
Object Classification
Lecture 4

Deep Residual Networks
Deep Learning Gets Way Deeper

8:30-10:30am, June 19
ICML 2016 tutorial

Kaiming He
Facebook AI Research*

*as of July 2016. Formerly affiliated with Microsoft Research Asia

1x
1

co
nv

, 6
4

3x
3

co
nv

, 6
4

1x
1

co
nv

, 2
56

1x
1

co
nv

, 6
4

3x
3

co
nv

, 6
4

1x
1

co
nv

, 2
56

1x
1

co
nv

, 6
4

3x
3

co
nv

, 6
4

1x
1

co
nv

, 2
56

1x
1

co
nv

, 1
28

, /
2

3x
3

co
nv

, 1
28

1x
1

co
nv

, 5
12

1x
1

co
nv

, 1
28

3x
3

co
nv

, 1
28

1x
1

co
nv

, 5
12

1x
1

co
nv

, 1
28

3x
3

co
nv

, 1
28

1x
1

co
nv

, 5
12

1x
1

co
nv

, 1
28

3x
3

co
nv

, 1
28

1x
1

co
nv

, 5
12

1x
1

co
nv

, 1
28

3x
3

co
nv

, 1
28

1x
1

co
nv

, 5
12

1x
1

co
nv

, 1
28

3x
3

co
nv

, 1
28

1x
1

co
nv

, 5
12

1x
1

co
nv

, 1
28

3x
3

co
nv

, 1
28

1x
1

co
nv

, 5
12

1x
1

co
nv

, 1
28

3x
3

co
nv

, 1
28

1x
1

co
nv

, 5
12

1x
1

co
nv

, 2
56

, /
2

3x
3

co
nv

, 2
56

1x
1

co
nv

, 1
02

4

1x
1

co
nv

, 2
56

3x
3

co
nv

, 2
56

1x
1

co
nv

, 1
02

4

1x
1

co
nv

, 2
56

3x
3

co
nv

, 2
56

1x
1

co
nv

, 1
02

4

1x
1

co
nv

, 2
56

3x
3

co
nv

, 2
56

1x
1

co
nv

, 1
02

4

1x
1

co
nv

, 2
56

3x
3

co
nv

, 2
56

1x
1

co
nv

, 1
02

4

1x
1

co
nv

, 2
56

3x
3

co
nv

, 2
56

1x
1

co
nv

, 1
02

4

1x
1

co
nv

, 2
56

3x
3

co
nv

, 2
56

1x
1

co
nv

, 1
02

4

1x
1

co
nv

, 2
56

3x
3

co
nv

, 2
56

1x
1

co
nv

, 1
02

4

1x
1

co
nv

, 2
56

3x
3

co
nv

, 2
56

1x
1

co
nv

, 1
02

4

1x
1

co
nv

, 2
56

3x
3

co
nv

, 2
56

1x
1

co
nv

, 1
02

4

1x
1

co
nv

, 2
56

3x
3

co
nv

, 2
56

1x
1

co
nv

, 1
02

4

1x
1

co
nv

, 2
56

3x
3

co
nv

, 2
56

1x
1

co
nv

, 1
02

4

1x
1

co
nv

, 2
56

3x
3

co
nv

, 2
56

1x
1

co
nv

, 1
02

4

1x
1

co
nv

, 2
56

3x
3

co
nv

, 2
56

1x
1

co
nv

, 1
02

4

1x
1

co
nv

, 2
56

3x
3

co
nv

, 2
56

1x
1

co
nv

, 1
02

4

1x
1

co
nv

, 2
56

3x
3

co
nv

, 2
56

1x
1

co
nv

, 1
02

4

1x
1

co
nv

, 2
56

3x
3

co
nv

, 2
56

1x
1

co
nv

, 1
02

4

1x
1

co
nv

, 2
56

3x
3

co
nv

, 2
56

1x
1

co
nv

, 1
02

4

1x
1

co
nv

, 2
56

3x
3

co
nv

, 2
56

1x
1

co
nv

, 1
02

4

1x
1

co
nv

, 2
56

3x
3

co
nv

, 2
56

1x
1

co
nv

, 1
02

4

1x
1

co
nv

, 2
56

3x
3

co
nv

, 2
56

1x
1

co
nv

, 1
02

4

1x
1

co
nv

, 2
56

3x
3

co
nv

, 2
56

1x
1

co
nv

, 1
02

4

1x
1

co
nv

, 2
56

3x
3

co
nv

, 2
56

1x
1

co
nv

, 1
02

4

1x
1

co
nv

, 2
56

3x
3

co
nv

, 2
56

1x
1

co
nv

, 1
02

4

1x
1

co
nv

, 2
56

3x
3

co
nv

, 2
56

1x
1

co
nv

, 1
02

4

1x
1

co
nv

, 2
56

3x
3

co
nv

, 2
56

1x
1

co
nv

, 1
02

4

1x
1

co
nv

, 2
56

3x
3

co
nv

, 2
56

1x
1

co
nv

, 1
02

4

1x
1

co
nv

, 2
56

3x
3

co
nv

, 2
56

1x
1

co
nv

, 1
02

4

1x
1

co
nv

, 2
56

3x
3

co
nv

, 2
56

1x
1

co
nv

, 1
02

4

1x
1

co
nv

, 2
56

3x
3

co
nv

, 2
56

1x
1

co
nv

, 1
02

4

1x
1

co
nv

, 2
56

3x
3

co
nv

, 2
56

1x
1

co
nv

, 1
02

4

1x
1

co
nv

, 2
56

3x
3

co
nv

, 2
56

1x
1

co
nv

, 1
02

4

1x
1

co
nv

, 2
56

3x
3

co
nv

, 2
56

1x
1

co
nv

, 1
02

4

1x
1

co
nv

, 2
56

3x
3

co
nv

, 2
56

1x
1

co
nv

, 1
02

4

1x
1

co
nv

, 2
56

3x
3

co
nv

, 2
56

1x
1

co
nv

, 1
02

4

1x
1

co
nv

, 2
56

3x
3

co
nv

, 2
56

1x
1

co
nv

, 1
02

4

1x
1

co
nv

, 5
12

, /
2

3x
3

co
nv

, 5
12

1x
1

co
nv

, 2
04

8

1x
1

co
nv

, 5
12

3x
3

co
nv

, 5
12

1x
1

co
nv

, 2
04

8

1x
1

co
nv

, 5
12

3x
3

co
nv

, 5
12

1x
1

co
nv

, 2
04

8

av
e

po
ol

, f
c 1

00
0

7x
7

co
nv

, 6
4,

 /
2,

 p
oo

l/
2

Introduction

Introduction

Deep Residual Networks (ResNets)
• “Deep Residual Learning for Image Recognition”. CVPR 2016
• A simple and clean framework of training “very” deep nets

• State-of-the-art performance for
• Image classification
• Object detection
• Semantic segmentation
• and more…

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.

ResNets @ ILSVRC & COCO 2015 Competitions

• 1st places in all five main tracks
• ImageNet Classification: “Ultra-deep” 152-layer nets
• ImageNet Detection: 16% better than 2nd
• ImageNet Localization: 27% better than 2nd
• COCO Detection: 11% better than 2nd
• COCO Segmentation: 12% better than 2nd

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.

*improvements are relative numbers

Revolution of Depth

3.57

6.7 7.3

11.7

16.4

25.8
28.2

ILSVRC'15
ResNet

ILSVRC'14
GoogleNet

ILSVRC'14
VGG

ILSVRC'13 ILSVRC'12
AlexNet

ILSVRC'11 ILSVRC'10

ImageNet Classification top-5 error (%)

shallow8 layers

19 layers22 layers

152 layers

8 layers

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.

Revolution of Depth
11x11 conv, 96, /4, pool/2

5x5 conv, 256, pool/2

3x3 conv, 384

3x3 conv, 384

3x3 conv, 256, pool/2

fc, 4096

fc, 4096

fc, 1000

AlexNet, 8 layers
(ILSVRC 2012)

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.

