 (Text-to-Text Transfer Transformer)
 - Formulate many NLP tasks as text-to-text
 - Pre-train a large transformer BERT-style and show that it transfers really well
- GPT-3 (Generative Pre-Training)
 - Same basic approach, but generative pre-training and even larger model
 - Zero-shot transfer to many tasks: no need for fine-tuning!

Large-scale self-supervised pre-training "solved"* NLP

*at least made some really impressive progress

Raffel et al., *Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer*, JMLR 2020 Brown et al., *Language Models are Few-Shot Learners*, NeurIPS 2020

Transformers for image classification

Google Research

Transformers for vision?

- "LSTM \rightarrow Transformer" ~ "ConvNet \rightarrow ??? "
- Issue with self-attention for vision: computation is quadratic in the input sequence length, quickly gets very expensive (with > few thousand tokens)
 - For ImageNet: 224x224 pixels \rightarrow ~50,000 sequence length
 - Even worse for higher resolution and video

How can we deal with this quadratic complexity?

Local Self-Attention

Convolution

Local self-attention

Idea: Make self-attention local, use it instead of convs in a ResNet

Hu et al., Local Relation Networks for Image Recognition, ICCV 2019

Ramachandran et al., Stand-Alone Self-Attention in Vision Models, NeurIPS 2019

Zhao et al., Exploring Self-attention for Image Recognition, CVPR 2020

Figures from Ramachandran et al.

Axial Self-Attention

Axial attention block

Idea: Make self-attention 1D (a.k.a. axial), use it instead of convs

Figure from Wang et al.

Cordonnier et al., On the Relationship between Self-Attention and Convolutional Layers, ICLR 2020 Dosovitskiy et al., An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale, ICLR 2021

ResNet-ViT Hybrid

Bichen Wu et al. Visual Transformers: Token-based Image Representation and Processing for Computer Vision, arXiv 2020 Dosovitskiy et al., An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale, ICLR 2021

Analysis: Learned Position Embeddings

Conclusion: Learns intuitive local structures, but also deviates from locality in interesting ways

Dosovitskiy et al., An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale, ICLR 2021

Analysis: "Receptive Field Size"

Conclusion: Initial layers are partially local, deeper layers are global

Dosovitskiy et al., An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale, ICLR 2021

Scaling with Data

<u>Key</u> ViT = Vision Transformer BiT = Big Transfer (~ResNet)

ViT overfits on ImageNet, but shines on larger datasets

* with heavy regularization ViT has been shown to also work on ImageNet (Touvron et al.)

** training ViT on ImageNet with the sharpness-aware minimizer (SAM) also works very well (Chen et al.)

Dosovitskiy et al., An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale, ICLR 2021 Xiangning Chen et al., When Vision Transformers Outperform ResNets without Pretraining or Strong Data Augmentations, arXiv 2021 Touvron et al., Training data-efficient image transformers & distillation through attention, arXiv 2020

Scaling with Compute

Given sufficient data, ViT gives good performance/FLOP

Hybrids yield benefits only for smaller models

Scaling Laws

How many images do you need for a big model & vice-versa?

Scaling Laws

How many images do you need for a big model & vice-versa?

Image Classification on ImageNet

paperswithcode.com

Summary

Transformer model:

- Alternating layers of self-attention & MLP
- Very few assumptions built into model
- Trained end-to-end
- Easy to scale to be very wide & deep
- Originally applied to NLP (sequences of words)
- Lots of variants in architecture & application

Transformers in vision:

- How to represent image pixels?
 - Too many, given quadratic scaling of model
 - Position in 2D array
- Below SOTA for small models/data (Convnet/Resnets superior)
- SOTA at very large scale (100M-1B images)

Admin Interlude

HPC situation:

- Everyone should now have an HPC account
- Come and see me after if not!

HPC staff have setup GCP account that we can use through Greene login

- Class TAs will hold session to explain this

Projects

- Time to start on projects
- Google doc with some ideas posted in Piazza
 - Will be adding more ideas
- Feel free to come up with your own
- Teams of 2 or 3 people (no teams of 1)
- Every team must chat with me about their proposed idea
 - I will tell you if it is feasible/realistic or not.