Revolution of Depth
11x11 conv, 96, /4, pool/2

5x5 conv, 256, pool/2

3x3 conv, 384

3x3 conv, 384

3x3 conv, 256, pool/2

fc, 4096

fc, 4096

fc, 1000

AlexNet, 8 layers
(ILSVRC 2012)

3x3 conv, 64

3x3 conv, 64, pool/2

3x3 conv, 128

3x3 conv, 128, pool/2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256, pool/2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512, pool/2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512, pool/2

fc, 4096

fc, 4096

fc, 1000

VGG, 19 layers
(ILSVRC 2014)

input

Conv
7x7+ 2(S)

MaxPool
3x3+ 2(S)

LocalRespNorm

Conv
1x1+ 1(V)

Conv
3x3+ 1(S)

LocalRespNorm

MaxPool
3x3+ 2(S)

Conv Conv Conv Conv
1x1+ 1(S) 3x3+ 1(S) 5x5+ 1(S) 1x1+ 1(S)

Conv Conv MaxPool
1x1+ 1(S) 1x1+ 1(S) 3x3+ 1(S)

Dept hConcat

Conv Conv Conv Conv
1x1+ 1(S) 3x3+ 1(S) 5x5+ 1(S) 1x1+ 1(S)

Conv Conv MaxPool
1x1+ 1(S) 1x1+ 1(S) 3x3+ 1(S)

Dept hConcat

MaxPool
3x3+ 2(S)

Conv Conv Conv Conv
1x1+ 1(S) 3x3+ 1(S) 5x5+ 1(S) 1x1+ 1(S)

Conv Conv MaxPool
1x1+ 1(S) 1x1+ 1(S) 3x3+ 1(S)

Dept hConcat

Conv Conv Conv Conv
1x1+ 1(S) 3x3+ 1(S) 5x5+ 1(S) 1x1+ 1(S)

Conv Conv MaxPool
1x1+ 1(S) 1x1+ 1(S) 3x3+ 1(S)

AveragePool
5x5+ 3(V)

Dept hConcat

Conv Conv Conv Conv
1x1+ 1(S) 3x3+ 1(S) 5x5+ 1(S) 1x1+ 1(S)

Conv Conv MaxPool
1x1+ 1(S) 1x1+ 1(S) 3x3+ 1(S)

Dept hConcat

Conv Conv Conv Conv
1x1+ 1(S) 3x3+ 1(S) 5x5+ 1(S) 1x1+ 1(S)

Conv Conv MaxPool
1x1+ 1(S) 1x1+ 1(S) 3x3+ 1(S)

Dept hConcat

Conv Conv Conv Conv
1x1+ 1(S) 3x3+ 1(S) 5x5+ 1(S) 1x1+ 1(S)

Conv Conv MaxPool
1x1+ 1(S) 1x1+ 1(S) 3x3+ 1(S)

AveragePool
5x5+ 3(V)

Dept hConcat

MaxPool
3x3+ 2(S)

Conv Conv Conv Conv
1x1+ 1(S) 3x3+ 1(S) 5x5+ 1(S) 1x1+ 1(S)

Conv Conv MaxPool
1x1+ 1(S) 1x1+ 1(S) 3x3+ 1(S)

Dept hConcat

Conv Conv Conv Conv
1x1+ 1(S) 3x3+ 1(S) 5x5+ 1(S) 1x1+ 1(S)

Conv Conv MaxPool
1x1+ 1(S) 1x1+ 1(S) 3x3+ 1(S)

Dept hConcat

AveragePool
7x7+ 1(V)

FC

Conv
1x1+ 1(S)

FC

FC

Soft maxAct ivat ion

soft max0

Conv
1x1+ 1(S)

FC

FC

Soft maxAct ivat ion

soft max1

Soft maxAct ivat ion

soft max2

GoogleNet, 22 layers
(ILSVRC 2014)

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.

1x1 conv, 64

3x3 conv, 64

1x1 conv, 256

1x1 conv, 64

3x3 conv, 64

1x1 conv, 256

1x1 conv, 64

3x3 conv, 64

1x1 conv, 256

1x1 conv, 128, /2

3x3 conv, 128

1x1 conv, 512

1x1 conv, 128

3x3 conv, 128

1x1 conv, 512

1x1 conv, 128

3x3 conv, 128

1x1 conv, 512

1x1 conv, 128

3x3 conv, 128

1x1 conv, 512

1x1 conv, 128

3x3 conv, 128

1x1 conv, 512

1x1 conv, 128

3x3 conv, 128

1x1 conv, 512

1x1 conv, 128

3x3 conv, 128

1x1 conv, 512

1x1 conv, 128

3x3 conv, 128

1x1 conv, 512

1x1 conv, 256, /2

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 512, /2

3x3 conv, 512

1x1 conv, 2048

1x1 conv, 512

3x3 conv, 512

1x1 conv, 2048

1x1 conv, 512

3x3 conv, 512

1x1 conv, 2048

ave pool, fc 1000

7x7 conv, 64, /2, pool/2

AlexNet, 8 layers
(ILSVRC 2012)

Revolution of Depth
ResNet, 152 layers

(ILSVRC 2015)

3x3 conv, 64

3x3 conv, 64, pool/2

3x3 conv, 128

3x3 conv, 128, pool/2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256, pool/2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512, pool/2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512, pool/2

fc, 4096

fc, 4096

fc, 1000

11x11 conv, 96, /4, pool/2

5x5 conv, 256, pool/2

3x3 conv, 384

3x3 conv, 384

3x3 conv, 256, pool/2

fc, 4096

fc, 4096

fc, 1000
VGG, 19 layers
(ILSVRC 2014)

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.

Revolution of Depth
ResNet, 152 layers 1x1 conv, 64

3x3 conv, 64

1x1 conv, 256

1x1 conv, 64

3x3 conv, 64

1x1 conv, 256

1x1 conv, 64

3x3 conv, 64

1x1 conv, 256

1x2 conv, 128, /2

3x3 conv, 128

1x1 conv, 512

1x1 conv, 128

3x3 conv, 128

1x1 conv, 512

1x1 conv, 128

3x3 conv, 128

1x1 conv, 512

1x1 conv, 128

3x3 conv, 128

1x1 conv, 512

1x1 conv, 128

3x3 conv, 128

1x1 conv, 512

1x1 conv, 128

3x3 conv, 128

1x1 conv, 512

1x1 conv, 128

3x3 conv, 128

1x1 conv, 512

1x1 conv, 128

3x3 conv, 128

1x1 conv, 512

1x1 conv, 256, /2

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 512, /2

3x3 conv, 512

1x1 conv, 2048

1x1 conv, 512

3x3 conv, 512

1x1 conv, 2048

1x1 conv, 512

3x3 conv, 512

1x1 conv, 2048

ave pool, fc 1000

7x7 conv, 64, /2, pool/2

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.

Revolution of Depth

34

58
66

86

HOG, DPM AlexNet
(RCNN)

VGG
(RCNN)

ResNet
(Faster RCNN)*

PASCAL VOC 2007 Object Detection mAP (%)

shallow
8 layers

16 layers

101 layers

*w/ other improvements & more data

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.

Engines of
visual recognition

ResNet’s object detection result on COCO
*the original image is from the COCO dataset

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.

Very simple, easy to follow

• Many third-party implementations (list in https://github.com/KaimingHe/deep-residual-networks)
• Facebook AI Research’s Torch ResNet:
• Torch, CIFAR-10, with ResNet-20 to ResNet-110, training code, and curves: code
• Lasagne, CIFAR-10, with ResNet-32 and ResNet-56 and training code: code
• Neon, CIFAR-10, with pre-trained ResNet-32 to ResNet-110 models, training code, and curves: code
• Torch, MNIST, 100 layers: blog, code
• A winning entry in Kaggle's right whale recognition challenge: blog, code
• Neon, Place2 (mini), 40 layers: blog, code
• …

• Easily reproduced results (e.g. Torch ResNet: https://github.com/facebook/fb.resnet.torch)

• A series of extensions and follow-ups
• > 200 citations in 6 months after posted on arXiv (Dec. 2015)

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.

https://github.com/KaimingHe/deep-residual-networks
https://github.com/facebook/fb.resnet.torch)

Background

From shallow to deep

Traditional recognition

edges classifier “bus”?

pixels
classifier “bus”?

histogram classifier “bus”?edges

SIFT/HOG

histogram classifier “bus”?edges K-means/
sparse code

shallower

deeper

But what’s next?

Deep Learning

histogram classifier “bus”?edges K-means/
sparse code

Specialized components, domain knowledge required

“bus”?

Generic components (“layers”), less domain knowledge

“bus”?

Repeat elementary layers => Going deeper

• End-to-end learning
• Richer solution space

Spectrum of Depth

shallower deeper

5 layers: easy

>10 layers: initialization, Batch Normalization

>30 layers: skip connections

>100 layers: identity skip connections

>1000 layers: ?

Initialization

LeCun et al 1998 “Efficient Backprop”
Glorot & Bengio 2010 “Understanding the difficulty of training deep feedforward neural networks”

input
𝑋

output
𝑌 = 𝑊𝑋

weight
𝑊

1-layer:
𝑉𝑎𝑟 𝑦 = (𝑛!"𝑉𝑎𝑟 𝑤)𝑉𝑎𝑟[𝑥]

Multi-layer:

𝑉𝑎𝑟 𝑦 = (-
#

𝑛#!"𝑉𝑎𝑟 𝑤#)𝑉𝑎𝑟[𝑥]

If:
• Linear activation
• 𝑥, 𝑦, 𝑤: independent
Then:

𝑛!" 𝑛#$%

Initialization

LeCun et al 1998 “Efficient Backprop”
Glorot & Bengio 2010 “Understanding the difficulty of training deep feedforward neural networks”

1 3 5 7 9 11 13 15
depth

exploding

vanishing

ideal

Forward:

𝑉𝑎𝑟 𝑦 = ((
&

𝑛&!"𝑉𝑎𝑟 𝑤&)𝑉𝑎𝑟[𝑥]

Backward:

𝑉𝑎𝑟
𝜕
𝜕𝑥

= ((
&

𝑛&#$%𝑉𝑎𝑟 𝑤&)𝑉𝑎𝑟[
𝜕
𝜕𝑦
]

Both forward (response) and backward (gradient)
signal can vanish/explode

Initialization

• Initialization under linear assumption

LeCun et al 1998 “Efficient Backprop”
Glorot & Bengio 2010 “Understanding the difficulty of training deep feedforward neural networks”

∏! 𝑛!"#𝑉𝑎𝑟 𝑤! = 𝑐𝑜𝑛𝑠𝑡$% (healthy forward)
and

∏! 𝑛!&'(𝑉𝑎𝑟 𝑤! = 𝑐𝑜𝑛𝑠𝑡)%(healthy backward)

𝑛!"#𝑉𝑎𝑟 𝑤! = 1
or*

𝑛!&'(𝑉𝑎𝑟 𝑤! = 1

: 𝑛&#$% = 𝑛&'(!" , so)#"%!")#"*%#"
= "$%&'

()*

"+,-&'
./ < ∞.

It is sufficient to use either form.

“Xavier” init in Caffe

Initialization

• Initialization under ReLU

∏&
(
+𝑛&

!"𝑉𝑎𝑟 𝑤& = 𝑐𝑜𝑛𝑠𝑡,- (healthy forward)
and

∏&
(
+𝑛&

#$%𝑉𝑎𝑟 𝑤& = 𝑐𝑜𝑛𝑠𝑡.-(healthy backward)

1
2
𝑛&!"𝑉𝑎𝑟 𝑤& = 1

or
1
2
𝑛&#$%𝑉𝑎𝑟 𝑤& = 1

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification”. ICCV 2015.

With 𝐷 layers, a factor of 2 per layer has
exponential impact of 2/

“MSRA” init in Caffe

Initialization

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification”. ICCV 2015.

ours

Xavier

22-layer ReLU net:
good init converges faster

𝑛𝑉𝑎𝑟 𝑤 = 1
ours
Xavier

30-layer ReLU net:
good init is able to converge

1
2
𝑛𝑉𝑎𝑟 𝑤 = 1

1
2
𝑛𝑉𝑎𝑟 𝑤 = 1

𝑛𝑉𝑎𝑟 𝑤 = 1

*Figures show the beginning of training

Batch Normalization (BN)

• Normalizing input (LeCun et al 1998 “Efficient Backprop”)

• BN: normalizing each layer, for each mini-batch

• Greatly accelerate training

• Less sensitive to initialization

• Improve regularization

S. Ioffe & C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. ICML 2015

Batch Normalization (BN)

S. Ioffe & C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. ICML 2015

layer 𝑥 .𝑥 =
𝑥 − 𝜇
𝜎

𝑦 = 𝛾 .𝑥 + 𝛽

• 𝜇: mean of 𝑥 in mini-batch
• 𝜎: std of 𝑥 in mini-batch
• 𝛾: scale
• 𝛽: shift

• 𝜇, 𝜎: functions of 𝑥,
analogous to responses

• 𝛾, 𝛽: parameters to be learned,
analogous to weights

H
, W

C N

Batch Norm

Figure 2. Normalization methods. Each subplot shows a feature map tensor, with N as the batch axis, C as the channel axis, and (H,W)
as the spatial axes. The pixels in blue are normalized by the same mean and variance, computed by aggregating the values of these pixels.

number. ShuffleNet [65] proposes a channel shuffle oper-
ation that permutes the axes of grouped features. These
methods all involve dividing the channel dimension into
groups. Despite the relation to these methods, GN does not
require group convolutions. GN is a generic layer, as we
evaluate in standard ResNets [20].

3. Group Normalization

The channels of visual representations are not entirely
independent. Classical features of SIFT [39], HOG [9],
and GIST [41] are group-wise representations by design,
where each group of channels is constructed by some kind
of histogram. These features are often processed by group-
wise normalization over each histogram or each orientation.
Higher-level features such as VLAD [29] and Fisher Vec-
tors (FV) [44] are also group-wise features where a group
can be thought of as the sub-vector computed with respect
to a cluster.

Analogously, it is not necessary to think of deep neu-
ral network features as unstructured vectors. For example,
for conv1 (the first convolutional layer) of a network, it is
reasonable to expect a filter and its horizontal flipping to
exhibit similar distributions of filter responses on natural
images. If conv1 happens to approximately learn this pair
of filters, or if the horizontal flipping (or other transforma-
tions) is made into the architectures by design [11, 8], then
the corresponding channels of these filters can be normal-
ized together.

The higher-level layers are more abstract and their be-
haviors are not as intuitive. However, in addition to orien-
tations (SIFT [39], HOG [9], or [11, 8]), there are many
factors that could lead to grouping, e.g., frequency, shapes,
illumination, textures. Their coefficients can be interde-
pendent. In fact, a well-accepted computational model
in neuroscience is to normalize across the cell responses
[21, 52, 55, 5], “with various receptive-field centers (cov-
ering the visual field) and with various spatiotemporal fre-
quency tunings” (p183, [21]); this can happen not only in
the primary visual cortex, but also “throughout the visual
system” [5]. Motivated by these works, we propose new
generic group-wise normalization for deep neural networks.

3.1. Formulation

We first describe a general formulation of feature nor-
malization, and then present GN in this formulation. A fam-
ily of feature normalization methods, including BN, LN, IN,
and GN, perform the following computation:

x̂i =
1

�i

(xi � µi). (1)

Here x is the feature computed by a layer, and i is an index.
In the case of 2D images, i = (iN , iC , iH , iW) is a 4D vec-
tor indexing the features in (N,C,H,W) order, where N is
the batch axis, C is the channel axis, and H and W are the
spatial height and width axes.

µ and � in (1) are the mean and standard deviation (std)
computed by:

µi =
1

m

X

k2Si

xk, �i =

s
1

m

X

k2Si

(xk � µi)2 + ✏, (2)

with ✏ as a small constant. Si is the set of pixels in which
the mean and std are computed, and m is the size of this set.
Many types of feature normalization methods mainly differ
in how the set Si is defined (Figure 2), discussed as follows.

In Batch Norm [26], the set Si is defined as:

Si = {k | kC = iC}, (3)

where iC (and kC) denotes the sub-index of i (and k) along
the C axis. This means that the pixels sharing the same
channel index are normalized together, i.e., for each chan-
nel, BN computes µ and � along the (N,H,W) axes. In
Layer Norm [3], the set is:

Si = {k | kN = iN}, (4)

meaning that LN computes µ and � along the (C,H,W)
axes for each sample. In Instance Norm [61], the set is:

Si = {k | kN = iN , kC = iC}. (5)

meaning that IN computes µ and � along the (H,W) axes
for each sample and each channel. The relations among BN,
LN, and IN are in Figure 2.

3

Deep Residual Networks

From 10 layers to 100 layers

Going Deeper

• Initialization algorithms ✓
• Batch Normalization ✓

• Is learning better networks as simple as stacking more layers?

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.

Simply stacking layers?

0 1 2 3 4 5 60

10

20

iter. (1e4)

train error (%)

0 1 2 3 4 5 60

10

20

iter. (1e4)

test error (%)
CIFAR-10

56-layer

20-layer

56-layer

20-layer

• Plain nets: stacking 3x3 conv layers…
• 56-layer net has higher training error and test error than 20-layer net

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.

Simply stacking layers?

0 1 2 3 4 5 60

5

10

20

iter. (1e4)

er
ro

r (
%

)

plain-20
plain-32
plain-44
plain-56

CIFAR-10

20-layer
32-layer
44-layer
56-layer

0 10 20 30 40 5020

30

40

50

60

iter. (1e4)

er
ro

r (
%

)

plain-18
plain-34

ImageNet-1000

34-layer

18-layer

• “Overly deep” plain nets have higher training error
• A general phenomenon, observed in many datasets

solid: test/val
dashed: train

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.

7x7 conv, 64, /2

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128, /2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 256, /2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

fc 1000

a shallower
model

(18 layers)

a deeper
counterpart
(34 layers)

7x7 conv, 64, /2

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128, /2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 256, /2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

fc 1000

“extra”
layers

• Richer solution space

• A deeper model should not have higher
training error

• A solution by construction:
• original layers: copied from a

learned shallower model
• extra layers: set as identity
• at least the same training error

• Optimization difficulties: solvers cannot
find the solution when going deeper…

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.

Deep Residual Learning

• Plain net

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.

any two
stacked layers

𝑥

𝐻(𝑥)

weight layer

weight layer

relu

relu

𝐻 𝑥 is any desired mapping,

hope the 2 weight layers fit 𝐻(𝑥)

Deep Residual Learning

• Residual net

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.

𝐻 𝑥 is any desired mapping,

hope the 2 weight layers fit 𝐻(𝑥)

hope the 2 weight layers fit 𝐹(𝑥)

let 𝐻 𝑥 = 𝐹 𝑥 + 𝑥
weight layer

weight layer

relu

relu

𝑥

𝐻 𝑥 = 𝐹 𝑥 + 𝑥

identity
𝑥

𝐹(𝑥)

Deep Residual Learning

• 𝐹 𝑥 is a residual mapping w.r.t. identity

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.

• If identity were optimal,
easy to set weights as 0

• If optimal mapping is closer to identity,
easier to find small fluctuations

weight layer

weight layer

relu

relu

𝑥

𝐻 𝑥 = 𝐹 𝑥 + 𝑥

identity
𝑥

𝐹(𝑥)

Related Works – Residual Representations

• VLAD & Fisher Vector [Jegou et al 2010], [Perronnin et al 2007]

• Encoding residual vectors; powerful shallower representations.

• Product Quantization (IVF-ADC) [Jegou et al 2011]

• Quantizing residual vectors; efficient nearest-neighbor search.

• MultiGrid & Hierarchical Precondition [Briggs, et al 2000], [Szeliski 1990, 2006]

• Solving residual sub-problems; efficient PDE solvers.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.

7x7 conv, 64, /2

pool, /2

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128, /2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 256, /2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

avg pool

fc 1000

7x7 conv, 64, /2

pool, /2

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128, /2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 256, /2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

avg pool

fc 1000

Network “Design”

• Keep it simple

• Our basic design (VGG-style)
• all 3x3 conv (almost)

• spatial size /2 => # filters x2 (~same complexity per layer)

• Simple design; just deep!

• Other remarks:
• no hidden fc
• no dropout

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.

plain net ResNet

Training

• All plain/residual nets are trained from scratch

• All plain/residual nets use Batch Normalization

• Standard hyper-parameters & augmentation

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.

CIFAR-10 experiments

0 1 2 3 4 5 60

5

10

20

iter. (1e4)

er
ro

r (
%

)

plain-20
plain-32
plain-44
plain-56

20-layer
32-layer
44-layer
56-layer

CIFAR-10 plain nets

0 1 2 3 4 5 60

5

10

20

iter. (1e4)

er
ro

r (
%

)

ResNet-20
ResNet-32
ResNet-44
ResNet-56
ResNet-110

CIFAR-10 ResNets

56-layer
44-layer
32-layer
20-layer

110-layer

• Deep ResNets can be trained without difficulties
• Deeper ResNets have lower training error, and also lower test error

solid: test
dashed: train

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.

ImageNet experiments

0 10 20 30 40 5020

30

40

50

60

iter. (1e4)

er
ro

r (
%

)

ResNet-18
ResNet-34

0 10 20 30 40 5020

30

40

50

60

iter. (1e4)

er
ro

r (
%

)

plain-18
plain-34

ImageNet plain nets ImageNet ResNets

solid: test
dashed: train

34-layer

18-layer

18-layer

34-layer

• Deep ResNets can be trained without difficulties
• Deeper ResNets have lower training error, and also lower test error

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.

ImageNet experiments

• A practical design of going deeper

3x3, 64

3x3, 64

relu

relu

64-d

3x3, 64

1x1, 64
relu

1x1, 256
relu

relu

256-d

all-3x3

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.

bottleneck
(for ResNet-50/101/152)

similar
complexity

ImageNet experiments

7.4

6.7

6.1
5.7

4

5

6

7

8

ResNet-34ResNet-50ResNet-101ResNet-152
10-crop testing, top-5 val error (%)

this model has
lower time complexity

than VGG-16/19

• Deeper ResNets have lower error

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.

ImageNet experiments

3.57

6.7 7.3

11.7

16.4

25.8
28.2

ILSVRC'15
ResNet

ILSVRC'14
GoogleNet

ILSVRC'14
VGG

ILSVRC'13 ILSVRC'12
AlexNet

ILSVRC'11 ILSVRC'10

ImageNet Classification top-5 error (%)

shallow8 layers

19 layers22 layers

152 layers

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.

8 layers

Discussions
Representation, Optimization, Generalization

Issues on learning deep models

•Representation ability

•Optimization ability

•Generalization ability

• Ability of model to fit training data, if
optimum could be found

• If model A’s solution space is a superset of
B’s, A should be better.

• Feasibility of finding an optimum

• Not all models are equally easy to optimize

• Once training data is fit, how good is the test
performance

Léon Bottou and Olivier Bousquet: The Tradeoffs of Large Scale Learning, Advances in
Neural Information Processing Systems 20 (NIPS 2007),

How do ResNets address these issues?

•Representation ability

•Optimization ability

•Generalization ability

• No explicit advantage on representation
(only re-parameterization), but

• Allow models to go deeper

• Enable very smooth forward/backward prop

• Greatly ease optimizing deeper models

• Not explicitly address generalization, but

• Deeper+thinner is good generalization

On the Importance of
Identity Mapping

From 100 layers to 1000 layers

On identity mappings for optimization

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Identity Mappings in Deep Residual Networks”. arXiv 2016.

𝑥!"# = 𝑓(ℎ 𝑥! + 𝐹 𝑥!)

𝑥𝑙

ℎ(𝑥!)𝐹(𝑥𝑙)
layer

layer

• shortcut mapping: ℎ = identity

• after-add mapping: 𝑓 = ReLU

On identity mappings for optimization

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Identity Mappings in Deep Residual Networks”. arXiv 2016.

𝑥!"# = 𝑓(ℎ 𝑥! + 𝐹 𝑥!)

𝑥𝑙

ℎ(𝑥!)𝐹(𝑥𝑙)
layer

layer

• shortcut mapping: ℎ = identity

• after-add mapping: 𝑓 = ReLU

• What if 𝑓 = identity?

On identity mappings for optimization

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Identity Mappings in Deep Residual Networks”. arXiv 2016.

𝑥!"# = 𝑓(ℎ 𝑥! + 𝐹 𝑥!)

𝑥𝑙

ℎ(𝑥!)𝐹(𝑥𝑙)
layer

layer

• shortcut mapping: ℎ = identity

• after-add mapping: 𝑓 = ReLU

• What if 𝑓 = identity?

Very smooth forward propagation

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Identity Mappings in Deep Residual Networks”. arXiv 2016.

𝑥!"# = 𝑥! + 𝐹 𝑥!

𝑥!"$ = 𝑥!"# + 𝐹 𝑥!"#

Very smooth forward propagation

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Identity Mappings in Deep Residual Networks”. arXiv 2016.

𝑥!"# = 𝑥! + 𝐹 𝑥!

𝑥!"$ = 𝑥! + 𝐹 𝑥! + 𝐹 𝑥!"#

𝑥!"$ = 𝑥!"# + 𝐹 𝑥!"#

Very smooth forward propagation

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Identity Mappings in Deep Residual Networks”. arXiv 2016.

𝑥!"# = 𝑥! + 𝐹 𝑥!

𝑥!"$ = 𝑥! + 𝐹 𝑥! + 𝐹 𝑥!"#

𝑥!"$ = 𝑥!"# + 𝐹 𝑥!"#

𝑥% = 𝑥! +)
&'!

%(#

𝐹 𝑥&

Very smooth forward propagation

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Identity Mappings in Deep Residual Networks”. arXiv 2016.

𝑥% = 𝑥! +)
&'!

%(#

𝐹 𝑥&

7x7 conv, 64, /2

pool, /2

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128, /2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 256, /2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

avg pool

fc 1000

7x7 conv, 64, /2

pool, /2

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128, /2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 256, /2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

avg pool

fc 1000

𝑥$

𝑥%• Any 𝑥% is directly forward-prop to any 𝑥$,
plus residual.

• Any 𝑥$ is an additive outcome.
• in contrast to multiplicative: 𝑥* = ∏"+,

*-.𝑊"𝑥,

Very smooth backward propagation

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Identity Mappings in Deep Residual Networks”. arXiv 2016.

𝑥% = 𝑥! +)
&'!

%(#

𝐹 𝑥&

7x7 conv, 64, /2

pool, /2

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128, /2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 256, /2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

avg pool

fc 1000

7x7 conv, 64, /2

pool, /2

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128, /2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 256, /2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

avg pool

fc 1000

𝜕𝐸
𝜕𝑥*

𝜕𝐸
𝜕𝑥,

𝜕𝐸
𝜕𝑥%

=
𝜕𝐸
𝜕𝑥$

𝜕𝑥$
𝜕𝑥%

=
𝜕𝐸
𝜕𝑥$

(1 +
𝜕
𝜕𝑥%

8
!&'

$('

𝐹 𝑥!)

Very smooth backward propagation

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Identity Mappings in Deep Residual Networks”. arXiv 2016.

7x7 conv, 64, /2

pool, /2

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128, /2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 256, /2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

avg pool

fc 1000

7x7 conv, 64, /2

pool, /2

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128, /2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 256, /2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

avg pool

fc 1000

𝜕𝐸
𝜕𝑥*

𝜕𝐸
𝜕𝑥,

𝜕𝐸
𝜕𝑥%

=
𝜕𝐸
𝜕𝑥$

(1 +
𝜕
𝜕𝑥%

8
!&'

$('

𝐹 𝑥!)

• Any /0
/1!

is directly back-prop to any /0
/1"

,
plus residual.

• Any /0
/1"

is additive; unlikely to vanish

• in contrast to multiplicative: !"
!#!

= ∏$%&
'()𝑊$

01
028

Residual for every layer

𝑥% = 𝑥! +)
&'!

%(#

𝐹 𝑥&forward:

𝜕𝐸
𝜕𝑥%

=
𝜕𝐸
𝜕𝑥$

(1 +
𝜕
𝜕𝑥%

8
!&'

$('

𝐹 𝑥!)backward:

Enabled by:

• shortcut mapping: ℎ = identity

• after-add mapping: 𝑓 = identity

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Identity Mappings in Deep Residual Networks”. arXiv 2016.

Experiments

• Set 1: what if shortcut mapping ℎ ≠ identity

• Set 2: what if after-add mapping 𝑓 is identity

• Experiments on ResNets with more than 100 layers
• deeper models suffer more from optimization difficulty

Experiment Set 1:
what if shortcut mapping ℎ ≠ identity?

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Identity Mappings in Deep Residual Networks”. arXiv 2016.

(f) dropout shortcut(e) conv shortcut

3x3 conv

3x3 conv

addition
ReLU

1x1 conv
ReLU

3x3 conv

3x3 conv

addition

dropout
ReLU

ReLU

(d) shortcut-only gating(c) exclusive gating

3x3 conv

3x3 conv

addition

1x1 conv
sigmoid

1-

ReLU

ReLU

3x3 conv

3x3 conv

addition

1x1 conv
sigmoid

1-

ReLU

ReLU

(a) original (b) constant scaling

3x3 conv

3x3 conv

addition
ReLU

ReLU

3x3 conv

3x3 conv

addition

0.5 0.5

ReLU

ReLU

ℎ 𝑥 = 𝑥
error: 6.6%

ℎ 𝑥 = 0.5𝑥
error: 12.4%

ℎ 𝑥 = gate · 𝑥
error: 8.7%

ℎ 𝑥 = gate · 𝑥
error: 12.9%

ℎ 𝑥 = conv(𝑥)
error: 12.2%

ℎ 𝑥 = dropout(𝑥)
error: > 20%

* ResNet-110 on CIFAR-10

*similar to “Highway
Network”

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Identity Mappings in Deep Residual Networks”. arXiv 2016.

(f) dropout shortcut(e) conv shortcut

3x3 conv

3x3 conv

addition
ReLU

1x1 conv
ReLU

3x3 conv

3x3 conv

addition

dropout
ReLU

ReLU

(d) shortcut-only gating(c) exclusive gating

3x3 conv

3x3 conv

addition

1x1 conv
sigmoid

1-

ReLU

ReLU

3x3 conv

3x3 conv

addition

1x1 conv
sigmoid

1-

ReLU

ReLU

(a) original (b) constant scaling

3x3 conv

3x3 conv

addition
ReLU

ReLU

3x3 conv

3x3 conv

addition

0.5 0.5

ReLU

ReLU

ℎ 𝑥 = 𝑥
error: 6.6%

ℎ 𝑥 = 0.5𝑥
error: 12.4%

ℎ 𝑥 = gate · 𝑥
error: 8.7%

ℎ 𝑥 = gate · 𝑥
error: 12.9%

ℎ 𝑥 = conv(𝑥)
error: 12.2%

ℎ 𝑥 = dropout(𝑥)
error: > 20%

shortcuts
blocked by

multiplications

* ResNet-110 on CIFAR-10

If ℎ is multiplicative, e.g. ℎ 𝑥 = λ𝑥

𝑥$ = λ$(%𝑥% +8
!&%

$('

=𝐹 𝑥!forward:

𝜕𝐸
𝜕𝑥%

=
𝜕𝐸
𝜕𝑥$

(λ$(% +
𝜕
𝜕𝑥%

8
!&'

$('

=𝐹 𝑥!)backward:

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Identity Mappings in Deep Residual Networks”. arXiv 2016.

• if ℎ is multiplicative,
shortcuts are blocked

• direct propagation is decayed

*assuming 𝑓 = identity

3x3 conv

3x3 conv

addition

1x1 conv
sigmoid

1-

ReLU

ReLU

3x3 conv

3x3 conv

addition
ReLU

ReLU

ℎ is identity

ℎ is gating

• gating should have better representation
ability (identity is a special case), but

• optimization difficulty dominates results
Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Identity Mappings in Deep Residual Networks”. arXiv 2016.

solid: test
dashed: train

Experiment Set 2:
what if after-add mapping 𝑓 is identity

BN

ReLU

weight

BN

weight

addition

ReLU

xl

xl+1

BN

ReLU

weight

BN

weight

addition

ReLU

xl

xl+1

ReLU

weight

BN

ReLU

weight

BN

addition

xl

xl+1

𝑓 is ReLU
(original ResNet)

𝑓 is BN+ReLU 𝑓 is identity
(pre-activation

ResNet)
Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Identity Mappings in Deep Residual Networks”. arXiv 2016.

BN

ReLU

weight

BN

weight

addition

ReLU

xl

xl+1

BN

ReLU

weight

BN

weight

addition

ReLU

xl

xl+1

𝑓 = ReLU 𝑓 = BN+ReLU

𝑓 = ReLU

𝑓 = BN+ReLU

• BN could also block prop
• Keep the shortest pass as

smooth as possible

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Identity Mappings in Deep Residual Networks”. arXiv 2016.

solid: test
dashed: train

BN

ReLU

weight

BN

weight

addition

ReLU

xl

xl+1

𝑓 = ReLU 𝑓 = identity

ReLU

weight

BN

ReLU

weight

BN

addition

xl

xl+1

1001-layer ResNets on CIFAR-10

𝑓 = ReLU
𝑓 = identity

• ReLU could also block prop when
there are 1000 layers

• pre-activation design eases
optimization (and improves generalization; see paper)

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Identity Mappings in Deep Residual Networks”. arXiv 2016.

solid: test
dashed: train

Batch Normalization Biases Residual Blocks

Towards the Identity Function in Deep Networks

Soham De

DeepMind, London
sohamde@google.com

Samuel L. Smith

DeepMind, London
slsmith@google.com

Abstract

Batch normalization dramatically increases the largest trainable depth of residual
networks, and this benefit has been crucial to the empirical success of deep residual
networks on a wide range of benchmarks. We show that this key benefit arises be-
cause, at initialization, batch normalization downscales the residual branch relative
to the skip connection, by a normalizing factor on the order of the square root of
the network depth. This ensures that, early in training, the function computed by
normalized residual blocks in deep networks is close to the identity function (on
average). We use this insight to develop a simple initialization scheme that can
train deep residual networks without normalization. We also provide a detailed em-
pirical study of residual networks, which clarifies that, although batch normalized
networks can be trained with larger learning rates, this effect is only beneficial in
specific compute regimes, and has minimal benefits when the batch size is small.

1 Introduction

The combination of skip connections [1–3] and batch normalization [4] dramatically increases the
largest trainable depth of neural networks. Although the origin of this effect is poorly understood, it
has led to a rapid improvement in the performance of deep networks on popular benchmarks [5, 6].
Following the introduction of layer normalization [7] and the transformer architecture [8, 9], almost
all state-of-the-art networks currently contain both skip connections and normalization layers.

Our contributions. This paper provides a simple explanation for why batch normalized deep residual
networks are trainable. We prove that batch normalization downscales the hidden activations on the
residual branch by a factor on the order of the square root of the network depth (at initialization).
Therefore, as the depth of a residual network is increased, the residual blocks are increasingly
dominated by the skip connection, which drives the functions computed by residual blocks closer to
the identity, preserving signal propagation and ensuring well-behaved gradients [10–14].

If our theory is correct, it should be possible to train deep residual networks without normalization,
simply by downscaling the residual branch. Therefore, to verify our analysis, we introduce a one-line
code change (“SkipInit”) which imposes this property at initialization, and we confirm that this
alternative scheme can train one thousand layer residual networks without normalization.

In addition, we provide a detailed empirical study of residual networks at a wide range of batch sizes.
This study demonstrates that, although batch normalization does enable us to train residual networks
with larger learning rates, we only benefit from using large learning rates in practice if the batch size
is large. When the batch size is small, normalized and unnormalized networks have similar optimal
learning rates, yet normalized networks still achieve significantly higher test accuracies and lower
training losses. These experiments confirm that large learning rates are not the primary benefit of
batch normalization in residual networks, contrary to the claims made by previous work [15, 16].

Preprint. Under review.

ar
X

iv
:2

00
2.

10
44

4v
2

 [c
s.L

G
]

18
 Ju

n
20

20

https://arxiv.org/pdf/2002.10444.pdf

Paper layout. In section 2, we prove that residual blocks containing identity skip connections and
normalization layers are biased towards the identity function in deep networks (at initialization). To
confirm that this property explains why deep normalized residual networks are trainable, we propose
a simple alternative to normalization (“SkipInit”) that shares the same property at initialization, and
we provide an empirical study of normalized residual networks and SkipInit at a range of network
depths. In section 3, we study the performance of residual networks at a range of batch sizes, in order
to clarify when normalized networks benefit from large learning rates. We study the regularization
benefits of batch normalization in section 4 and we compare the performance of batch normalization,
SkipInit and Fixup [17] on ImageNet in section 5. We discuss related work in section 6.

2 Why are deep normalized residual networks trainable?

2.1 Theoretical analysis at initialization

ReLU

Conv

BN

A) B)

+

Conv

α

ReLU

+

Figure 1: A) A residual block with batch normal-
ization. It is common practice to include two con-
volutions on the residual branch; we show one
convolution for simplicity. B) SkipInit replaces
batch normalization by a single learnable scalar ↵.
We set ↵ = 0 (or a small constant) at initialization.

Residual networks (ResNets) [2, 3] contain a
sequence of residual blocks, which are com-
posed of a “residual branch” comprising a num-
ber of convolutions, normalization layers and
non-linearities, as well as a “skip connection”,
which is usually just the identity (See figure
1). While introducing skip connections short-
ens the effective depth of the network, on their
own they only increase the trainable depth by
roughly a factor of two [18]. Normalized resid-
ual networks, on the other hand, can be trained
for depths significantly deeper than twice the
depth of their non-residual counterparts [3, 17].

To understand this effect, we analyze the variance of hidden activations at initialization. For clarity,
we focus here on the variance of a single training example, but we discuss the variance across batches
of training examples (which share the same random weights) in appendix C. Let x`

i denote the i-th
component of the input to the `-th residual block, where x

1 denotes the input to the model with
E(x1

i) = 0 and Var(x1
i) = 1 for each independent component i. Let f ` denote the function computed

by the residual branch of the `-th residual block, x+
i = max(xi, 0) denote the output of the ReLU,

and B denote the batch normalization operation (for completeness, we define batch normalization
formally in appendix A). For simplicity, we assume that there is a single linear layer on each residual
branch, such that for normalized networks, f `(x`) = W

`B(x`)+, and for unnormalized networks
f
`(x`) = W

`
x
`+. We also assume that each component of W ` is independently sampled from

N (0, 2/fan-in) (He Initialization) [19].1 Thus, given x
`, the mean of the i-th coordinate of the output

of a residual branch E
�
f
`
i (x

`)|x`
�
= 0. Since x

`+1 = x
` + f

`(x`), this implies E
�
x
`
i

�
= 0 for all

`. The covariance between the residual branch and the skip connection Cov(f `
i (x

`), x`
i) = 0, and

therefore the variance of the hidden activations, Var(x`+1
i) = Var(x`

i) +Var(f `
i (x

`)). We conclude:

Unnormalized networks: If the residual branch is unnormalized, the variance of the residual
branch, Var(f `

i (x
`)) =

Pfan-in
j Var(W `

ij) · E((x`+
j)2) = 2 · E((x`+

i)2) = Var(x`
i). This has

two implications. First, the variance of the hidden activations explode exponentially with depth,
Var(x`+1

i) = 2 · Var(x`
i) = 2`. One can prevent this explosion by introducing a factor of (1/

p
2) at

the end of each residual block, such that x`+1 = (x` + f
`(x`))/

p
2. Second, since Var(f `

i (x
`)) =

Var(x`
i), the residual branch and the skip connection contribute equally to the output of the residual

block. This ensures that the function computed by the residual block is far from the identity function.

Normalized networks: If the residual branch is normalized, the variance of the output of the
residual branch Var(f `

i (x
`)) =

Pfan-in
j Var(W `

ij) · E((B(x`)+j)
2) = Var(B(x`)i) ⇡ 1.2 Thus, the

variance of the input to the `-th residual block, Var(x`
i) ⇡ Var(x`�1

i)+1, which implies Var(x`
i) ⇡ `.

Surprisingly, the growth in the variance of the hidden activations is beneficial, because if Var(x`
i) ⇡ `,

1fan-in denotes the number of incoming network connections to the layer.
2The approximation is tight when the batch size for computing the batch statistics is large.

2

w/SkipInit

Residual block

w/BatchNorm

Table 1: Batch normalization enables us to train deep residual networks. We can recover this benefit
without normalization if we introduce a scalar multiplier ↵ on the end of the residual branch and
initialize ↵ = (1/

p
d) or smaller (where d is the number of residual blocks). In practice, we advocate

initializing ↵ = 0. We provide optimal test accuracies and optimal learning rates with error bars.

Batch Normalization

Depth Test accuracy Learning rate

16 93.5± 0.1 2�1 (2�1 to 2�1)
100 94.7± 0.1 2�1 (2�2 to 2�0)

1000 94.6± 0.1 2�2 (2�3 to 2�0)

SkipInit (↵ = 1/
p
d)

Depth Test accuracy Learning rate

16 93.0± 0.1 2�2 (2�2 to 2�1)
100 94.2± 0.1 2�1 (2�2 to 2�1)

1000 94.2± 0.0 2�1 (2�2 to 2�1)

SkipInit (↵ = 0)

Depth Test accuracy Learning rate

16 93.3± 0.1 2�2 (2�2 to 2�2)
100 94.2± 0.1 2�2 (2�2 to 2�2)

1000 94.3± 0.2 2�2 (2�3 to 2�1)

SkipInit (↵ = 1)

Depth Test accuracy Learning rate

16 93.0± 0.1 2�2 (2�2 to 2�1)
100 � �

1000 � �

Divide residual block by
p
2

Depth Test accuracy Learning rate

16 92.4± 0.1 2�2 (2�2 to 2�1)
100 88.9± 0.4 2�5 (2�5 to 2�5)

1000 � �
SkipInit without L2 (↵ = 0)

Depth Test accuracy Learning rate

16 89.8± 0.2 2�3 (2�3 to 2�3)
100 91.7± 0.2 2�2 (2�2 to 2�2)

1000 92.1± 0.1 2�2 (2�2 to 2�2)

2.3 An empirical study of residual networks at a wide range of network depths

We empirically verify the claims made above by studying the minimal components required to train
deep residual networks. In table 1, we report the mean test accuracy of an n-2 Wide-ResNet [20],
trained on CIFAR-10 for 200 epochs at batch size 64 at a range of depths n between 16 and 1000
layers. At each depth, we train the network 7 times for a range of learning rates on a logarithmic
grid, and we measure the mean and standard deviation of the test accuracy for the best 5 runs (this
procedure ensures that our results are not corrupted by outliers or failed runs). The optimal test
accuracy is the mean performance at the learning rate whose mean test accuracy was highest, and
we always verify that the optimal learning rates are not at the boundary of our grid search. Here and
throughout this paper, we use SGD with heavy ball momentum, and fix the momentum coefficient
m = 0.9. Although we tune the learning rate on the test set, we emphasize that our goal is not
to achieve state of the art results. Our goal is to compare the performance of different training
procedures, and we apply the same experimental protocol in each case. We hold the learning rate
constant for 100 epochs, before dropping the learning rate by a factor of 2 every 10 epochs. This
simple schedule achieves higher test accuracies than the original 3 drops schedule proposed in [2]. We
apply data augmentation including per-image standardization, padding, random crops and left-right
flips. We use L2 regularization with a coefficient of 5⇥ 10�4, and we initialize convolutional layers
using He initialization [19]. We provide the corresponding optimal training losses in appendix D.

As expected, batch normalized Wide-ResNets are trainable for a wide range of depths, and the optimal
learning rate is only weakly dependent on the depth. We can recover this effect without normalization
by incorporating SkipInit and initializing ↵ = (1/

p
d) or smaller, where d denotes the number of

residual blocks. This provides strong evidence to support our claim that batch normalization enables
us to train deep residual networks by biasing residual blocks towards the skip path at initialization.
Just like normalized networks, the optimal learning rate with SkipInit is almost independent of the
network depth. SkipInit slightly underperforms batch normalization on the test set at all depths,
although we show in appendix D that it achieves similar training losses to normalized networks.

For completeness, we verify that one cannot train deep residual networks with SkipInit if ↵ = 1.
We also confirm that for unnormalized residual networks, it is not sufficient merely to ensure the
activations do not explode on the forward pass (which can be achieved by multiplying the output of
each residual block by (1/

p
2)). Note that we do not provide results in table 1 in cases where the

test accuracy was frozen at random initialization throughout training at all learning rates. Finally, we
noticed that, at initialization, the loss in deep networks is dominated by the L2 regularization term,
causing the weights to shrink rapidly early in training. To clarify whether this effect is necessary, we
evaluated SkipInit (↵ = 0) without L2 regularization. We find that L2 regularization is not necessary
for trainability. This demonstrates that we can train deep residual networks without normalization
and without reducing the scale of the weights at initialization, solely by downscaling the hidden
activations on the residual branch. We provide additional results on CIFAR-100 in appendix E.

4

• Batch normalization biases residual blocks towards the identity function at initialization

method error (%)

NIN 8.81

DSN 8.22

FitNet 8.39

Highway 7.72

ResNet-110 (1.7M) 6.61

ResNet-1202 (19.4M) 7.93

ResNet-164, pre-activation (1.7M) 5.46

ResNet-1001, pre-activation (10.2M) 4.92 (4 .89±0.14)

method error (%)
NIN 35.68

DSN 34.57

FitNet 35.04

Highway 32.39

ResNet-164 (1.7M) 25.16

ResNet-1001 (10.2M) 27.82

ResNet-164, pre-activation (1.7M) 24.33

ResNet-1001, pre-activation (10.2M) 22.71 (22.68±0.22)

Comparisons on CIFAR-10/100
CIFAR-10 CIFAR-100

*all based on moderate augmentation

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Identity Mappings in Deep Residual Networks”. arXiv 2016.

ImageNet Experiments

method data augmentation top-1 error (%) top-5 error (%)
ResNet-152, original scale 21.3 5.5
ResNet-152, pre-activation scale 21.1 5.5
ResNet-200, original scale 21.8 6.0
ResNet-200, pre-activation scale 20.7 5.3
ResNet-200, pre-activation scale + aspect ratio 20.1* 4.8*

*independently reproduced by:
https://github.com/facebook/fb.resnet.torch/tree/master/pretrained#notes

training code and models available.

ImageNet single-crop (320x320) val error

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Identity Mappings in Deep Residual Networks”. arXiv 2016.

https://github.com/facebook/fb.resnet.torch/tree/master/pretrained

Summary of observations

• Keep the shortest path as smooth as possible
• by making ℎ and 𝑓 identity
• forward/backward signals directly flow through this path

• Features of any layers are additive outcomes

• 1000-layer ResNets can be easily trained and have
better accuracy

ReLU

weight

BN

ReLU

weight

BN

addition

xl

xl+1

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Identity Mappings in Deep Residual Networks”. arXiv 2016.

Future Works

• Representation
• 1-layer block vs. multi-layer block?
• Flat vs. Bottleneck?
• Inception-ResNet [Szegedy et al 2016]
• ResNet in ResNet [Targ et al 2016]
• Width vs. Depth [Zagoruyko & Komodakis 2016]

• Generalization
• DropOut, MaxOut, DropConnect, …
• Drop Layer (Stochastic Depth) [Huang et al 2016]

• Optimization
• Without residual?

ReLU

weight

BN

ReLU

weight

BN

addition

xl

xl+1

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Identity Mappings in Deep Residual Networks”. arXiv 2016.

More Visual Recognition Tasks

ResNet-based methods lead on these benchmarks (incomplete list):
• ImageNet classification, detection, localization
• MS COCO detection, segmentation
• PASCAL VOC detection, segmentation

• MPII Human pose estimation [Newell et al 2016]

• Depth estimation [Laina et al 2016]

• Segment proposal [Pinheiro et al 2016]

• …

PASCAL detection leaderboard

PASCAL segmentation leaderboard

ResNet-101

ResNet-101

Potential Applications

ResNets have
shown outstanding or
promising results on:

Visual Recognition

Image Generation
(Pixel RNN, Neural Art, etc.)

Natural Language Processing
(Very deep CNN)

Speech Recognition
(preliminary results)

Advertising, user prediction
(preliminary results)

Conclusions of the Tutorial

• Deep Residual Learning:
• Ultra deep networks can be easy to train
• Ultra deep networks can gain accuracy from depth
• Ultra deep representations are well transferrable
• Now 200 layers on ImageNet and 1000 layers on CIFAR!

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.
Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Identity Mappings in Deep Residual Networks”. arXiv 2016.

Resources

• Models and Code
• Our ImageNet models in Caffe: https://github.com/KaimingHe/deep-residual-networks

• Many available implementation
(see https://github.com/KaimingHe/deep-residual-networks)

• Facebook AI Research’s Torch ResNet:
https://github.com/facebook/fb.resnet.torch

• Torch, CIFAR-10, with ResNet-20 to ResNet-110, training code, and curves: code
• Lasagne, CIFAR-10, with ResNet-32 and ResNet-56 and training code: code
• Neon, CIFAR-10, with pre-trained ResNet-32 to ResNet-110 models, training code, and curves: code
• Torch, MNIST, 100 layers: blog, code
• A winning entry in Kaggle's right whale recognition challenge: blog, code
• Neon, Place2 (mini), 40 layers: blog, code
• …....

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.
Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Identity Mappings in Deep Residual Networks”. arXiv 2016.

Thank You!
Q & A

https://github.com/KaimingHe/deep-residual-networks
https://github.com/KaimingHe/deep-residual-networks
https://github.com/facebook/fb.resnet.torch

Exploring the Limits of
Weakly Supervised Pretraining
Laurens van der Maaten

Yixuan Li Ashwin BharambeDhruv Mahajan Ross Girshick Vignesh Ramanathan Kaiming He Manohar Paluri

ECCV 2018

https://arxiv.org/pdf/1805.00932.pdf

• First, train a model on a
large "source" dataset
(say, ImageNet)

Pretraining
Vision Models

75

• First, train a model on a
large "source" dataset
(say, ImageNet)

• Finetune on a small
"target" dataset

• Measure accuracy on
target task

Pretraining
Vision Models

76

77

Can we use large amounts of weakly
supervised images for pretraining?

Research question

• We pretrain models by predicting relevant hashtags for images

• We pretrain models to predict 17.5K hashtags for 3.5B images

• After finetuning, we beat the state-of-the-art on, e.g., ImageNet

Highlights

• It is easy to get billions of public images and
hashtags

• Hashtags are more structured than captions

• Hashtags were often assigned to make
images "searchable"

Hashtag
Supervision

78

#cheesecake #birthday

• But hashtags are not perfect supervision

Hashtag
Supervision

79

#cat #travel #thailand #family

• But hashtags are not perfect supervision

• Some hashtags are not visually relevant

Hashtag
Supervision

80

#cat #travel #thailand #family

• But hashtags are not perfect supervision

• Some hashtags are not visually relevant

• Other hashtags are not in the photo

Hashtag
Supervision

81

#cat #travel #thailand #family

• But hashtags are not perfect supervision

• Some hashtags are not visually relevant

• Other hashtags are not in the photo

• And there are many false negatives

Hashtag
Supervision

82

#cat #travel #thailand #family
#building #fence #...

• But hashtags are not perfect supervision

• Some hashtags are not visually relevant

• Other hashtags are not in the photo

• And there are many false negatives

• Is this noise bias or variance? Is scaling up
sufficient to reduce the variance?

Hashtag
Supervision

83

#cat #travel #thailand #family
#building #fence #...

• Select a set of hashtags

• Download all public Instagram images that
has at least one of these hashtags

• Use WordNet synsets to merge hashtags into
canonical form (merge #brownbear and
#ursusarctos)

Experiments

84

• Select a set of hashtags

• Download all public Instagram images that
has at least one of these hashtags

• Use WordNet synsets to merge hashtags into
canonical form (merge #brownbear and
#ursusarctos)

• The final list has 17,517 hashtags

Experiments

...

• Select a set of hashtags

• Download all public Instagram images that
has at least one of these hashtags

• Use WordNet synsets to merge hashtags into
canonical form (merge #brownbear and
#ursusarctos)

• Final dataset has ~3.5 billion images

Experiments

86

• Select a set of hashtags

• Download all public Instagram images that
has at least one of these hashtags

• Use WordNet synsets to merge hashtags into
canonical form (merge #brownbear and
#ursusarctos)

• Final dataset has ~3.5 billion images

Experiments

87

• Select a set of hashtags

• Download all public Instagram images that
has at least one of these hashtags

• Use WordNet synsets to merge hashtags into
canonical form (merge #brownbear and
#ursusarctos)

• Final dataset has ~3.5 billion images

Experiments

88

• Select a set of hashtags

• Download all public Instagram images that
has at least one of these hashtags

• Use WordNet synsets to merge hashtags into
canonical form (merge #brownbear and
#ursusarctos)

• De-duplicate test sets against Instagram!

Experiments

89

We developed strong near-duplicate detector:

We found that <0.3% of ImageNet images are in our
3.5B Instagram sample.

(This is actually a lower percentage than in most
prior papers on "transfer" learning.)

• Train ResNeXt-32xCd convolutional networks

• Use c-of-K vector to represent multiple labels

• Train to minimize multi-class logistic loss

Experiments

90

most experiments use ResNeXt-101 32x16d

Aggregated Residual Transformations for Deep Neural Networks

Saining Xie1 Ross Girshick2 Piotr Dollár2 Zhuowen Tu1 Kaiming He2
1UC San Diego 2Facebook AI Research

{s9xie,ztu}@ucsd.edu {rbg,pdollar,kaiminghe}@fb.com

Abstract

We present a simple, highly modularized network archi-

tecture for image classification. Our network is constructed

by repeating a building block that aggregates a set of trans-

formations with the same topology. Our simple design re-

sults in a homogeneous, multi-branch architecture that has

only a few hyper-parameters to set. This strategy exposes a

new dimension, which we call “cardinality” (the size of the

set of transformations), as an essential factor in addition to

the dimensions of depth and width. On the ImageNet-1K

dataset, we empirically show that even under the restricted

condition of maintaining complexity, increasing cardinality

is able to improve classification accuracy. Moreover, in-

creasing cardinality is more effective than going deeper or

wider when we increase the capacity. Our models, named

ResNeXt, are the foundations of our entry to the ILSVRC

2016 classification task in which we secured 2nd place.

We further investigate ResNeXt on an ImageNet-5K set and

the COCO detection set, also showing better results than

its ResNet counterpart. The code and models are publicly

available online
1
.

1. Introduction

Research on visual recognition is undergoing a transi-
tion from “feature engineering” to “network engineering”
[25, 24, 44, 34, 36, 38, 14]. In contrast to traditional hand-
designed features (e.g., SIFT [29] and HOG [5]), features
learned by neural networks from large-scale data [33] re-
quire minimal human involvement during training, and can
be transferred to a variety of recognition tasks [7, 10, 28].
Nevertheless, human effort has been shifted to designing
better network architectures for learning representations.

Designing architectures becomes increasingly difficult
with the growing number of hyper-parameters (width2, fil-
ter sizes, strides, etc.), especially when there are many lay-
ers. The VGG-nets [36] exhibit a simple yet effective strat-
egy of constructing very deep networks: stacking build-

1https://github.com/facebookresearch/ResNeXt
2Width refers to the number of channels in a layer.

256, 1x1, 4

4, 3x3, 4

4, 1x1, 256

+

256, 1x1, 4

4, 3x3, 4

4, 1x1, 256

256, 1x1, 4

4, 3x3, 4

4, 1x1, 256

....
total 32
paths

256-d in

+

256, 1x1, 64

64, 3x3, 64

64, 1x1, 256

+

256-d in

256-d out

256-d out

Figure 1. Left: A block of ResNet [14]. Right: A block of
ResNeXt with cardinality = 32, with roughly the same complex-
ity. A layer is shown as (# in channels, filter size, # out channels).

ing blocks of the same shape. This strategy is inherited
by ResNets [14] which stack modules of the same topol-
ogy. This simple rule reduces the free choices of hyper-
parameters, and depth is exposed as an essential dimension

in neural networks. Moreover, we argue that the simplicity
of this rule may reduce the risk of over-adapting the hyper-
parameters to a specific dataset. The robustness of VGG-
nets and ResNets has been proven by various visual recog-
nition tasks [7, 10, 9, 28, 31, 14] and by non-visual tasks
involving speech [42, 30] and language [4, 41, 20].

Unlike VGG-nets, the family of Inception models [38,
17, 39, 37] have demonstrated that carefully designed
topologies are able to achieve compelling accuracy with low
theoretical complexity. The Inception models have evolved
over time [38, 39], but an important common property is
a split-transform-merge strategy. In an Inception module,
the input is split into a few lower-dimensional embeddings
(by 1⇥1 convolutions), transformed by a set of specialized
filters (3⇥3, 5⇥5, etc.), and merged by concatenation. It
can be shown that the solution space of this architecture is a
strict subspace of the solution space of a single large layer
(e.g., 5⇥5) operating on a high-dimensional embedding.
The split-transform-merge behavior of Inception modules
is expected to approach the representational power of large
and dense layers, but at a considerably lower computational
complexity.

Despite good accuracy, the realization of Inception mod-
els has been accompanied with a series of complicating fac-

1

ar
X

iv
:1

61
1.

05
43

1v
2

 [c
s.C

V
]

11
 A

pr
 2

01
7

• Train ResNeXt-32xCd convolutional networks

• Use c-of-K vector to represent multiple labels

• Train to minimize multi-class logistic loss

• Distribute training batches across 336 GPUs

• Scale learning rate by batch size (N=8,064)

after learning rate "warm-up" (Goyal et al., 2017)

Experiments

91

Results

Fix Model;
Vary Data

93

Target task: ImageNet

• Pretrain model on
ImageNet or Instagram

• Finetune on ImageNet

Fix Model;
Vary Data

94

Target task: ImageNet

• Pretrain model on
ImageNet or Instagram

• Finetune on ImageNet

"standard" ImageNet
training

Fix Model;
Vary Data

95

Target task: ImageNet

• Pretrain model on
ImageNet or Instagram

• Finetune on ImageNet

pre-training on 1B
Instagram images,
selected to match
ImageNet classes

Fix Model;
Vary Data

96

Target task: ImageNet

• Pretrain model on
ImageNet or Instagram

• Finetune on ImageNet

pretraining on 1-3.5B
Instagram images,
without selection

Fix Model;
Vary Data

97

Target task: ImageNet

• Pretrain model on
ImageNet or Instagram

• Finetune on ImageNet

• Similar results on larger
versions of ImageNet

Fix Model;
Vary Data

98

• We observe similar
results on the CUB-2011
Birds dataset and Places-
365

Target task: CUB-2011 Birds & Places-365

Fix Data;
Vary Model

99

• Increasing model
capacity has a larger
positive effect

• Even lower error rates
may be possible?

Fix Data;
Vary Model

100

• Increasing model
capacity has a larger
positive effect

• Even lower error rates
may be possible?

best result: 85.4% top-1 accuracy

101

State-of-the-art

• Compared to prior SotA,
+2.7% in top-1 accuracy

(+1.4% top-5
accuracy)

Exploring the Limits of Weakly Supervised Pretraining 23

φ(x) = x in the case of uniform sampling and φ(x) =
√
x in the case of square

root sampling. Given an image I with (possibly multiple) hashtags {hi}, the
image-level replication factor for I is computed as r(I) = maxi r(hi). For a set
of n unique images, a list of training images is constructed by computing the
replication factor for each image, duplicating the image the prescribed number of
times, and then randomly permuting the list.5 The threshold t is selected such
that the final list has a target length matching the desired training schedule
length (e.g., processing 2 billion images during training).

A.5 Comparison with the State of the Art on ImageNet-1k

Model Image size Parameters Mult-adds Top-1 Acc. (%) Top-5 Acc. (%)

Inception V2 [27] 224 11.2M 1.94B 74.8 92.2

NASNet-A (5 @ 1538) [31] 299 10.9M 2.35B 78.6 94.2

Inception V3 [51] 299 23.8M 5.72B 78.0 93.9

Xception [52] 299 22.8M 8.38B 79.0 94.5

Inception ResNet V2 [53] 299 55.8M 13.2B 80.4 95.3

NASNet-A (7 @ 1920) [31] 299 22.6M 4.93B 80.8 95.3

ResNeXt-101 64×4 [15] 320 83.6M 31.5B 80.9 95.6

PolyNet [54] 331 92M 34.7B 81.3 95.8

DPN-131 [55] 320 79.5M 32.0B 81.5 95.8

SENet [56] 320 145.8M 42.3B 82.7 96.2

NASNet-A (6 @ 4032) [31] 331 88.9M 23.8B 82.7 96.2

Our models:

IG-3.5B-17k ResNeXt-101 32×16d 224 194M 36B 84.2 97.2

IG-940M-1.5k ResNeXt-101 32×32d 224 466M 87B 85.1 97.5

IG-940M-1.5k ResNeXt-101 32×48d 224 829M 153B 85.4 97.6

Table 6: Comparison with the state of the art on the ImageNet-1k validation
set. Result table adopted from Zoph et al. [31], to which we append the result of
ResNeXt-101 32×Cd, with C ∈ {16, 32, 48} pretrained on Instagram hashtag data and
finetuned on train-IN-1k. All results are based on a single image crop of the specified size
(squared). Our results demonstrate that pretraining on billions of images using their
hashtags as labels significantly improve on the state-of-the-art ImageNet-1k results,
particularly in the case of top-5 accuracy.

5 When an image with multiple hashtags is replicated r(I) times, each individual
hashtag hi is removed as needed such that hi is only replicated r(hi) times.

Learning
Curves

102

• Accuracy on target task
improves (almost) log-
linearly with data size

• Matching hashtags to
target task helps (1.5K
tags)

• Positive effect of pre-
training increases with
difficulty of target task

Target task: ImageNet-1K Target task: ImageNet-5K

Target task: ImageNet-9K Target task: CUB-2011

Label Noise

104

• Add "noise" that changes
a hashtag with
probability p

• Models are surprisingly
robust to label "noise" in
source task

Detection

105

• Train Mask R-CNN with
Uru "trunk" on COCO

• Box AP: Average APs over
range of IoU values

Target task: COCO Detection (box AP)

Detection

106

• Train Mask R-CNN with
Uru "trunk" on COCO

• Box AP: Average APs over
range of IoU values

Target task: COCO Detection (box AP)

on largest model,
+1.5% box AP

Visual
Concreteness

109

• Predicting hashtags is
easier for visually
"concrete" hashtags?

#beard: concreteness = 4.96 #democracy: concreteness = 1.78

* Brysbaert et al., 2014

Visual
Concreteness

110

• Predicting hashtags is
easier for visually
"concrete" hashtags

• Correlation: ρ = 0.43

* Brysbaert et al., 2014

111

Billion-scale pretraining leads to
>2.0% reduction in ImageNet top-1
error

Conclusion

• Results suggest further improvements are possible

• Current networks are underfitting on datasets at this scale

• Hypothesis: hashtag-based pre-training particularly beneficial as
target task involves recognition of larger visual variety

Discussion

